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ON  THE CONTINUITY OF LYAPUNOV EXPONENTS FOR 

SYSTEMS WITH ADDITIVE NOISE 

ISAIA NISOLI 

ABSTRACT. In this short essay I show a small result on continuity of Lyapunov 
exponents for systems with additive noise. 

1. INTRODUCTION 

Noise induced phenomena are an important research theme in mathematics, 
applied mathematics and physics: Noise Induced Order [5], Stochastich Resonance 
and Anomalous Diffusion [1, 6] are some of the observed phenomena, both in models 
and in experiments. 
In [2] we presented a computer assisted proof of Noise Induced Order for the 
Matsumoto-Tsuda model of the Belosouv-Zhabotinsky reaction, and we proved 
some continuity results for the Lyapunov exponent of the system. 
In this paper I would like to present a self-contained proof of the Lipschitz 
continuity of the Lyapunov exponent when the annealed transfer operator is mixing; 
this is a generalization of the arguments in [2]. 
This proof is quite general and the only hypothesis are the regularity of the noise 
kernel and the fact that for some noise size the system is mixing; another condition 
for the proof to work is that the weak norm has to be £1, but this is pretty natural. 
I will present it for one-dimensional systems and Bounded Variation noise but the 
proof can be easily extended to higher dimension and more regular kernels. 

2. STATEMENT OF THE RESULTS 

Let T: [O, 1]→[O, 1], I want to study the "Lyapunov exponent" of the system 
where I replace rn by (T十品） o(T+,n-1) o... o (T十も）， where(,n,...，も） are
chosen in the interval [-E, c] using a probability distribution with density function 

Pe・ 
The noise may take orbits outside the interval [O, 1]; this may reflect on the be-
haviour of the annealed operator of the random dynamical system therefore I sup-
pose that we have periodic boundary conditions, i.e., as in [4], if f E L1([0, 1]), 
letting J be its periodic extension, i.e., 

](x + k) = f(x) k E Z 

I denote by abuse of notation, for x E [O, 1] 

Pe* f(x)：＝化＊](x).

Let m be the Lebesgue measure on [O, 1]; for each Ethe behaviour of the system 
with noise can be described by a Markov chain, such that for each Borel subset E 
of [O, 1] we have that the probability of x entering E is 

(1) P心，E)= L Pe(Y -T(x))dm(y). 
E 

From here on, suppose that log(IT'I) is in L1(m). 
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Definition 1. If Tis a nonsingular Borel measumble dynamical s詞 emon X then 
it induces a linear opemtor on the space of signed Borel measures L : SM(X)→ 
SM(X), defined onμ E SM(X) by 

Lμ(A) = μ(T―lA), 

the transfer operator. 

Remark I. It is worth observing that L（心） ＝ 6T（の）； wecan think of the transfer 
operator as the operator that embodies how mass is transferred around by the 
dynamics on X. 

Definition 2. Let p be a EV density function and 

I IX 
叫）＝ーp(-） 

€ € 

then, we call 

L, = p, * L, 
the annealed transfer operator associated to the mndom dynamical system with 
noise size E. The annealed tmnsfer opemtor is the opemtor that encodes how den-
sities evolve under the action of the Markov chain (I). 

Remark 2. The annealed transfer operator gives us information on the behaviour 
of the system averaged over all possible noise realizations. We can observe this by 
duality, let¢ E L00([0, I]) 

<c/;,Lふ＞＝Jcj;(T(x) -~)dpぷ）．
We are taking the average (weighted by p,) of¢ over all the possible images of the 
point x. 

If pis in BV the (annealed) random dynamical system with noise of size E has 
(at least) one stationary measure with density in EV (Lemma 1). For the moment 
being, suppose that for each E the operator L, has a unique fixed point J,. The 
object of study of this essay is the well definedness and continuity of the following 
function. 

Definition 3. The function 

叩＝1_:log(IT'(x)l)f,dm. 
is the "Lyapunov exponent in function of the noise". 

