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Abstract 

We provide an exact form of the infinite invariant density in a semi-Markov process. In the 

semi-Markov process, the state almost surely converges to zero in the long-time limit, i.e., accu-

mulation to the origin, and the infinite invariant density characterizes the accumulation process. 

We demonstrate two distributional behaviors for time averages of the absolute value of the state, 

where the shape of the distribution depends on whether the observable is integrable with respect 

to the infinite invariant density. Therefore, the infinite invariant density plays an important role 

in characterizing the non-stationary accumulation process. 
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I. INTRODUCTION 

Chaos plays a fundamental role in providing a stochastic description from a determinis-

tic dynamical system [1]. This stochastic approach enables us to use the micro-canonical 

ensemble in a Hamiltonian system. In mathematics, this fundamental property can be for-

mulated by ergodicity, which guarantees the equivalence between a time-averaged quantity 

and the corresponding ensemble average. In particular, time averages starting from different 

initial points converge to a unique constant and the constant is given by the average with 

respect to the invariant density. This uniqueness results from the uniqueness of the invariant 

density (the invariant measure absolutely continuous with respect to the Lebesgue measure 

is unique). For Hamiltonian systems, the invariant measure is the Lebesgue measure, which 

implies the micro-canonical ensemble. 

Mathematically, a concept of ergodicity can be generalized to the infinite measure space 

where the invariant density cannot be normalized (the infinite invariant density) [2]. A 

significant feature in infinite ergodic theory is distributional behaviors in time-averaged 

observables [2-6]. For ordinary ergodic systems, a time-averaged observable converges to a 

constant, which means that the distribution of the time average is the delta function. On 

the other hand, time-averaged observables are still random variables even in the long-time 

limit when dynamical systems are ergodic in the infinite measure space. These distributional 

limit theorems in infinite ergodic theory are deeply connected to those in probability theory. 

In particular, the Mittag-Leffler distribution and the generalized arcsine distribution, which 

appears in infinite ergodic theory, are well-known in occupation time statistics for stochastic 

processes [7, 8]. 

While this generalization of ergodicity is independently developed from physics, relevant 

physical phenomena has been unveiled recently, e.g., intensity of fluorescence in quantum 

dots [9], diffusion coefficient of a diffusing biomolecule in living cells [10-12], and interface 

fluctuations in Kardar-Parisi-Zhang universality class [13], where distributional behaviors of 

time averages are observed, which are similar to infinite ergodic theory. In infinite ergodic 

theory, integrability of the observable with respect to the invariant density gives a condition 

that discriminates distributional limit theorems. Therefore, it is important to know an exact 

form of the infinite invariant density, which is not known explicitly in many c邸 es.Here, 

we provide an exact form of the in且niteinvariant density and demonstrate the role of the 
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infinite invariant density in an accumulation process. 

II. CONTINUOUS SEMI-MARKOV PROCESS 

We consider a continuous semi-Markov process (CSMP), where the state may have any 

value. In CSMPs, the state keeps constant until it changes (see Fig. 1) and an inter-event 

time of two successive points of state changes is an independent and identically distributed 

(IID) random variable. Here, we assume that the state value is determined by the inter-

event time [14]. As a specific coupling, the absolute values lvnl of the nth state value and 

the corresponding inter-event time Tn are connected by 

Iv』＝岱―19 (1) 

or equivalently via 

Tn = lvn戸． (2) 

The sign of the state value becomes+ or -with probability 1/2. A typical physical example 

of this process is the velocity of the generalized Levy walk (GLW) [15, 16]. In the GLW a 

walker moves with constant velocities Vn over time segments of lengths Tn between turning 

points occurring at times tn, i.e,冗＝ tn-tn-1, where flight duration冗 isan IID random 

variable. Standard Levy walk corresponds to case v = l, implying the velocity does not 

depend on the flight duration. In what follows we focus on case O < v < l. 

