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The Laplacian on some self-conformal fractals 

and Weyl's asymptotics for its eigenvalues: 

A survey of the ergodic-theoretic aspects 

Naotaka Kajino* 

Graduate School of Science, Kobe University 

Abstract 

This short survey is aimed at sketching the ergodic-theoretic aspects of the 
author's recent studies on Weyl's eigenvalue asymptotics for a "geometrically 
canonical" Laplacian defined by the author on some self-conformal circle packing 
fractals including the classical Apollonian gasket. The main result being surveyed 
is obtained by applying Kesten's renewal theorem [Ann. Probab. 2 (1974), 355-
386, Theorem 2] for functionals of Markov chains on general state spaces and 
provides an alternative probabilistic proof of the result by Oh and Shah [Invent. 
Math. 187 (2012), 1-35, Corollary 1.8] on the asymptotic distribution of the 
circles in the Apollonian gasket. 

1 lntrod uction 

This short survey concerns the author's recent studies in [5, 6, 7, 8] on Weyl's eigen-

value asymptotics for a "geometrically canonical" Laplacian defined by the author on 

circle packing fractals which are invariant with respect to certain Kleinian groups (i.e., 

discrete groups of Mobius transformations on C := <CU { oo}), including the classical 
Apollonian gasket (Figure 1). Here we focus on sketching the ergodic-theoretic aspects 

of the proof of the eigenvalue asymptotics, which in fact serves as an alternative proof, 

though limited to the cases of certain specific Kleinian groups, of the result by Oh 

and Shah in [13] on the asymptotic distribution of the circles in circle packing fractals 

invariant with respect to a very large class of Kleinian groups; see [9] for a survey of the 

analytic aspects of the author's "geometrically canonical" Laplacian. Also we restrict 

our attention to the case of the Apollonian gasket for simplicity of the presentation. 

Notation. (1) We adopt the convention that N := {n E Z In> O}, i.e., 0 tf_ N. 
(2) The cardinality (the number of elements) of a set A is denoted by #A. 

(3) The closure and boundary of Ac  <C in <Care denoted by A and oA, respectively. 

*This work was supported by JSPS KAKENHI Grant Numbers JP25887038, JP15Kl 7554, 
JP18K18720. 
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(4) Let n EN. The Euclidean norm on町 isdenoted by I ・ I and the operator norm of 

a real n x n matrix M with respect to I・ I is denoted by IIMII-

2 The Apollonian gasket and its fractal geometry 

In this section, we introduce the Apollonian gasket and state its geometric properties 

needed for our purpose. The following definition and proposition form the basis of the 
construction and further detailed studies of the Apollonian gasket. 

Definition 2.1 (tangential disk triple, ideal triangle). (0) We set S := {1, 2, 3}. 
(1) Let D1, D2, D3 CC  be either three open disks or two open disks and an open half-

plane. The triple'.D ：＝ （D1, D2, D3) of such open subsets of C is called a tangential 
disk triple if and only if#（互n瓦） ＝1 (i.e., Dj and Dk are externally tangent) 
for any j, k ES with jヂk.
(2) Let'.D ＝ （D1,D公几） bea tangential disk triple. The open subset C ¥ ujES互
of C is then easily seen to have a unique bounded connected component, which is 

denoted by T('.D）and called the ideal triangle associated with'.D. 
(3) A tangential disk triple'.D ＝ （D1,D2,D砂iscalled positively oriented if and only if 
its associated ideal triangle T('D）is to the left of oT ('D）when oT('D）is oriented 
so as to have { qj('.D）｝｝=1 in this order, where { qj ('.D）｝ ：＝仄n互for{j, k, l} = S. 
Finally, we define TDT+ := {'.D |'.Dis a positively oriented tangential disk triple} and 

TDT〶:＝ ｛'D|'D＝ （D1,D2い） ETDT+, D1,D2,D3 are disks}. 