Definition 4. In the following we will denote by Vo the space of avemge O signed 
measures. By abuse of notation we also denote by Vo the intersection of avemge 0 
signed measures with more regular Banach spaces as L1 and EV {this will be clear 
from context). 

I will show the following result. 

Theorem 1. Let L,0 be the annealed tmnsfer opemtor associated to the dynamical 
system T with additive noise with kernel p,0, for a fixed noise size Eo. Suppose 

叩。加IIBv<=:: C。n『,
with T/o < 1, C,。>0.
Then, for all E > Eo there exist CしandT/, such that 

||功|v。IIBv<=:: C泣・
This implies that the stationary measure f, is unique for E > Eoi moreover, the 
stationa可 measuref, varies continuously {in BV norm) with respect to the noise 
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size, which in turn implies that the function入(c)is well-defined and locally Lipschitz 
continuous for all E > Eo. 

3. WELL DEFINEDNESS AND CONTINUITY OF 入(€)

This is a simple inequality, where the regularization properties of convolution 
have strong consequences on the regularity of the fixed points of the operator L,. 
The same inequality works for any "regularity" seminorm, i.e., if the noise is of 
regularityび (oreven analytic), the fixed point of the annealed transfer operator 
has the s狙neregularity. 
In the following section I show how one of the consequences of the uniform 
correlation decay in EV norm is that the operator L, has a unique stationary 
measure. This shows that the function入(E)is well defined. 

3.1. Regularity of the stationary measure. We state this results with respect 
to the variation seminorm Var(.); this lemma easily generalizes to higher regularity. 

Lemma 1. Suppose IIP,IIBv < oo. Then L, preserves EV and if f, is a stationary 
density in £1, then f, is in EV and 

11/,IIBv::; IIP,IIBv 

Proof. Both statements follows from the properties of convolution, for any g E £1 
we have that: 

11£,gllBvごIIP』|Bvllgllu,

i.e. 11£,11じ→BV::;IIP』|BVwhich in turn implies that 

||L』|BV::;IIP,IIBv・

If f, is a fixed point then 

||f』|BV= IIL,f』|BV::;IIP』|Bvllf』|い::;IIP』 |BV•

ロ

Remark 3. Indeed, a stronger result is true, i.e., if M is the space of signed measures 
endowed with the Wasserstein norm [2], we have that L, is a continuous operator 
from M to EV, i.e., any stationary measure is in EV and has a density. 

3.2. Decay of correlations in £1 and EV for L,. 

Lemma 2. Suppose L, has exponential decay of correlations with respect to bounded 
variation observables. Then, there exists N such that 

||L%|v。I|L1さ；．
Proof. Decay of correlations for bounded variations observables guarantees that 

||L:|v。IIBv:S C0匹

Observing that I IL; JI I BVさ IP』|Bvll!IIぃwehave that 

||L:＋1|v。I|いこ(c.V;r(Pe)）。n+l,
by choosing N > (-1 -log2(C) -log2(Var(p』)）／log偲） wehave the thesis. ロ

The following Lemma is a generalization of a result in [2]: if for some noise 
amplitude the operator contracts £1, then for all bigger amplitudes the annealed 
operators also contracts £1. 
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Lemma 3. Let p, = E―1 p(x / 1:) and N, the associated noise operator. If 1: < E and 
ll(N,L)illv0→£1 <::: Ci < 1, then 

(2) ll(NgL)illv0→L1 :<=; Ci(c/€)i + [1 -(c/€)i] < 1. 

Proof. We observe that 

占（土）＝土Pピ）＋土州（土）— p ピ）），
moreover, the convolution operator 

Mf = ~ (p(二)-Pピ））＊ f 

is a Markov operator. 
Therefore 

叫 f＝伍Lf+(1-i)MLJ,
and 

(NeL)'f = Gr (NeL)if + (1 -Gr) Qf 
for a suitable Markov operator Q. Taking the L1 norm, the result follows. ロ

This result is strong, but it has even stronger consequences, proved in the next 
lemma, i.e., ifwe see L1 contraction for a noise amplitude Ewe have EV contraction 
for all bigger noise amplitudes. 

