Two－microlocal estimates in wavelet theory and related function spaces

奈良女子大学 森藤 紳哉
Shinya Moritoh
Nara Women＇s University

1 Introduction

This report is based on the author＇s talk given at RIMS on November 7th， 2019. Two－microlocal ideas in wavelet analysis are considered．Sections 2 and 3 are taken from［JM］and［MY］，respectively．Section 4 deals with some recent results obtained in［Mo］．

2 What is＂two－microlocal estimate＂？

We first give a brief survey of Jaffard－Meyer（1996）．See［JM］．The determination of the pointwise regularity of a function f requires the use of some tools introduced by Bony（1986）．See［Bo］．

Let S_{j} be the＂low－pass filter＂which，after performing the Fourier transform，is the multiplication by $\widehat{\varphi}\left(2^{-j} \xi\right)$ ，where $\widehat{\varphi}(\xi)=1$ if $|\xi| \leq 1 / 2$ and $\widehat{\varphi}(\xi)=0$ if $|\xi| \geq 1$ ． Define $\Delta_{j}=S_{j+1}-S_{j}$ ．Thus we have the Littlewood－Paley decomposition：

$$
I d=S_{0}+\Delta_{0}+\Delta_{1}+\cdots .
$$

The Fourier transform of $\Delta_{j}(f)$ is supported by the set $2^{j-1} \leq|\xi| \leq 2^{j+1}$ ．
Definition 2.1 （Jaffard－Meyer）．Let $s, s^{\prime} \in \mathbb{R}$ ．Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is said to belong to $C_{x_{0}}^{s, s^{\prime}}$ if

$$
\left|S_{0}(f)(x)\right| \leq C\left(1+\left|x-x_{0}\right|\right)^{-s^{\prime}}
$$

and

$$
\left|\Delta_{j}(f)(x)\right| \leq C 2^{-j s}\left(1+2^{j}\left|x-x_{0}\right|\right)^{-s^{\prime}}
$$

Definition 2.2 （Bony）．Let $s, s^{\prime} \in \mathbb{R}$ ．Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is said to belong to $H_{x x_{0}^{s, s}}$ if

$$
\left\|2^{j s}\left(1+2^{j}\left|x-x_{0}\right|\right)^{s^{\prime}} \Delta_{j}(f)\right\|_{L^{2}} \leq c_{j}
$$

with $\sum\left|c_{j}\right|^{2}<\infty$ ．
Remark 2．3．We have the following fact：$u \in H_{x_{0}}^{s,-k}$ ，with k being a positive integer， if and only if $u=\sum_{|\alpha| \leq k}\left(x-x_{0}\right)^{\alpha} u_{\alpha}$ ，where $u_{\alpha} \in H^{s-|\alpha|}\left(\mathbb{R}^{n}\right)$ ．

Let us now consider an orthonomal wavelet basis on \mathbb{R}^{n}. Such a basis is composed by translations and dilations of $2^{n}-1$ functions $\psi^{(i)}$. Recall the usual notation

$$
\psi_{j, k}^{(i)}(x)=2^{n j / 2} \psi^{(i)}\left(2^{j} x-k\right), \quad j \in \mathbb{Z}, k \in \mathbb{Z}^{n} .
$$

The wavelet decomposition of a function f will be written

$$
f=\sum_{i, j, k} C_{j, k} 2^{n j / 2} \psi^{(i)}\left(2^{j} x-k\right) .
$$

We will usually forget the index i. The following result is easy to check:
Proposition 2.4. $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $C_{x_{0}}^{s, s^{\prime}}$ if and only if

$$
\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}\left(1+2^{j}\left|k 2^{-j}-x_{0}\right|\right)^{-s^{\prime}} .
$$

The following characterization also holds:
Proposition 2.5. $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $H_{x_{0}^{s, s}}^{s}$ if and only if

$$
\sum_{j, k} 2^{2 j s}\left(1+2^{j}\left|k 2^{-j}-x_{0}\right|\right)^{2 s^{\prime}}\left|C_{j, k}\right|^{2}<\infty
$$

Our next purpose is to characterize the two-microlocal spaces in terms of local "Hölder type" conditions. In order to state these conditions, we need the HölderZygmund spaces $\dot{C}^{s}\left(\mathbb{R}^{n}\right)$. If $0<s<1$, then $f \in \dot{C}^{s}\left(\mathbb{R}^{n}\right)$ is characterized by

$$
|f(x)-f(y)| \leq C|x-y|^{s} .
$$

If $s=1$, then $f \in \dot{C}^{s}\left(\mathbb{R}^{n}\right)$ is characterized by

$$
|f(x+h)-2 f(x)+f(x-h)| \leq C|h| .
$$

The definition of the case where $s>1$ needs higher order differences and is omitted.
It is easily checked that $f \in \dot{C}^{s}\left(\mathbb{R}^{n}\right)$ if and only if its wavelet coefficients satisfy the condition

$$
\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}
$$

Let $A \subset \mathbb{R}^{n}$. By definition, a function f belongs to $C^{s}(A)$ if it is the restriction to A of a function F in $C^{s}\left(\mathbb{R}^{n}\right)$. The norm of f is then the infimum of all possible norms of F in $\dot{C}^{s}\left(\mathbb{R}^{n}\right)$. Let B_{ρ} be the ball $\left|x-x_{0}\right| \leq \rho$, and Γ_{ρ} the annulus $\rho \leq\left|x-x_{0}\right| \leq 3 \rho$. The following characterizations are the starting point of the talk:

Theorem 2.6. If $s^{\prime}<0$, then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $C_{x_{0}}^{s, s^{\prime}}$ if and only if

$$
\begin{equation*}
\left\|f \mid C^{s+s^{\prime}}\left(B_{\rho}\right)\right\| \leq C \rho^{-s^{\prime}} \tag{1}
\end{equation*}
$$

