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1. INTRODUCTION 

Let (M,B,m) be a probability space. Consider a family {Ts}sES of m-nonsingular 

transformations on (M, B, m) indexed by a measurable space (S, B(S)) such that the map 

SxMぅ(s,x)→冗xE M is (B(S) x B) /B-measurable. Let (0, F, P) be a probability 
space and u : n→n a ?-preserving transformation. Take an S-valued random variable 
l on (0, F, P) and define an S-valued strictly stationary process｛品｝芹＝。 by品＝ loび
(nミ0).The family X = {Xn} of random maps Xn : M →M is called the mndom 
dynamical system given by(｛冗｝sESぶ l)if the maps in X are defined by 

Xa(w)x = x, Xn+i(w)x = T.も(w)ふ (w)xfor (x,w) EM  x n, (n ~ 0) 

For a random dynamical system X given by(｛冗｝sES,u, l), we introduce its (di'rect) 
prnduct as the random dynamical system given by(｛冗 X Ts}sES, O"，l) and we denote 
it by X x X. Following Kakutani [8], we introduce the skew product transformations 

T1: MxO→Af X f2 and T2 : M2 X f2→M2 x n corresponding to X and X x X by 
冗(x,w)=（ふ(w)x,uw) for (x,w) EM  x n 

and 

T2(x, y, w) = (X心）x,X心）y，叩） for(x,y,w) E M2 X n, 

respectively. 
In this article we consider the case where there exists a unique m x ?-absolutely contin-
uous probability measure Q1 with density H1 such that the measure-preserving dynamical 

system (T1, Qリisexact, i.e. n;:0 T1-n(B x F) is trivial with respect to Q1 (see [6] Chap-
ter 10 for details). To make things much simpler we assume that the transfer operator 

£Tl = £乃，mxPof冗 withrespect to m x P is asymptotically stable. (Furthermore, we 
will need to assume the asymptotic stability of £r2 =,C互 m牧 plater). Then the m-

absolutely continuous probability measure p・m on B with density p(・) = 1 H(•,w) P(dw) 
Q 

can be regarded as the physical measure for P-almost every sample w. In fact, for any 

observable f in L00(m) there exists「EF with P(「） ＝1 such that w E「yieldsthat 

. 1 
n-1 

hm 区f（ふ（）） ifpdm凶 x)= / f pdm m-a.e. x. So it is not too much to say that'almost 
n→oon 

k=O X 
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sure sample-wise or quenched strong law of large numbers'holds. Therefore it is only nat-

ural to consider the central limit theorem (abbr. CLT) for the sequence {f（ふ（w)x)｝吟0
as the next problem. 

n-l n-l 

For an observable f we put Sn(T1)f(x,w)＝区f(T{'(x,w))＝区f(X心）x)for 
k=O k=O 

(x,w) E M x n. Our main concern is the sample-wise (quenched) central limit prob-
lem for the sequence {Xn(w)}n?:O of random variables on the space (X, B, m) with fixed 

w E n. More practically, we consider the problem allowing an exceptional P-null set, i.e. 
the study of the condition for that there exists r E F with probability one such that for 
any w E r, the random variable on the probability space (M, B, m) obtained by making 
an appropriate centering on Sn(T1)f(•,w) converges in law to a normal distribution as 
n →00. 
From general theory of weakly dependent stationary sequence of random variables, the 

sample-averaged (annealed) CLT with deterministic centering holds true for a large class 

of observables f, i.e., Zn(T1)f = (1／fo)(Sn(T1)f -n jMJ pdm) converges in law to an 
M 

appropriate normal distribution N(O, v(f)) with respect to m x P as n→oo (see [5] 
and [7]). Moreover, we can show that such a sample-averaged CLT implies that for any 

u E Co（股）， thesequence L u(Zn(T1)f) dm in L1(P) converges to 1政u(t)N(O, v(f))(dt) 
weakly in L1 (P) as n→oo (see [11] and cf.Theorem 3.1 below), where C,。（股） denotesthe 
totality of continuous functions on股withcompact support. Therefore this fact may lead 
us to wishful thinking that the sample-wise CLT with the same deterministic centering 

also holds true. But the results in [12] (see also [9]) make us recognize that the noise 

dependent centering品(T1)f(・,w) 一こに~!Mj（ふ（w)y)H(y, w) m(dy) seems natural and 
M 

even proper in view of the martingale approximation for stationary processes. In fact, a 

counter-example given in Section 4.4 of [1] (see also Example 4.2 in Section 4) shows that 
the deterministic centering does not work in general, even in the case where the｛品｝立0
is independent and identically distributed if we consider'almost sure sample-wise CLT'. 