The following proposition is classical and can be shown by some elementary (though 

lengthy) Euclidean-geometric arguments. We set rad(D) := r and curv(D)：＝戸 for
an open disk D C C of radius r and curv(D) := 0 for an open half-plane D C C. 

Proposition 2.2. Let'.D ＝ （D1, D2, D3) E TDT+ and set a := curv(D1), {3 := 
curv(D2), 1 := curv(D3) and""：＝ K,('.D)：=V灼＋10 + aB. 
(1) Let Deir('.D）C C denote the circumscribed disk of Tゆ）， i.e.,the unique open disk 
with {q1('.D）'Q2('.D），q3('.D)｝C ODcir('.D）． Then 8Dcir('.D）is perpendicular to oDi 
for any j E S, T('.D） ＼ ｛ql('.D），Q2('.D)，q3('.D)｝C Deir('.D）， and curv(Dcir('.D）） ＝K,. 
(2) There exists a unique inscribed disk Din('.D）of T('.D）， i.e., a unique open disk 
Din('.D）C C such that Din ('.D）CT('.D）and #(Din('.D） n瓦） ＝1 for any j E S. 
Moreover, curv(Din('.D）） ＝a+ {3 + 1 + 2K,. 

The following notation is standard in studying self-similar sets. 

Definition 2.3. (1) We set Wi。:=｛0}, where 0 is an element called the empty word, 
Wm:＝炉 formEN  and凱：＝ UmENU{O}叩 Forw E W*, the unique m E 
NU {O} satisfying w E Wm is denoted by lwl and called the length of w. 
(2) Let w,v E w., w = W1... Wm, V = V1... Vn・ We define WV E w. by WV := 

叫•.． w副l···Vn (w0 := w, 0v := v). We also define w1..．砂 fork 2: 3 and 
w1,..., wk E W. inductively by w1...砂：＝ （w1... wk-l)wk. For w E W. and 
n EN U {O} we set wn := w... w E Wnlwl・ We write w::; v if and only if w = VT 
for some T E W*, and write w'Iv if and only if neither w ::; v nor v ::; w holds. 
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Figure 1: Apollonian g邸 ket

Proposition 2.2-(2) enables us to define natural "contraction maps"虹： TDT十→
TOT+ for each w E W*, which in turn is used to define the Apollonian gasket K('.D） 
associated with'.DE TOT+, as follows. 

Definition 2.4. We define州動心： TDT十→ TOT+by屯('.D)：＝ （Din('.D），D2,D孔
動('.D)：＝（D1,D;n('.D），D3) and<I>3('.D）：＝ （D1,D2,D;n('.D））． We also set虹：＝虹m゜
... 0<I>w1 (<I>0 := idTDT+) and広：＝虹('.D)forW = W1... Wm E w* and'.D E TDT+. 

Definition 2.5 (Apollonian gasket). Let'.DE TOT+. We define the Apollonian gasket 

K('.D）associated with'.D （see Figure 1) by 

K('.D）：= T('.D） ＼uwEW＊広（広） ＝nmENuwEWm T（叫）．（2.1)

The curvatures of the disks involved in (2.1) admit the following simple expression. 

Definition 2.6. We define 4 x 4 real matrices M1, M2, M3 by 
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Proposition 2.7. Let'.D ＝ （D1, D2, D3) E TDT+, let a,/3，ァ，氏 beas in Proposition 
2.2, let w E W* and set (Dw,1, Dw,2, Dw,3) :='.Dw・ Then 

(curv(Dw」)，curv(Dw,2),curv(Dw,3), K,('.D』） ＝ （a,/3，'Y, K,)Mw. (2.5) 

Proof. This follows by induction in lwl using Proposition 2.2-(2) and De廿nition2.4. ロ

We next collect basic facts regarding the Hausdorff dimension and measure of K('.D）． 
For each s E (0, +oo) let叩： 2C→[O +oo] denote the s-dimensional Hausdorff 
(outer) measure on (C with respect to the Euclidean metric, and for each A C (C let 

dimH A := sup{ s E (0, +oo) I知 (A)=+oo} = inf{s E (0, +oo) I知 (A)= O} denote 
its Hausdorff dimension. As is well known, it easily follows from the definition of的

that the image J(A) of AC  (C by a Lipschitz continuous map f: A→(C with Lipschitz 
constant C E [O, +oo) satisfies知 (f(A)) :S; cs的 (A)for any s E (0, +oo). On the basis 
of this observation, we easily get the following lemma. 

