
159

From normal to anomalous diffusion 
in simple dynamical systems 

Rainer Klages 

I. INTRODUCTION 

We briefly review a string of work that explores diffusion in simple dynamical systems 
[1-3]. For this purpose we consider dynamics generated by piecewise linear one-dimensional 
maps. These systems have the advantage that they are amenable to easy analytical calcula-
tions. We start with a simple example of a map that exhibits diffusive dynamics for which we 
exactly calculate the parameter-dependent diffusion coefficient. We do so by using a method 
that boils down to solving a functional recursion relation yielding fractal generalised Takagi 
functions. As a result we obtain a diffusion coefficient that is a highly non-trivial func-
tion under parameter variation. Its complexity can be explained with respect to prameter 
sensitivity of the underlying microscopic chaotic dynamics [2]. 
While our first example is a dynamical system where diffusion originates from microscopic 
deterministic chaos, our second example defines a random dynamical system generating 
diffusion. For obtaining the latter we mix randomly in time normal diffusive with trivial 
localising dynamics. As a result we obtain a random dynamical system that exhibits a 
non-trivial transition under variation of the probability of mixing both types of underlying 
dynamics. Most notably, there is a critical parameter value at which there emerges so-called 
subdiffusion reflecting the intermittent motion that we generate [3]. 
We conclude with a brief summary in which we relate the results obtained in this review 
to other strings of literature, where similar results have been obtained for physically more 
relevant dynamical systems. 

II. CHAOTIC DIFFUSION IN ONE-DIMENSIONAL DETERMINISTIC MAPS 

To set the scene let us recall a random walk in one dimension, where steps of length s 
to the left and to the right are drawn as independent and identically distributed random 
variables with probability p（土s)= 1/2 [4]. Since the single steps are uncorrelated this 
yields a Markov process. Karl Pearson was the first one to pose the question about how to 
assess such a random walk in terms of diffusive spreading [5]. For this purpose we define 
the diffusion coefficient as 

1 
D := lim f-< (xn -xo)~ > (1) 
n→oo 2n 

with discrete time step n E N and an ensemble average over the initial probability distri-
bution function e(x) of positions x = x。,XE股 attime n = 0, <... >:= J dx e(x).... 
The quantity in the numerator above is called the mean square displacement (MSD) of a 
process, which gives information about the spreading of points with time n. For the random 
walk defined above one trivially obtains D = s2 /2 [6]. 
This setting motivates diffusion in terms of a simple stochastic process. Starting from the 
1980's, however, theoretical physicists became interested in modeling diffusion on the basis 
of deterministic chaos [7-9]. The key idea is that in this case the single steps at discrete 
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FIG. 1: Chaotic diffusion in a simple piecewise linear one-dimensional map. Left: Exponential 

separation of nearby trajectories in the Bernoulli shift Eqs.(2),(3). Right: A slightly generalised 

version of Bernoulli shift dynamics yielding a deterministic random walk on the line. 

times n are not generated by stochastic coin tossing as above but instead by using a one-
dimensional deterministic map such as, e.g., the famous Bernoulli shift, see Fig. l(left) [10], 

M(x) = 2x mod 1 (2) 

governing the equation of motion 

Xn+I = M(xn). (3) 

If one applies an infinitesimally small perturbation△x。:＝ i。-x0≪ 1 to a given initial 
position x。andgenerates respective orbits according to Eq.(3), it is straightforward to see 
that this deterministic dynamical system exhibits an exponential dynamical instability, 

△Xn = 2△Xn-1 = 2n△x。=enln2△x。. (4) 

Here入：＝ ln2 defines the Lyapunov exponent of the dynamical system. If this quantity 
is positive one speaks of a dynamical system being chaotic [11]. However, as the Bernoulli 
shift above acts on a compact set it cannot generate a MSD that keeps growing linearly in 
the long time limit, as is required for the limit in Eq.(l) to yield a non-trivial result. In 
order to obtain a dynamical system that displays long-time diffusion on an unbounded set 
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we start from a slightly modified version of the Bernoulli shift, 