Therefore, it turns out that some of observations and assertions in [11] have difficulties 
and fail to hold. 
The purpose of the article is to announce the author's recent results on the condition 

for that the sample-averaged CLT for品(T1)f/ fo implies the a.s.sample-wise CLT with 

the same deterministic centering. To be more precise, the following results are stated in 

Section 3. First we give the conditions for the sample-averaged CLT under the asymp-
totic stability of the transfer operator for the skew-product transformation T1. One may 

notice that Theorem 3.1 is a sort of corrected version of Proposition 3.2 in [11]. Next 

we discuss about the conditions which guarantee that the sequence of random variables 
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JM u(Sn(T1)f /yn) dm in the above converges strongly to 1 udN(O, v(f)) in L1(P) (Theo— 
M 政

rem 3.2). Finally, we shall announce an a.s.sample-wise CLT with deterministic centering 

under some additional conditions (Theorem 3.4). Section 4 is devoted to examples. On 

account of limited space we have to restrict ourselves just give the statements of theses 
results. So proofs and details will be given elsewhere. 

2. ASYMPTOTIC STABILITY OF TRANSFER OPERATOR 

In order to state the present results, we need to introduce the notion of asymptotic 

stability of the transfer operator. Let (M, B, m) be a probability space and T an m-
nonsingular transformation. Then the transfer operator(the Pe汀on-Frobeniusoperator) 

CT = CT,m of T with respect to m is defined to be the operator onじ(m)satisfying 

L f ・ £,Tgdm = L (f o T)gdm for f E L00(m) and g E L1(m). 

For the sake of convenience we put 

△(T,g, n; h)＝四g-(Lgdm) h for g, h E L1(m). 

The transfer operator £,T is said to be asymptotically stable with respect to h E L1 (m) if 

for each g Eじ（m)I|△（T, g, n; h)ll1,m→O(n→oo) holds. Note that such an h in the 
condition turns out to be a unique T-invariant density and the measure-theoretic dynam-

oo 
ical system (T, hm) is exact i.e. n~=O T―n B is trivial with respect to the m-absolutely n=O 

continuous T-invariant measure hm with density h. 

Consider the random dynamical system X given by(｛冗｝sES,(J,f)and its productふXぷ

Since T1 and T2 are m x P-nonsingular and m2 x P-nonsingular, respectively, we can 

consider the transfer operators Cr1 = £,乃，mxPon L1(m X P) andら＝ら，m2xpon 

L1(m2 x P), respectively. It is not hard to see that ifら isasymptotically stable with 
respect to H2 E L1(m2 x P), so is互 withrespect to H1 E L1(m x P), where H1(x,w) = 

J几(x,y, w) m(dy) ((x, w) EM  x D). 
M 

3. RESULTS 

First we state that the sample-averaged CLT is equivalent to a sort of weak £1-version 

of sample-wise CLT if £r, is asymptotically stable. Precisely, we have the following. 

THEOREM 3.1. Consider the random dynamical system given by(｛冗｝sES,び，()such that 

the transfer operator £r, onが(mx P) is asymptotically stable. Let N(O, v) denote the 

加 rmaldistribution with mean O and varianc汀：：：：： 0,where N(O, 0) is regarded as the point 
mass 6。atOE恥． Letf be a real-valued element in L(X)(m) satisfying the deterministic 
centering condition L f pdm = 0, where pis defined asp(・)= 1 Hい）P(dw)by using 
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the unique invariant density H1 for T1 with respect to m x P. Then the following are 
equivalent. 

(1)品(Tリf/foconverges in law to N(O, v) with respect to some m x P-absolutely 
continuous probability measure. 

(2) 品(T1)f/ fa converges in law to N(O, v) with respect to any m x P-absolutely 
continuous probability measure. 