A CSMP consists of a sequence of elementary events (vか冗）． Wenote that冗 (n= 1, • • •) 

is IID random variable. Thus the CSMP is fully characterized by the joint PDF of v and T 

in an elementary event: 

cj;(v,T) =〈6(v-V,) 6 (T -T,）〉，

which is given by 

叩，T)= ~位（v- 戸）＋ o(v+Tv-l) ］ 1/J(T)
PDFゆ(T)of T is defined through the marginal density of the joint PDFゆ(v,T): 

的）＝「~¢(v,T)dv=〈O(T-T;）〉．
-oo 

Similarly PDF ¢(v) of v is given by 

x(v) =「00¢(v, T) dT =〈6(v -Vi）〉．

゜

(3) 

(4) 

(5) 

(6) 
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FIG. 1. Realization of a semi-Markov process. The state changes discontinuously at renewal points, 

i.e., ti, t2, t3, and t4. 

We assume that心(T)follows a power-law form: 

心(T)~ 
C 

T 
-1--y 

1r(-,)I 
(T→oo), (7) 

where the parameter 1 > 0 characterizes the algebraic decay and c is a scale parameter. In 

particular, we are interested in the regime O < 1 < 1. 

III. RESULTS 

A. Infinite invariant density 

The propagator of the state variable, denoted by p(v, t), is given by 

p(v, t) = x(v)［〈N(t)〉-〈N(t-tc(v)）〉], (8) 

where N(t) is the number of state changes with N(O) = 1 and N(t) = 0 for t < 0 and 

tc(v)三 |v|丑r[14]. For 1 > 1, the propagator converges to a stationary distribution in the 

long-time limit: 

p(v,t)→Peq(v) = 
x(v)lv|出

〈T〉
(t→oo). (9) 
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On the other hand, there is no stationary distribution in the case of 1 :S: 1. In fact, the 

propagator explicitly depends on t even in the long-time limit: 

for v < Vc(t) and 

『|v|―1＋白
p(v, t) ~ 

2(1 -v) 1r(-1) 1r(1 + 1) 

1 t"f-l 

p(v, t) ~ x(v) lvl= 
cr(ry) 

(10) 

(11) 

for vc(t) < v. We note that the supports of Eqs. (10) and (11) depends on t. In particular, 

the support of Eq. (10) vanishes as time goes on; i.e., the state accumulates into the origin. 

For vc(t) < v, a formal steady state I00(v) can be obtained by 

LOO仰）三 limt1-"1p(v, t) = 
x(v) Iv|土

t→oo cr(1)' 
(12) 

which does not depend on t but cannot be normalized, i.e., infinite invariant density. In 

particular, the asymptotic form of the infinite density for v ≪ l can be represented as 

1 
に(v)~ 

2(1-v)lr(-,)lrb) 

B. Distributional limit theorems 

lvl―1-1こt, (13) 

Time average of the absolute value of the state, i.e., f(v) = lvl shows trajectory-to-

trajectory fluctuations. The distribution depends on whether the observable is integrable 

with respect to the infinite invariant measure or not. When f(v) is integrable with respect 

to the infinite invariant measure, i.e., 

〈f(v)〉inf=100 f(v)Ioo(v)dv < oo, 

゜
(14) 

the distribution follows the Mittag-Leffler distribution, which does not depend on v [14]. On 

the other hand, when f(v) is not integrable with respect to the infinite invariant measure, 

the distribution depends on both v and'Y [14]. Thus, there are two distributional limit 

theorems in the semi-Markov process. Distributional limit theorems for time averages of 

f(v) = lvl are summarized in Fig. 2. 

IV. CONCLUSION 

In a semi-Markov process, there exists a formal steady state that cannot be normalized, 

i.e., the infinite invariant density. The form of the propagator for the state value outside the 
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 FIG. 2. Phase diagram for time average of f(v) = lvl. The invariant density becomes the infinite 

one for 1 ::; 1. The dashed line represents the boundary that the observable J(v) is integrable 

with respect to the infinite/probability measure; i.e., J J(v)I00(v)dv = oo and 1 < 1 in region I, 

J J(v)I00(v)dvく ooand 1 < 1 in region II, and J f (v)Peq (v)dvく ooand 1 > 1 in region III. The 

form of PDF for the time average is different in regions I and II. 

origin is described by the infinite invariant density whereas the probability that the state 

is outside the origin becomes zero in the long-time limit. Therefore, the state in the semi-

Markov process almost surely converges to zero in the long-time limit, i.e., accumulation 

into the origin. The infinite invariant density discriminates distributional limit theorems in 

time-averaged observables. Therefore, infinite invariant density plays an important role in 

characterizing the accumulation process in the semi-Markov process. 
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