島 (x)：＝ { 2x+h oこX< ｝ 
2x -1 -h ½ :S: x < i (5) 

with symmetric shift h ~ 0 as a control parameter [2, 12]. This map M心） iscontinued 
on the whole real line by a lift of degree one, M心＋ 1)＝島(x)+ 1. The dynamical 
system Xn+i = Mい） nowyields a deterministic walk on the line, similar to the random 
walk mentioned at the very beginning but here defined on the basis of deterministic chaos 
[7-9]. There is a rich literature on studying the diffusive dynamics resulting from this kind 
of models [1]. 
An interesting question is to calculate the parameter-dependent diffusion coefficient D(h) 
of this and related models. By now many analytical and numerical methods are available to 
solve this problem (see Refs. [1, 2, 13] and further references therein). Here we outline only 
one of them, which we may call Takagi function method, as at some point it involves fractal 
functions of the type of the famous Takagi function [14]. 
The starting point is the definition of the diffusion coefficient Eq.(l), where the MSD 
therein< (xn -x0)2 > we now define with respect to the invariant density紳(x)of the map 
叫（x):=島(x) mod 1 on the unit interval, <... >:= ft。ldx肌(x)....It is easy to see that 
for the map mh(x) we have'vh紳(x)= 1. By defining integer jumps Jk := Lxk+l」-Lxk」at
discrete time k one can show that D(h) in Eq.(l) can be re-written via telescopic summation 
in terms of the Taylor-Green-Kubo formula [13, 15, 16] 

00 

1 
D(h) = *〈j筍＋区〈joj砂．
2 

k=l 

(6) 

The function〈joJt〉thereinis called the velocity autocorrelation function of the process. 
This formula displays a convenient structure: If the latter function was zero, as in case of 
a Markov process without any temporal memory, the first term in this formula yields the 
random walk solution j6f2. Deviations from this random walk result are obtained if the 
correlation function decay is non-zero, meaning the process exhibits higher-order dynamical 
correlations. 
For calculating D(h) it thus remains to evaluate 

〈]0言JK〉=［dxjo言ハ(x) (7) 

Note that J,:(x)：＝こいjk(x)defines a kind of scattering function, which tells us exactly 
how far a point that starts at a given initial position x moves after n time steps (see 
Ref. [16] for details). For calculational purposes it is convenient to employ the corresponding 
cumulative function 

叫：＝J心 jk(Y),
゜ k=O which after a short calculation [2, 13] yields the de Rham-type recursion relation [17] 

1 
T< (x) ＝ t(x) ＋ -T；ー1（叫(x))

2 

(8) 

(9) 



162

with dt(x)/dx := j0(x). This equation can be solved to [2, 13] 

叫＝幻戸（叫(x)). (10) 
k=O 

For 0さhandTiパx):=limn→()()な(x),combining Eqs.(1),(6),(8),(10) leads to 

D(h)＝厚＋ （ ~)(1-2 「hl)+ Th (ii) (11) 

with h := h mod 1 (h rf-間），h:= 1 (h E N。)［2]. Figure 2(left) displays numerical 
results for Eq.(11). On large scales we recover the simple random walk diffusion coefficient 
D(h) =炉／2(h ≫ 1) as a lower bound of the exact D(h). Figure 2(right) depicts a blow-up 
of the initial parameter region O < h < 0.5. On small scales and on certain parameter 
intervals D(h) is a function exhibiting a lot of fine structure. One can indeed show that 
in terms of Eq.(11) D(h) is in this regime a fractal function of the control parameter h, 
which reflects a topological instability of the dynamics under parameter variation. This can 
be understood in terms of specific periodic orbits as outlined in the insets of Fig. 2(right). 
They show two examples of periodic orbits at specific parameter values h, a ballistic orbit 
(left inset) and an eventually localised one (right inset). The different symbols correspond 
to parameter values h generating respective classes of periodic orbits in the dynamics of 
the map. While these orbits are of Lebesgue measure zero in position space there is an 
environment of orbits exhibiting a similar type of dynamics for long transient times. It is 
intuitively clear that diffusion will be enhanced if the dynamics is dominated by the former 
type of dynamics while it is suppressed by the latter, which exactly is seen in D(h) of 
Fig. 2(right). This provides a microscopic explanation for the fractality of the diffusion 
coefficient, i.e., it is due to long-time correlations in the microscopic scattering process of 
the dynamics [1, 13, 16, 18, 19]. 
Apart from fractal parameter regions at [k, k + 1/2], k EN。thereare parameter regions 
at [k + 1/2, k + 1], k E N。whereD(h) simply exhibits plateaus. This is also somewhat 
counter-intuitive, as naively one would expect D(h) to monotonically increase with h, like 
the random walk approximation in Fig. 2(left). The explanation of these plateaus is provided 
by Fig. 3. One can see that at respective parameter values the phase space splits into two 
disjoint invariant sets (colored in blue, respectively [O, 1/4) U [3/4, 1), and colored in red, 
respectively [1/4, 3/4) in Fig. 3(right), periodically continued in (left)), which by action of 
the map are getting mapped onto themselves. While Fig. 3(left) displays the map 11{心），
this splitting is more clearly seen in Fig. 3(right) by using the map mパx).For a uniform 
initial density and 0.5 < h < 1 the diffusion coefficient of the blue part is calculated to 
Db(h) = 1 -h while the diffusion coefficient of the red part is Dr(h) = h -1/2. Combining 
both results yields the total diffusion coefficient 