(3) There exists a probability density g E L1(m) such that for any bounded continuous 

~ u(Sn(T1)f(x, ・)/yn)g(x) dm converges weakly to 1 function u on股， JMu(Sn(T1)f (x,•) / yn)g(x) dm converges weakly to 1 u(t) N(O, v)(dt) 
in L1(P) as n→00. 
(4) For any bounded continuous function u on賊 andany probability density g E L1(m), 

［．u（品(T1)f(x,•) / yn)g(x) dm converges to 1 u(t) N(O, v)(dt) weakly in L1(P) as n→ 
M 

(5) There exists a probability density g E L1(m) such that for any t E 良

JM eyC"It(Sn(T1)f（x,-)/folg(x) dm converges toe―vt2/2 weakly in L1(P) as n→00. 
M 

(6) Foranyt E股andany probability density g E L1(m), JM e亨（Sn(T,)f(x,-)/fo)g(x)dm 
M 

converges to e―vt2 !2 weakly in L1 (P) as n→00. 

For f E L1(m), we denote by F1 and J the elements in L1日） definedby F_八x,y)= 
f(x) -f(y) and ](x, y) = f(x)f(y), respectively. For B-measurable function f and 

B2-measurable function F, we abuse the notation S』(x,w)and SnF(x,y,w) to denote 

品(T1)f(x,w) and Sn(T2)F(x, y, w), respectively if there is no fear of confusion. Note that 

if f E L00 (m) satisfies the deterministic centering condition JM f p dm = 0 with respect 
M 

to T, then J also satisfies the deterministic centering condition JM2 ]p2 dm2 = 0 with 

respect to T2, where p2(x, y) = 1凡(x,y,w)P(dw).Indeed, JM2 
Q 

J記恥d州＝し ((f(x)-f(y)) L比(x,y, w) dP) dm2 
= L2xn (f(x) -J(y))H2(x, y, w) d(m2 X P) = 0. 
M国

holds true since H2 is symmetric. 

From now on we impose the stronger condition that Lr2 is asymptotically stable on our 

system. Recall that this yields that £乃 isasymptotically stable. For <fJ E L1 (m x P), 
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tJr E L1(m2 x P), and nonnegative integer n, we put 

△(T1，心，n)=亨 -fMxn<Pd(m x P) ・ H1, and 
Mx!1 

(3.1) 

△(T2，い） ＝£げ— JM2xn l[t d(m2 X P) ・ H2. 
M国

Next for a real-valued element f E L00(m), we consider autocorrelations 

(3.2) 

2 

C(Tぃf,n) = fMxO (f O T{')f H1 d(m X P) -(Lxo f H1 d(m X n) r and 
2 

C(T2, Ft, n) = L2xo (Ft o Tf)f H2 d(m2 X P) -(L国凡H2d(m2xn))

Under the condition 

00 

(3.3) f 11△(TぃfH1,n)ll1,mxPく oo and 文l△(T2,F1凡，n)ll1,m2xP< oo, 
n=O n=O 

the limit variances are given by the following absolutely convergent series. 

(3.4) v(f) = C(Tぃf,0) + 2文C(Tぃf,n) and v(F1) = C(T2, F1, 0) + 2文C(T2,F_ゎn).
n=l n=l 

Now we are in a position to state the next result. 

THEOREM 3.2. Assume that the transfer operator of the slew product transformation 

T2 with respect to m2 x P is asymptotically stable with respect to H2 E L1(m2 x P). 

Let f be a real-valued element in L 00 (m) satisfying the deterministic centering condition 

JM f pdm = 0. Furthermore, we assume that f and F1 satisfy the conditions in (3.3). 
M 

Then the following are equivalent. 

(1) There exists a probability density g E L1 (m) such that S』fI vn converges in law to 
N(O, 2v(f)) with respect to m2 x ?-absolutely continuous probability measure with density 

g. 

(2) For any probability density g E L1(m), S占／ynconverges in law to N(O, 2v(f)) 

with respect to m2 x ?-absolutely continuous probability measure with density g. 
(3) There exists a probability density g E L1(m) such that for any bounded continuous 

f二dionu on股，lu(S叶占）gdmeonverges to fRudN(0,V) strongly tn L1(P) as (n → 
M 

(4) For any probability density g E L1 (m) and for any bounded continuous function u 

on股， JMu(S]yn)gdmconverges to 1 udN(O, v) strongly in L1(P) as (n→oo). 



