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Szemeredi's theorem and fractal dimensions of 

sets avoiding (k, E)-arithmetic progressions 

Kota Saito 

1 Arithmetic progressions of integers 

We say that a real sequence (ai)に~ C 股 isan arithmetic progression (AP) 
of length k if there exists△ >0 such that 

佑＝ ％ ＋i△ 

for i = 0, 1,..., k -1. We say that△is the gap length of an AP. We say 

that a set P is an AP of length k if there exists an AP (ai)にlof length k in 
the sense of a sequence such that P = { ai: i = 0, 1,..., k -1 }. It is a big 
problem to show the existence or non-existence of arithmetic progressions of 
a given set. One of main topics of this problem is to find long APs of a given 

'large'set. For example, a subset A of positive integers with positive upper 
density i.e. 

IAn [1,N]I 
limsup 

N N→OO 

>0 

contains arbitrarily long APs. This statement is known as Szemeredi's the-

orem which was proved by Szemeredi in 1975 [14]. This theorem implies 

van der Waerden's theorem [15] which states that if we partition a set of all 
positive integers into finitely many sets, then we can find at least one set 
which contains arbitrarily long arithmetic progressions. Erdos and Turan 

conjectured the case when the length of APs is 3 of Szemeredi's theorem in 

[2]. In the same paper, they introduced the number rk(N) as the maximum 
cardinality of A such that Aこ{1,2,..., N} does not contain any APs of 
length k. We can get the equivalent statement of Szemeredi's theorem in 

terms of rk(N) as follows: Szemeredi's theorem is equivalent to 

lim rk(N)/N = 0 
N→OO 

holds for all k 2 3. Furthermore, if 

N 
rk(N) ＜ 

----'log N(log N)2 
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was true for all k 2: 3 and N 2: N(k), then Erdos-Turan conjecture would 
be true. We can see a proof of this implication in [7]. Here Erdos-Thran 
conjecture states that a subset A of positive integers satisfying 

1 
-= 00 こa 

aEA 

would contain arbitrarily long arithmetic progressions. This conjecture is still 
open even if the length of APs is equal to 3. Note that the sum ofreciprocals 
of prime numbers is divergent. Therefore, if Erdos-Turan conjecture is true, 

we can prove the Green-Tao theorem [8] which states that the set of all 
prime numbers contains arbitrarily long arithmetic progressions. Hence it is 

important to find non-trivial bounds for rk(N). The result by Gowers in the 

paper [6] is the best in known upper bounds for rk(N) for general length k, 
that is, for all N 2: 3 and k 2: 3, 

rk(N) ＜ 
N 

―(log log N)2-2 
k+9・ (1) 

Remark that we know better upper bounds for rk(N) in the particular case 

when k = 3 or 4 (see [1, 9]). O'Bryant gave a lower bound for rk(N). For all 

N ~ 2 and k ~ 3, we have 

1 
叫N)2: CN exp ((log 2) (-n2(n-l)/2砂~+犀og2 log2 N)), (2) 

for some C > 0, where n =「log2kl By combining (1) and (2), for every 
k 2: 3, there exists positive constants Ck and Dk such that for every N > e尺
we have 

N exp(-Ck(log Ntl2) ::::;叫N)::::;Nexp(-D且oglog log N). 

2 Arithmetic progressions of real numbers 

We firstly construct a Cantor set which does not contain any APs of length 

3. Let心1(x)= x/6 andゅ2(x)= x/6 + 5/6. Let Ii。=［0, 1], and define 

In=灼（In-1)U応(In-1)

for all n 2: 1. Then we define C = n:=。In.Note that C is the attractor 
of the iterated function system｛叫心｝ on股． Weshow that C does not 
contain any APs of length 3 by contradiction. If C contained at least one 
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AP of length 3, then let P be such an AP, and Pこf1 by definition. The 

set 11 is the union of two disjoint closed intervals. The middle hole of 11 is 
enough large such that all of elements in P belong to the left or right interval. 

Therefore there exists i1 E { 1, 2} such that 

Pこi/Ji1(Io) (3) 

By P ~ 12 and (3), there exists i2 E {1, 2} such that PC四 0訟 (Io).By 
iterating these steps, the diameter of P can be arbitrarily small. This is a 
contradiction. 

The iterated function system｛叫，砂｝ clearlysatisfies open set condition. 
Therefore the Hausdorff dimension of C is equal to real number s such that 

6―s+6―s = 1. 

log2 Thus we have dimH C = ~ by Hutchinson's theorem [10], where dimH F 
log6 

denotes the Hausdorff dimension of F. In particular, C is uncountable since 

the Hausdorff dimension of C is positive. Therefore, we can not characterized 
the existence of APs by using the cardinality of a given set. 