Lemma 4. Suppose IIL;lv,。LLUさC0叫 then

||功|v。IIBvさ(C||p;||BV）初．
Proof. Let f E V0, the proof is a chain of inequalities, 

IIL;+i JIIBvさIIP』|BvllL||ぃ||L;J||ぃ

:::; IIP』|BvC0nllf||い

:::; IIP<IIBvC0nllfllBv・

ロ

3.3. U nicity of the stationary measure and well-definedness of入(c).From 
the results on the decay of correlation, we obtain the unicity of the stationary 
measure and therefore the fact that入(E)is well-defined. 

Corollary 1. Let T: [O, 1]→[O, 1] be a dynamical system such that there exists Eo 
such that for all E E [O, co) the operators L, have a uniforrn bound on the decay of 
correlations in EV, then the function入(E)is well defined. 

Proof. For all E any stationary measure has density f, in EV C L1. Due to the lem-
mas above, for all E there exists an N such that IILflv.。lluく 1/2.By contradiction, 
suppose there are two stationary densities, f, and g,, then 

llf, -g,llu = IILグ (f€ -g€)| |L1 < ；| |f€ -g』|L1,

which implies that fe coincides with 9<・ 口
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3.4. Continuity in EV of the stationary measure with respect to the noise 
size. In this subsection we prove the continuity of the stationary measure with 
respect to the noise size at a fixed noise size E > 0. 

Corollary 2. Let Pe = E―1 p(x / E) and N0 the associated noise operator. Then, for 
g > E > 0 we have that 

IILe-Lellu s2(1-i) 

and that 

IILe-L』い→BVS 3 (1 -D IIPellBv 
Proof. From the proof of Lemma 3 we have that 

Lcfー iLd=(1-i)MLf, 

where Mis a Markov operator. Then 

€ € € 
||Le-L€||Ll さ IIL, ―;い |Ll +||Lf -；L伽 1S 2 (1 -；）． 

Similarly 

€ € 
IIL, -L』い→BV:s; IIL,―;L』|L1→Bv+IIL,-;L』|い→BV

€ € 

さ3(1 -D IIPcllBv, 
€ 

since 
1 
-||p (塁)-Pピ） IIBv:::;2IIP,11Bv-
€ € 

ロ

Now, we want to estimate the distance between the fixed points of L, and L,. 
This proofs follows the line of Theorem 1 in [3]. 

Theorem 2. Let L, and Le be the annealed operators for the noise of size E and 
i', respectively. Suppose moreover that 11 Lf I Vc。IIBv:::;C0グfor0, < 1. Suppose fe 
and fe are the unique fixed points of Le and L, respectively. Then 

C € 

llfe-fellBv:::; ~3 (1-i) IIPellBv・

Proof. Let N be such that C0グ<1/2,then 

llfe -JellBv = IILf f, -LグhllBv

:::; IILf fe -Lf hllBv + IILf !, -Lf hllBv, 

which implies that 

llf, -hllBv:::; 2IILf fe-Lf hllBv 
N-1 

<区||店|v。IIBvllLe-Lellu--+BvllLN-k-l h||い
k=O 

N-1 

::;Le的・3(1 -D IIPellBv, 
k=O 

which implies the thesis since llhllu = 1. 口
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4. PROOF OF THEOREM 1 

Proof. Let E, E > Eo then, by Theorem 2 we have 

I 入 (c) —入 (i.)I = j log(IT'l)(fc -f,_)dm 
::; 11 log(IT'|）||ぃ||fc-hllBv 

C 
::; II log(IT'l)llu~3 (1 -i) IIP』|BV・

口
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