149

(5) There exists a probability density g E L1(m) such that for any t E 恥

J eご t(Sn/vn)g dm converges to e量／2strongly in L1(P) as (n→oo). 
M 

(6) For any probability density g E L1(m) and for any t E艮， /Meご t(Sn／占）gdm
M 

converges to e―vt212 strongly in L1 (P) as (n→oo). 
(7) v(F1) = 2v(f). 

00 

(8) j 犀 d(m2x P) + 2と!M2x/(x)f（ふ（w)y)H2d(m2 x P) = 0. 
M国 n=l M囁

1 
(9) lim -J 幻 (x,w)S』(y，囚）H2d(m2x P) = 0. 
n→oon 記 xn

REMARK 3.3. In the assertion (9) in Theorem 3.2, the single point set｛几｝ canbe re-

placed by the totality of probability densities in L1(m2 x P) for which II△(T2, F, n)ll1,m舷P

decays sufficiently fast. For example, under the same conditions in Theorem 3.2, (9) is 

equivalent to the following. 

1 
(9)'J~1! ¾ JM2n Snf(x, w)Snf(y, w)F(x, y, w) d(m2 x P) = 0 holds for any probability 
n→(X)nJM叩

density FE L1(m2 x P) satisfying limn5II△(T2, F, n) lli,m2xp = 0. 
n→(X) 

We note that the condition'lim n5 II△(T2, F, n)ll1,記 xP= O'is rather technical and it is 
n→OO 

not optimal. 

Finally, we give the almost sure sample-wise CLT with deterministic centering. In [1], 

[2], and [3] a kind of quenched CLT(called almost sure sample-wise CLT in this article) 

with deterministic centering condition is obtained by using an averaged large deviation 
estimate. Here we give a slightly abstract result by using the estimate of fourth moment 

rather than the large deviation estimate. Precisely, we have the following. 

THEOREM 3.4. Assume that the transfer operator of the slew product transformation T2 

with respect to m2 x P is asymptotically stable. Let f be a real-valued element in L00(m) 

satisfying the deterministic centering condition JM f p dm = 0 such that f and Ff satisfy 
M 

the conditions in (3.3) and v(T2, Ff) = 2v(T1, f) holds. Let g E L1 (m) be a probability 
density. We assume that there exist constants C > 0, a > 0, and(3 ＞0 such that the 
following conditions are fulfilled. 

1 
(a) J e戸 tSnf／占凡d(mx P) -e―v柱／21::::; C (1 + It『)―.and
MxO 征

J eご tS占／国d(m2xP)-e―vt2I ::::; C (1 + It!"')上 wherev = v(f). 
M2xO 研'
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(b) supf 
(Snf)4 
H1 d(m x P):::; C. 

n MxQ 炉

c c 
(c) I|△（T1,g,n)lli,mxP:::;；戸 and II△(T2,fl,n)ll1,m2xP:::; ~互·

Then for P-a.s.w, S』(・,w)/..fnconverges in law to the normal distribution N(O,v) with 

respect to them-absolutely continuous probability measure gm, where g E L1(mりisde-
fined by g(x,y) = g(x)g(y) for (x,y) EM乞

4. EXAMPLES 

Throughout this section, (M, B, m) is the unit interval with the usual Lebesgue space 

structure, S = {O, 1} with the discrete topology, and (0, F) = (SピB(S2+)),where 
Z+ is the totality of nonnegative integers and B(S2+) is the topological Borel field of 

S2+ endowed with the product topology of S. Each element w E O can be expressed as 

w = (w(O)w(l)w(2) • • •). Thus the shift O" : n→n satisfies (O"w)(k) = w(k) for k E乙．
Choose p and q satisfying O < p, q < 1 and p+q = 1 and define a locally constant function 
U so that 

U(a) ＝ {logp ifw(O) ＝ w(1)， 
logq if w(O)ヂw(l).