Lemma 2.8. Let'.D，'.D＇E TDT+. Then there exists c E (0, +oo) such that的 (K('.D））こ
CS知 (K('.D＇)） forany s E (0, +oo). In particular, di叫 K('.D）＝dimH K('.D'）． 

Proof. Let f'])'，'])denote the unique orientation-preserving Mobius transformation on 

the Riemann sphere (C := CU{oo} such that f'])','])（qj('.D')） ＝qj('.D）for any j ES. Then 
f'])'，'])（K('.D')） ＝K('.D）， since Mobius transformations map any open disk in (C onto 
another. Now the assertion follows from the Lipschitz continuity off'])','])1如('])'）．ロ

Definition 2.9. Noting Lemma 2.8 and choosing'.DE TDT+ arbitrarily, we define 

d := dimHK('.D）． 

Theorem 2.10 (Boyd [1]; see also [4, 11, 12]). 1 < d < 2. In fact, 

1.300197 < d < 1.314534. 

(2.6) 

(2.7) 

Moreover, for the d-dimensional Hausdorff measure叩 (K('.D）） ofK('.D）we have the 
following theorem, which was proved first by Sullivan [14] through considerations on the 
isometric action of Mobius transformations on the three-dimensional hyperbolic space, 

and later by Mauldin and Urbanski [11] through purely two-dimensional arguments. 

Theorem 2.11 (Sullivan [14, Theorem 2], Mauldin and Urbanski [11, Theorem 2.6]). 
For any'.DE TDT+, 

0<如（K('D))< +oo. (2.8) 

Note that for each'D = (D1, D2, D吐'D'= (D~, n;, D~) E TDT+, the M枷ius
transformation f'.D’,'.Das in the proof of Lemma 2.8 is a Euclidean isometry if and only 
if curv(DJ) = curv(DJ) for any j E S, and in particular that the value of叩 (K('D))for 

'D = (D1, D2, D3) E TDT+ is determined solely by (curv(DJ))JES・ Thus we can use the 
triple (curv(DJ))JES as a parameter to represent the particular Euclidean geometry of 
each Apollonian gasket K('D), and the following definition introduces the space of such 

parameters, regarded as that of all possible Euclidean geometries of K②)， 'DE TDT土
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Definition 2.12. (0) We set "'(g) := J的＋~ for g = (a,/3,"Y) E [0,+oo）釘
(1) We definer C [O,+oo)4 by r := {(g,K,(g)) I g E [0,+00)3, K,(g) > o} and equip 
r with the metric Pr : r X r→ [O, +oo) given by Pr((g1, "'(gリ），（g公K,伽））） ：＝ 
lg1 -g叶． Wealso set r0 := r n (0, +oo)4, which is an open subset of r. 
(2) For each c E (0, 1), we define a compact subset rE of (f,pr) by 

rE := {(g,"'(g)) I g = (a,/3,"Y) E [O,c:―1]汽min{/3＋ァ，ァ十a,a+ /3} 2:: E }. (2.9) 

In Definition 2.12, the coordinate K,(g) is attached for the sake of the simplicity in 

applying Proposition 2. 7. It is of course redundant for parametrizing the geometries of 
K('.D）and each（い（g))E r should (and will) be identified with g, which is why the 
metric Pr has been defined as above. Clearly (curv(D1), curv(D吐curv(D孔刈'.D))€ r 
for any'.D =（D1, D2, D3) E TDT+, and conversely it is not difficult to see that any 
(g, "'(g)) Er is of this form for some'.D＝ （D1, D2, D3) E TDT+. Thus the value of the 
Hausdorff measure如 (K('.D）） ofK('.D）for'.DE TDT+ induces a function的：「→
(0, +oo) on the parameter space r defined as follows. 