D(h) = Db(h) + Dr(h) = i 
1 

2' 

which explains the first plateau. The other ones are understood analogously. 

(12) 

In summary, we have demonstrated that simple deterministic random walks on the line 
can generate surprisingly non-trivial diffusive dynamics under variation of a control param-
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FIG. 2: Parameter-dependent diffusion coefficient for the deterministic random walk displayed in 

Fig. l(right). Left: The diffusion coefficient D(h) defined by Eq.(1) for the lifted map Eq.(5). 

Plotted is the analytical results Eq.(11) in comparison to a simple random walk approximation 

(dashed line). Right: Blow-up of the initial region of the left figure. The symbols therein refer 
to two different types of periodic orbits, ballistic (squares) as well as eventually localised ones 

(diamonds). These two different classes of periodic orbits occur at specific parameter values h 

explaining the fratcal structure of the corresponding diffusion coefficient D(h). 

eter. This is due to the deterministic chaos underlying the diffusion process, which can 
generate long-time dynamical correlations that are very sensitive with respect to parameter 
variation. In the next section we will explore yet another surprising feature of random walks 
on the line generated by simple maps. 

III. A SIMPLE DIFFUSIVE RANDOM DYNAMICAL SYSTEM 

We now introduce a simple scheme, based on the idea of random dynamical systems, 
which generates diffusive dynamics that is non-trivial in yet a fundamentally different way 
than discussed before. For this purpose let us start with Fig. 4(left), which outlines the 
basic concept. This figure displays three different time series for the position叩 ofa point, 
or particle, at discrete time t. In the upper left the time series is generated by a deterministic 
dynamical system D yielding normal diffusion, where the MSD in Fig. 1 (left) grows linearly 
with time in the long time limit. In the upper right we have a deterministic dynamical 
system L for which all particles eventually localize in space in the long time limit, meaning 
the MSD is eventually approaching a constant value for long times. One may now combine 
these two very different types of diffusive dynamics by randomly switching between the type 
of dynamical system that generates the position叩 atthe next time step t. One may do so 
by tossing a coin whose two sides appear with probability p, respectively 1 -p. This recipe 
yields a new random dynamical system R that mixes these two types of dynamics in time. 
As a result one may naively expect a kind of intermittent motion as displayed by the third 
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FIG. 3: Explanation of the plateau regions of the parameter-dependent diffusion coefficient D(h) 

in Fig. 2. Left: The diffusive map Mh(x) Eq.(5), see Fig. l(right), for a parameter h in a plateau 
region. Here the system becomes non-ergodic. That is, the phase space splits into two disjoint 
invariant sets displayed by the blue and red intervals that are mapped onto themselves. Right: 

The same map mod 1 constrained onto the unit interval, called mパx)in the text, for which the 
non-ergodicity can be identified graphically more clearly. 

time series at the bottom of this figure. 
That this expectation indeed holds true is demonstrated in Fig. l(right). As an example 
we chose a simple piecewise linear one-dimensional map similar to the one discussed before 
defined by the equation of motion Xt+1 = M,凸）， where