Let P = Pu be the Gibbs measure corresponding to the potential U, i.e. the unique 

び—invariant probability measure satisfying L (f o O")g dP = LにugdP for continuous 
functions f and g, where Cu is the transfer operator defined by Cug(w) = eu(ow)g(Ow) + 

eU(lw)g(lw) (see [4]). As an S-valued random variable t : 0→S, we employ t(w) = w(O). 
Clearly, P makes｛品＝to炉， n2: O} a symmetric stationary Markov chain. 
Put J(O) = [O, 1/2] and J(l) = [1/2, 1]. Let T be the totality of piecewise C2 uniformly 
expanding maps T : M →M such that ess.infldT/dxl > 1 and TlintI(j) : intJ(j)→ M 
is a C2-diffeomorphism which can be extended to a C2 function on I(j) for j = 0, 1. It 

is well known that for each T E T there exists a unique invariant density hT Eじ(m)
with Lipschitz continuous version and the transfer operator,CT,m is asymptotically stable 

with respect to hT. Choose To,百 ET and consider a random dynamical system X given 
by ({To,巧｝，O",t). Write as h。=hT0and h1 = hT1 for simplicity. Note that the transfer 
operators of the skew product transformations T1 and花 withrespect to m x P and 
2 m~ X p are given by 

(4.1) 
.Cr,<I>(x,w) = eU(O-w),eTo(<I>(・, Ow))(x) + eU(l-w).C1―1 (<I>(・, lw))(x) 

£T2し!J(x,y, w) = eU(O・w).CToXTo (P(・, ・,Ow)) (x, y) + eU(l・w).CT, xT, (P(・, ・, lw)) (x, y) 

for tJj E L1(m x P) and iJt E L1(m2 x P), where.cTj =.cTj,m is the transfer operator of乃

with respect to the Lebesgue measure m for j = 0, 1. We have the following. 
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PROPOSITION 4.1. Let (M,B,m), (0,F,P,u), and {1,。,T1} C T be as above. Consider 
the random dynamical system X given by ({ To,巧｝，u,t) and its direct product Xx X. Then 
there exist a probability densities H1 E L1(m x P) and H2 E L1(m2 x P) such that the 

transfer operators £r1 and,C乃 areasymptotically stable with respect to H1 and H2, respec-

tively. Moreover, H1 and H2 have continuous versions and for any Lipschitz continuous 

real-valued function f on M, the autocorrelations given by (3.2) decay exponentially fast 
as n→00. 

Note that if p = q = 1/2, then{品}:=。 isindependent and densities H1 and H2 have 
deterministic versions by virtue of the result in [10]. On the contrary, if h。#h1we 
can show by using the formula (4.1) that p # q implies that H1 and H2 can not have 

deterministic versions. 
First we give an example for which the deterministic centering does not work. 

EXAMPLE 4.2. (cf. [l]) Choose 7i。and町 sothat 

泣＝｛：：'_ 1, 
if x E J(O) 丑＋（3/2)x, 
otherwise' 巧X=｛丑＋（1／2)x -1/2, 

if x E I(O) 

otherwise 

Clearly h。=1. By £内h1= h1, it is not hard to see that h1(0) = 2h1(1/2) and h1(1) = 
(2/3)凡(1/2).Therefore h。=Jh1. Consider the observable f = h。— h1. Then we have 

!Mfh。dm-J 凡 dm= !)h。-h1戸dm> 0. Thus the symmetricity of the Markov 
M JM JM 

chain ｛品｝~=o enable us to prove v(Fり<2v(f)in the same way as in [1]. Note that we 
also show that v(f) > 0. 

It is obvious that if h。=h1the deterministic centering trivially works. Therefore we 
are interested in a nontrivial example for which the deterministic centering works. 

EXAMPLE 4.3. Let i : M→M be the involution ix= 1 -x. Choose Tj E'T such that 
LO乃＝乃 oi holds for j = 0, 1. Then it is not hard to see that the invariant densities 

H1 and H2 satisfy H由x,w)= H1(x,w) and H出x,y,w)＝比(x,iy,w)=H出x,iy,w)=

麟 y,w).Therefore if f satisfies f o i = -f, we have JMJ(x)几(x,y,w)m(dx)= 0. 
M 

This yields the condition (8) in Theorem 3.2. To be more concrete choose T。and町 so
that 

2x -1 otherwlse { 2 
ToX = {2x,if x E • I(O)，巧X＝丑＋（3／2)x, if x E I(O) 

x~ + (7 /2)x -3/2, otherwise 

Consider the observable f(x) = cos(k1rx) with k odd. Obviously f o i = -f. Moreover, 

we can show that Theorem 3.4 is applicable to f with v(f) > 0. 
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