Definition 2.13. Recalling Theorem 2.11, we define的： r →(0,+oo) by 

沢r(g)：＝沢r(a,/3,"Y)：＝沢d(K('.D）） foreach g = (a, /3, "Y, "') Er, (2.10) 

where we take any'.D ＝ （D1,D2,D3) E TDT+ with (curv(Dリ，curv(D吐curv(D3))= 
(a, /3, "'f). Note that it is easy to see that for any (a, /3, "Y, "')Er and any s E (0, +oo), 

沢r(a,/3,"Y)＝沢r(/3，"Y,a)=沢r(a,1,/3)= sd沢r(sa,s/3, s1). (2.11) 

For our purpose we will need some uniform continuity of叩． Infact, we can prove 
the following theorem by showing that the Mobius transformation f訊 'Das in the proof 

of Lemma 2.8 is close to a Euclidean isometry uniformly on Deir('.D'）if'.D，'.D'E TDT+ 
are close in the parameter spacer. Recall Proposition 2.7, which yields gMw Er and 

的 (gM』＝叩（Kw('.D）） forg,'.Das in (2.10) and any w E W*. 

Theorem 2.14. There exist c1, c2 E (0, +oo) such that for each E E (0, 1), 

図(g心）—的(g2M』|::; Cl,E⑯ (g心）Pr(g直） （2.12) 

and 的 (g2叫）::;C2，虞疇M』 (2.13) 

for any g1, g2 Eじ andany w E W*, where c1,E := c1c:1-3□d and c2,E := c坪―15d.

Theorem 2.14 easily leads to the following corollary. Note that for each w E W*, 

g →咬(gM』l/dgMwdefines a map from {g E「|的(g)= 1} to itself by virtue of 
(2.11), and (2.14) below gives an upper bound on its Lipschitz constant. 

Corollary 2.15. There exist c3, c4 E (0, +oo) such that for each EE (0, 1), 

Pr ('.J-Cr(g心）l/dg1Mw,'.J-Cr(g2瓜）l/dg2瓜）::;C3,E'.J-Cr(『立りl/dPr (g1, g2) (2.14) 
and I log叩 (g1M』-log咬（ゅM』|:=;c4,E Pr (g虞） （2.15) 

for any go, g1, g2 Eじ andany WE w*, where C3,E := C3c―45d and c4,E := C4c1-45d_ 
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The factor的（『芯）I/din the right-hand side of (2.14) cannot be bounded by 

a constant independent of w; in fact, it can be shown that infnEN'.J-Cr（冒鱈）／n>O
for any g。Er and any j E S. This factor in (2.14), however, can be replaced by a 
constant for the words w E凱 endingwith jnk for some j, k E S with jヂkand 
n EN, and consequently we obtain Proposition 2.17 and Corollary 2.18 below. The 
idea of working with this class of words to study dynamics on the Apollonian gasket is 

originally due to Mauldin and Urba丘ski[11] and plays crucial roles also in our study. 

Definition 2.16. We define I C凱＼｛0} by I := {jnk I j, k E S, j -/c k, n E N}, so 
that T :f v for any T, v EI with T # v and K('D）＼％（'D） ＝UTEI凡 ('D)for'DETDT王
Proposition 2.17. There exist c5, c6 E (0, +oo) and Eo E (0, 1) such that for any g E「
and any TE I, 

疇 M月―d'.S叩 (gMT):S c5lgMT戸 (2.16)

and 咬 (gMT)lfdgMTEじ。．（2.17)

Corollary 2.18. There exists c7 E (0, +oo) such that for each EE (0, 1), 

Pr（叩（91真）lfdgl叫喜r(g2叫）l/dゅMwT)'.SC1,c:Pr(g1血） （2.18) 

for any 91, 92 Eじ， anyW E w* and any T E I, where C1,c: := C7E―45d. 