Question 1. Is it true that a set of real numbers with Hausdorff dimension 
one contains arbitrarily long arithmetic progressions? 

We may guess that the answer to Question 1 is "yes" because of Ramsey-
type phenomena like Szemeredi's theorem and van der Waerden's theorem. 

Surprisingly, the answer is no. It is due to Keleti in 1998 [11]. He proved 
that there exists a compact set A of real numbers with Hausdorff dimension 

one such that the solutions x, y, z, w EA to the equation 

X + y = z + w, X < Y, z < w (4) 

are only x = z and y = w. If y = z in the equation (4), sets {x, w, y} are 

APs of length 3. Therefore A does not contain APs of length 3. Therefore, 
the existence of APs can not be characterized by the Hausdorff dimension. 

3 Weak arithmetic progressions 

For all 0こE< 1/2, we say that a real sequence (ai)に~ is a (k, E)-AP if there 
exists an arithmetic progression (b』に~ of length k with gap length△ >。
such that 

lai -bilこe△

for all i = 0, 1,..., k -1. For example, when k = 5, E = 1/4, the following 
sequence of points near to bi's is an (5, 1/4)-AP: 
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b 
△ 

b b2 b b 
| •い·い·(戸下ミ．．し三•4• | 

}△ 

The original notion of (k, E)-APs can be seen in [5]. In the literature, the 
term "(k, E)-APs" was firstly appeared in [4]. The existence of (k, E)-APs 

can be caracterized by the Assouad dimension. Here for all bounded sets 
Ee配 andfor all positive real number r, we define N(E, r) as the minimum 
cardinality of a family of sets with diameter less than or equal to r which 

covers E. For all Fこ記 wedefine 

dimげ＝ inf{ <7 ~ 0 : there exists C > 0 such that for all O < r < R and 

x E F, we have N(B(x, R) n F, r) ::; C(り）び｝
which is called the Assouad dimension of F. Here B(x, R) denotes the closed 
ball of配 withradius R centered at x. By the result of Fraser and Yu [5], 

a subset F of real numbers contains (k, E)-APs for all k ~ 3 and EE (0, 1/2) 
if and only if dimA F = l. Further, they proved that a subset of positive 
integers whose sum ofreciprocals is divergent contains (k, E)-APs for all k ~ 3 

and EE (0, 1/2) [5]. Fraser, the author, and Yu gave quantitative bounds for 
the Assouad (Hausdorff) dimension of a set which does not contain (k, E)-APs 

for fixed k and E. More precisely, for every F c股， k~ 3, and E E (0, 1/2), 
if F does not contain any (k, E)-APs, then we have 

dimAF ~ 1 + 
log(l -1/k) 

log(k 「1/ （2€)l) ．
(5) 

Note that for every set F ~良叫 the following inequality holds: 

dimLFさdimHF ~ <limp F ~ dimA F, 

where dimL F denotes that the lower dimension of F, and dimp F denotes 
that the packing dimension of F. We can see this formula in [3]. Hence 

one can replace dimA in (5) by dimx for all X E {L, H, P}. Remark that 
if F C 配 isbounded, then the upper box dimension of F is less than or 
equal to the Assouad dimension of it. Thus we can also replace the Assouad 

dimension by the upper box dimension in (5) if we restrict that Fis bounded. 
Now define 

DA(k, s) := sup{ dimA F I Fこ罠 doesnot contain (k, E)-APs}. 
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We can consider広 (k,E) as an analogue of rk(N). The right hand side of 
(5) is an upper bound for広 (k,E). In order to find effective lower bounds, 
we should construct a subset of real numbers which has large dimension and 

does not contain (k, E)-APs. Fraser, the author, and Yu also gave a lower 
bound for DA(k, E). For all k 2: 3 and E E (0, 1) satisfying Eく (k-2)/4, 
there exists a set F c罠 whichdoes not contain any (k, E)-APs and 

dimげ＝ dimHF = 
log2 

log 2k-2-4c:. k-2-4c: 
(6) 

Now define加 (k,E) := sup{ dimH F I Fこ尺 doesnot contain (k,E)-APs}. 
By combining (5), (6), and the inequality dimH F ::=::; dimげ， wehave 

log2 log(1 -1/k) 
さ応(k,E) さ DA(k,E):s;l+~- (7) 

log 2k-2-4c log (k「1/（2e)l)．k-2-41o 

4 Main results 

This section gives the results which the author states in the conference These 

results are one dimensional cases in the paper [13]. 

Theorem 2. For every k 2'. 3 and O < c: < 1/2, we have 

広 (K,e)＜
!log(rk(「1/el)「1/el)

-2 log(「1/c:l).