Ma(x) 
ax, O~x<½ 

= { ax+1 -a, ｝ < x < 1, a > O, (13) 

cf. the inset in Fig. 4(right). For a> 2 this model exhibits normal diffusion with a Lyapunov 
exponent入(a)=lna [1, 13, 18, 19]. The sample trajectory in the upper left of Fig. 4(left) 
was obtained from D = M心）， wherethe dynamics is chaotic,入（4)= ln4 > 0. The 
trajectory in the upper right of Fig. 4(left) corresponds to L = M1;2(x), where the dynamics 
is non-chaotic,入（1/2)= -ln 2 < 0. Here all particles contract onto stable fixed points at 
integer positions x E Z. For defining the random rnap R we now let the slope a be an 
independent and identically distributed, multiplicative random variable: At any time step 
t we choose for our map R = Ma(x) with probability p E [O, 1] the slope a = 1/2 while 
with probability 1 -p we pick a = 4 [3]. Random maps of this type are also called iterated 
function systems [20]. They have been studied by both mathematicians and physicists in 
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FIG. 4: A simple diffusive random dynamical system. Left: Sketch of a basic recipe to generate a 

random dynamical system by mixing normal diffusive (top left) and localising (top right) dynamics 

randomly in time. The result is intermittent motion (bottom). Right: Under variation of the 
probability p of mixing these two different types of dynamics the resulting random dynamical 

system R displays a transition from normal diffusion to localisation characterised by subdiffusive 

dynamics. Shown is the mean square displacement < x; >, cf. Eq.(1), as a function of discrete 
time t. The inset displays the specific random dynamical system generating these results, which 

consists of a random combination of two piecewise linear maps with different parameter values, see 

Eq.(13). 

view of their measure-theoretic [21] and statistical physical properties [22]. 
It is easy to show that the Lyapunov exponent入(p)of the random map R is zero at 
probability Pc = 2/3. Since入(p)> 0 for p < Pc the map R should generate normal diffusion 
in this regime while p > Pc with入(p)< 0 should lead to localization for long times. The 
numerical results for the MSD of R under variation of p depicted in Fig. 4(right) confirm 
that this is indeed the case; for details of the simulations we refer to Ref. [3]. However, 
passing through Pc the dynamics displays a subtle transition: Right at Pc we obtain so-
called anomalous diffusion, where the MSD grows nonlinearly in time [23]. More precisely 
here we encounter subdiffusion,〈丑(t)〉～ t1/2,which around Pc survives for long transient 
times. 
We conclude that this simple random dynamical system can generate a novel, very dif-
ferent type of diffusive dynamic compared to the first one. This dynamic is characterised by 
interesting properties like ageing, weak ergodicity breaking, breaking of self-averaging and 
infinite invariant densities [3]. 
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IV. SUMMARY 

We have introduced to the problem of chaotic diffusion generated by deterministic dynam-
ical systems. As the simplest examples possible we chose piecewise linear one-dimensional 
maps defined on the whole real line. For these dynamical systems the parameter-dependent 
diffusion coefficient can be calculated exactly analytically. We outlined a straightforward 
method of how to do so, which is based on evaluating fractal generalised Takagi functions. 
Surprisingly, the resulting diffusion coefficient exhibits fractal structures under parameter 
variation, which can be explained with respect to non-trivial dynamical correlations on mi-
croscopic scales. 
For certain classes of such maps the Hausdorff and the box counting dimensions of the 
corresponding diffusion coefficient curves under parameter variation have been calculated 
rigorously mathematically. Interestingly, these curves belong to a very special type of fractals 
for which both dimensions are exactly equal to one. The fractal structure emerges from 
logarithmic corrections in continuity properties that display an intricate dependence on 
parameter variation [24]. 
These fractal diffusion coefficients are not an artefact specific to one-dimensional maps. 
A line of work demonstrated that they also appear in Hamiltonian particle billiards [l] and 
even for particles moving in soft potential landscapes [25]. The latter system relates to 
electronic transport in artificial graphene that can be studied experimentally. Yet another 
string of work investigated anomalous diffusion in intermittent maps of Pomeau-Manneville 
type, which also turned out to display fractal parameter dependencies of suitably generalised 
anomalous diffusion coefficients [l], 
In this brief review we only discussed a simple type of random dynamical system as a 
second example generating non-trivial diffusion. We showed that mixing normal diffusive 
with localised dynamics randomly in time yields a novel type of intermittent dynamics 
characterised by the emergence of subdiffusion. To which extent the recipe that we proposed 
for obtaining this kind of random diffusive dynamical system can generate other types of 
anomalous diffusion remains to be explored. 
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