3 The asymptotic formula for counting functions 

The following theorem is a corollary of the general result by Oh and Shah [13, Theorem 
1.4] for circle packing fractals invariant with respect to a large class of Kleinian groups. 

Theorem 3.1 (Oh and Shah [13, Corollary 1.8]). There exists c8 E (0, +oo) such that 
for any'.DE TDT+, 

limい＋00入―d#{wE W. I curv(Din('.D』）こ入｝ ＝ C8叩 (K('.D））． （3.1) 

Theorem 3.1 can be deduced from the following theorem, which is applicable to 
more general counting functions including that for the eigenvalues of the "geometrically 

canonical" Laplacian on the Apollonian gasket introduced by Teplyaev in [15, Theorem 
5.17] and studied extensively by the author in [6]. 

Theorem 3.2 ([6]). Let r'denote either of r and r0, and for each n E N let入n: 
r’→(0, +oo) be continuous and satisfy入n(sg)＝心(g)for any (g, s) Er'x (0, oo). 
Suppose that入1(g) = minnEN入n(g)and li叫→00入n(g)= +oo for any g E r', set 
N(g,入） ：＝ ＃｛nEN I入n(g)<:'.'.入｝foreach (g,入） Er'x [O, +oo), and suppose that there 
exist T/ E [O, d) and c E (0, +oo) such that for any (g,入） E(f'nf00) X [0,+oo), 

LTEI N(gMr, >.) <::'. N(g，入）<:'.'.LTEI N(gMT) >.) + C入'7+ c, (3.2) 

where Eo is as in (2.17). Then there exists c0 E (0, +oo) such that for any g E r'n r so, 

limい＋00入―dN(g,入） ＝Co的 (g). (3.3) 

Moreover, additionally if for each g Er'there exists c9 E (0, +oo) such that (3.2) with 
c9 in place of c holds for any入E[O, +oo), then (3.3) holds for any g Er'. 
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Theorem 3.1 is an easy corollary of Theorem 3.2. Indeed, choose a bijection Nぅ

n →w(n) E W* with w(l) = 0 and define入n(g):= gMw(n) (i) for each (g, n) E f x N. 
Then #{ w E w* I curv(Din('.D』)こ入｝ ＝ ＃｛n EN  I入n(g('.D））さ入｝ ＝： :N(g('.D），入）
for any入E[O, +oo) for each'.D ＝ （D1,D2,D3) E TDT+ by Proposition 2.7 and 
Proposition 2.2-(2), where g('.D） ：＝ （curv(D1), curv(D2), curv(D3), K,('.D）） E r, and 
clearlyふ(g)= minnEJ¥l入n(g) and limn→(X)入n(g)= +oo for any g Er by Definition 2.6. 
Furthermore for each g = (a, {3, 1, K,) E r and for any入E[O, +oo), taking'.DE TDT+ 
with g('.D） ＝g and noting that凱＝ ｛jn I j E S, n E NU {O}} U UrEI{ TW I W E凱｝
with the union disjoint, from (2.3) we easily obtain 

:N(g，入）＝どTEI:N(gMr,入）＋＃｛げ jE S, n E N U { 0}, gMjn (D ::::;入
ここTEIN(gMTA)＋3(min{9+1,1+a,a+0}）―1/2入1/：・ } 

Thus Theorem 3.2 is applicable to the above choice of入n(g)and implies that (3.3) 
holds for any g Er for some Co E (0, +oo), which is nothing but Theorem 3.1. 