By Gowers'upper bounds, we have 

広（K,€）さ 1-
1 log log log「1/cl

2l+2K+9 log「1/cl 
(8) 

This upper bound is better than (5) if c is sufficiently small. Actually, if 
0 < c < exp(-expexpexp(2 + 2k+9)), then one has (8) < (5). 

Theorem 3. Fix k ~ 3 and O < c < 1/16. Then we can construct a compact 
set F c尺whichsatisfies the following conditions: 

(i) there exists a set of linear contractions {f1,..., fm} with open set con-
dition such that F is the attractor of {Ji,..., f m} i.e. 

m 

F = LJJi(F); 
i=l 

(ii) F does not contain any (k, E)-APs; 
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(iii) dim□ 2 
logrk(ll/(8E)」）

log(l/E) ・ 

Here f:股→股 iscalled a linear contraction if f (x) = ax + b for some 

lal < 1. Define Ds(k, c) = sup{ dimH F I F satisfies (i) and (ii) in Theorem 3}. 
Then we have 

::; Ds(k, c) ::;恥(k,E)::;DA(k,E)三一
log rk(l 1/ (8E)」） llog(rk(「1/cl)「1/cl) 

log(l/E) 2 log(「1/cl) ・ 

By O'Bryant's lower bound for rk(N), we get a better lower bound for 

Ds(k, E) for sufficiently small O < E < E(k). 

Corollary 4. There exists positive real numbers C and D such that For 

every O < E < 1/16 and k 2'.'. 3, we have 

叫1/ （8€)」）< €1-Ds(K,€)< €1-DH(K,€) < €1-DA(K,€) < E rk(「1／叶）
1/2 

C 
ll/(8E)」- - -（「1/€l)

Hence for fixed k ~ 3. It is known that a subset of positive integers with 
positive upper density contains arithmetic progressions of length k if and 

only if limN→00 rk(N)/N = 0. Therefore from Corollary 4, the following are 
equivalent: 

(i) a subset of positive integers with positive upper density contains arith-
metic progressions of length k; 

(ii) limN→oo rk(N)/N = O; 

(iii) limE→+0 El-Dx(k,E) = 0 for some X E {S, H, A}; 

(iv) limE→+0 El-Dx(k,E) = 0 for all XE {S, H, A}. 

Actually, by Szemeredi's theorem, (i),(ii),(iii), and (iv) are true. If one 
showed (iii) for all k ~ 3, then we would get another proof of Szemeredi's 

theorem. Remark that by (5), implies that 

1-DA(k,E) log(l-1/k)) 

c < c logk「1/（2c)l= （ 
log(l/c) 

1 -1/k)logk「1/（2c)l →1-1/k 

as E→ +0. Thus the upper bound given by Fraser, the author, and Yu does 
not reach to prove Szemeredi's theorem. 
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5 Sketch of proofs 

Sketch of Proof of Theorem 2. Fix any k 2 3 and E E (0, 1/2). Take any 
F~ 恥 which does not contain (k, E)-APs. Take any interval I= [a, a+ 2R] 
centered at a point in F. Fix any positive integer N. We partition I into 
N / E small closed intervals Aj with diameter 2RE/ N as follows: 

Aj =[a+ 2jRc/N, a+ 2(j + l)Rc/N] 

for all j = 0, l,..., N / E -1. For any 0さi< 1/E, let 

T(i)={i+j/c:Oさj::SN-1}.

Fix O :::; i < 1 / E. Since F does not contain any arithmetic progressions of 
length k, the number of j E T(i) such that Aj n Fヂ0is less than or equal 
to rk(N). Hence the number of j E {O, 1,..., N/E -1} such that F n Ajヂ0
is less than or equal to r(N)/c. We iterate this argument t-times for each 
smaller itervals which intersect F, where t is a real number such that 

E ¥ t 2R(~r =r. 
Therefore we obtain that 

N(FnI,r）こ（rk(€N) ） t こ（誓）亨齊)
Therefore we conclude that 

dimげ<
log(rk(N)/c) 

log(N/c) ・ 

ロ

Sketch of Proof of Theorem 3. Fix any k 2 3. Let N = ll/(8E)」． LetA 
be a subset of {O, 1,..., N -1} with IAI = rk(N) which does not contain 
arithmetic progressions of length k. Let c5 = 1/16 and define 

X 
叫(x)= ~+a (a EA), 

N-l+c5 
(9) 

I。=［0, N -1 + c5], In = LJ叫 In-1) (n 2 1), (10) 
aEA 

and define F = n:=o In. Then F is the attractor of the iterated function 
sysytem { 1Pa: a E A} which satisfies open set condition. Thus one has 

dimげこ
log rk(l 1/ (Sc)」）

log(l/c) ・ 

By contradiction, we can see that F does not contain (k, E)-APs. ロ

We refer [13] to the readers who want to know more details. 
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