The rest of this article is devoted to a brief sketch of the proof of Theorem 3.2. The 
key idea is to apply Kesten's renewal theorem [10, Theorem 2] to the Markov chain on 

{g Er I叩 (g)= 1} defined as follows. 
Definition 3.3. (1) We set WJ := {0}, where 0 denotes the empty word, W;,, :=Im= 
{w1... Wm I wk EI for any k E {1,..., m}} form E N and W; := UmEJ¥lu{o} W;,,, 
which are regarded as subsets of凱 inthe natural manner. 

(2) We set汀：＝ド＝ ｛W1吟w3...I wk E I for any k E N}, which is equipped with 
the product topology of the discrete topology on I, and define the shift mapが：
EI→EI byが(w1吟W3..．）：＝吟W糾 4....For w E W; we define a~: EI→EI by 
吐(w1w四3...):= WW1W四3....For w = w四四3...E EI and m E NU {O}, we set 
[w];,, := W1... Wm E W;,,. 

Definition 3.4. Set r := {g E r I的 (g)= 1}, [g]r:＝叩(g)1fdgE f for each g E f, 
f2 :=f X立 whichis equipped with the product topology, and let 9" denote the Borel 
a-field of 0. We define a continuous map 0 : 0→0 by 0(g,w) := ([gM[wJ{lr，が（w)),
and for each n EN U {O} we define random variables Xn : 0→「 andUn叫： Q →良
on (0, 9") by Xn、(g,w):= [gM[wJdr, Un(g,w) := d-1 log('.J-Cr(gM[w]~)/'.J-Cr(gM[wl~+J) 

and Vn(g, w) := -d-1 log的 (gM叫＝冗にtuk. Also for each g E f, we define JP 9 as 
the unique probability measure on (0げ） suchthat恥[{g}X aい(Eり］ ＝叩(gMw)for 
any w E W;, and the expectation with respect to JP 9 is denoted by lE9 [ (•)]. 

Clearly (0, 9", { Xn}nEJ¥lU{O}, {JP 9} 9Ef) i ,{Xn}nEJ¥lU{O},{lPg}aEr) is a time-homogeneous Markov chain on r 

with transition function'.P（g,・) := JP,［ふ E・]＝ LrEI的 (gM況gMサr,where 69 for 
g E r denotes the (unique) Borel probability measure on r such that 69({g}) = 1. 

It is also easy to see that for each g E r and each n E NU {O}, the conditional law 
阻）9[unE ・ I {Xk}kEJ¥lu{o},{uk}kE(J¥lu{o})¥{n}] of Un is determined solely by Xn,Xn+1; see 
[10, (1.1)] for the precise formulation of this property. Thus the stochastic processes of 

Definition 3.4 fall within the general framework of Kesten's renewal theory in [10]. 
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The idea of considering thes~ stoch竺sticprocesses is hinte生by(3.~. Indeed, assume 
the setting of Theorem 3.2, set r~。：＝ rn r'n r so and define :N戊o:r~。 X 股→ [O,+oo) 

by :N(g,s) := e―ds:N(g，が） and叫(g,s):= e-ds(:N(g，が）一 LTEI:N(gMn eり）． Thenit 
easily follows from the assumptions of Theorem 3.2 that O ::::;央。(g,s)::::; Cge―(d-r,)lsl for 

any (g, s) E f~。 X 股 for some cg E (0, +oo) and that for any (g, s) E f~。 X 恥

如，S）一央。(g,s)＝LTEI叩 (gM7)e―d(s+d-1log附 (gMr)):N([gMサr,es+d-1 log附 (g払））

= LTEI叩 (gM屈 ([gM斎，s+d―1log叩 (gMT))= lE，区（X1,s -Vリ］．（3.4)

A repetitive use of (3.4) further shows that 

加，s)= lE,［こnENU{O} 叫（ふ，S-丸）］ for any (g, s) E立。 X股， (3.5) 

which together with況。(g,s)::=; c9e―(d-ri)lsl implies that sup(g,s)E立。xlR'.N(g,s) < +oo. 

Thus the proof of Theorem 3.2 is reduced to proving that a function on r:" x艮ofco 

（） the form (3.5) converges to c8 as s→十oofor any g Er~" for some c8 E (0, +oo). This co 
is exactly what Kesten's renewal theorem [10, Theorem 2] asserts under a reasonable 

set of assumptions on (D訊 {(Xか％）｝nENU{O},｛恥｝，Er)and央。， amongwhich the 
following unique ergodicity of { (Xn, un)}nENU{O} is the most important: 

Proposition 3.5. (1) There exists a unique Borel probability measure v on r such that 

v(A) = fr'.P(g, A) dv(g) for any Borel subset A off. Moreover, v(rnr0nr00) = 1. 

(2) The probability measure見 on(D,'.f') defined by已[A]:= fr JP9[A] dv(g) for each 
A E'.f'is invariant and ergodic with respect to 0. 

Proof. (1) Since竺(g,rn f00) = 1 for any g E r by (2.17), any Bore~probability 
measure v on f with the property v = Ji戸(g,・) dv(g) must satisfy v(f n ~:。) ＝1, 
and the Markov chain｛ふ｝nENU{O}can be restricted to the compact set r n r co. 
Then we easily see from Corollary 2.18 that its transition function'.P。:＝ P|~ rnr Co 

is uniformly equicontinuous on r n r C。forany has the property that {'.P『f}nENU{O}is uni£ 

COntinUOUS function f : r n r 0。→股． Nowwe can easily conclude the existence of 
v from the classical theorem of Krylov and Bogolioubov (see [3, Theorem 1.10]), 

its uniqueness from [16, Th~orem 4.1.11], and v(f C'. f0) = 1 from the uniqueness 
of v and the fact that'.P(g, f n r0) = 1 for any g E f n r0 by (2.4). 
(2) This can be deduced from (1) by standard arguments; see [6, Section 8] for details.ロ

Now it is not difficult to verify [10, Conditions 1.1-1.4] on the basis of Proposition 
3.5, (2.13), (2.15) and (2.18), which allows us to apply [10, Theorem 2] to the present 

case and thereby to get the following theorem. 

Theorem 3.6 j[lO, ~heorem 2] applied to th竺presentcase). Let r'denote either of 
r and r°, set r’:＝ r n r'n rCo, and let f : F x R →政 beo eo 

e continuous and satisfy 

lf(g, s)Iさ:ce―|s1/cfor any (g, s) E巳。 X恨forsome c E (0, +oo). Then for any g E立。 9

尼OOlE,［こnENU{O}f (Xn, 8ー丸）］ ＝ （JflE氾o]dv(y))-1h立。1f(y, s) dsdv(y).(3.6) 
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Fmal.ly, we can easily deduce Theorem 3.2 from Theorem 3.6. The function央。 as
in (3.5) is obviously not continuous, but this problem can be avoided by considering 

the function Z(g, t)：＝ LnE巳石心(g)tinstead of N(g, 入）． ~deed, the boundedness of N 

implies that of the function Z(g, s) := e―dsZ,(g, e―8), and Z, and the continuous function 

央(g,S) ：＝ e―dsに(g,e―s) -こTEIZ(gMT,e―s)） on立x股areeasily seento satisfy the 
same properties as those for茂戊。 mentioneda_Eove. It follows that Th~orem 3.6 is 

applicable to f =央 andimplies that lims→+00 Z(g, s) =伶 forany g E旦 forsome 
c~ E [O, +oo), but c~ = 0 would mean'.Rlsupp[v］遺＝ 0by (3.6) and, together with 
(3.4) and (3.5) forえ況 wouldeasily result in the contradiction thatミ|supp[11］這＝ 0,
where supp[v] denotes the smallest closed subset of r~" with v(supp[v]) = 1. Thus co 
怜E(0, +oo), and now Theorem 3.2 follows by an appli~ation of Karamata's Tauberian 

theorem [2, p. 445, Theorem 2] to N(g, ・) for each g Er~。·
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