If $s^{\prime}>0$, then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $C_{x_{0}}^{s, s^{\prime}}$ if and only if $f \in \dot{C}^{s}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\left\|f \mid C^{s+s^{\prime}}\left(\Gamma_{\rho}\right)\right\| \leq C \rho^{-s^{\prime}} . \tag{2}
\end{equation*}
$$

Proof. We assume that the wavelet ψ is compactly supported and that $0 \in \operatorname{supp} \psi$. See [D]. We denote by C^{\prime} the diameter of $\operatorname{supp} \psi$. We first suppose that f belongs to $C_{x_{0}}^{s, s^{\prime}}$ so that its wavelet coefficients satisfy

$$
\begin{equation*}
\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}\left(1+\left|2^{j} x_{0}-k\right|\right)^{-s^{\prime}} . \tag{3}
\end{equation*}
$$

Note first that if $s^{\prime}>0$, then the inequality (3) implies that $\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}$, and so f belongs to $\dot{C}^{s}\left(\mathbb{R}^{n}\right)$. We split the wavelet decomposition

$$
f=\sum C_{j, k} \psi_{j, k}
$$

into three sums: $f=f_{1}+f_{2}+f_{3}$: The first, f_{1}, corresponds to the wavelets whose supports do not intersect the ball B_{ρ} (or the annulus Γ_{ρ}), and we can forget this sum.

Next we consider the sum f_{2} whose coefficients satisfy $2^{j} \rho \leq 10 C^{\prime}$; in that case, because $2^{j}\left|k 2^{-j}-x_{0}\right|$ can be estimated from above by some constant comparable to $10 C^{\prime}$, the inequality (3) becomes

$$
\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}
$$

and so $\left\|f_{2} \mid \dot{C}^{s}\left(\mathbb{R}^{n}\right)\right\| \leq C$. The inequalities (1) and (2) for f_{2} follow from this. (The details are omitted.)

Finally we consider the remaining sum f_{3} whose coefficients satisfy $2^{j} \rho \geq 10 C^{\prime}$. If $s^{\prime}>0$, then the inequality (3) becomes

$$
\left|C_{j, k}\right| \leq C 2^{-\left(s+s^{\prime}+n / 2\right) j} \rho^{-s^{\prime}},
$$

because the supports of the wavelets are inside the annulus Γ_{ρ} so that $\left|x_{0}-k 2^{-j}\right| \geq \rho$. The corresponding sum f_{3} satisfies

$$
\left\|f_{3} \mid \dot{C}^{s+s^{\prime}}\left(\mathbb{R}^{n}\right)\right\| \leq C \rho^{-s^{\prime}}
$$

If $s^{\prime}<0$, then the inequality (3) implies that

$$
\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}\left(1+2^{j} \rho\right)^{-s^{\prime}} \leq C 2^{-\left(s+s^{\prime}+n / 2\right) j} \rho^{-s^{\prime}}
$$

We have the same conclusion as above.
Conversely let us assume that (1) or (2) holds. We consider a given wavelet $\psi_{j, k}$. If $s^{\prime}<0$, then we take for ρ the smallest number such that the support of $\psi_{j, k}$ is completely included in B_{ρ} so that any function extending f outside B_{ρ} has the same wavelet coefficient $C_{j, k}$, and the inequality (1) implies that

$$
2^{\left(s+s^{\prime}+n / 2\right) j}\left|C_{j, k}\right| \leq C \rho^{-s^{\prime}}
$$

If $s^{\prime}>0$ and $\left|x_{0}-k 2^{-j}\right|>2 C^{\prime} 2^{-j}$, then the support of $\psi_{j, k}$ is completely included in Γ_{ρ} when $\rho=\left|x_{0}-k 2^{-j}\right| / 2$ so that any function extending f outside Γ_{ρ} has the same wavelet coefficient $C_{j, k}$, and the inequality (2) implies that

$$
2^{\left(s+s^{\prime}+n / 2\right) j}\left|C_{j, k}\right| \leq C \rho^{-s^{\prime}}
$$

If $s^{\prime}>0$ and $\left|x_{0}-k 2^{-j}\right| \leq 2 C^{\prime} 2^{-j}$, then we have to prove that $\left|C_{j, k}\right| \leq C 2^{-(s+n / 2) j}$, which is implied by the assumption that $f \in \dot{C}^{s}\left(\mathbb{R}^{n}\right)$.

3 Two-microlocal Besov spaces and wavelets

Two-microlocal Besov spaces are considered by Moritoh-Yamada (2004), which is a natural extension of Jaffard-Meyer (1996). See [MY].

We first give the following definition and proposition. See $[M]$ and $[T]$.
Definition 3.1 (homogeneous Besov space). Let $s>0$ and $1 \leq p, q \leq \infty$. Then the homogeneous Besov $\dot{B}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is defined as the set of all tempered distributions f (modulo polynomials) satisfying

$$
\left\|f \mid \dot{B}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\|=\left(\sum_{j \in \mathbb{Z}} 2^{j s q}\left\|\mathcal{F}^{-1}\left(\varphi_{j} \mathcal{F} f\right) \mid L_{p}\left(\mathbb{R}^{n}\right)\right\|^{q}\right)^{1 / q}<\infty
$$

Here, $\mathcal{F} f(\xi)$ denotes the Fourier transform of $f(x)$, and $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ is a smooth resolution of unity.

Proposition 3.2. $f \in \dot{B}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\sum_{j \in \mathbb{Z}} 2^{j \tilde{s} q}\left(\sum_{k \in \mathbb{Z}^{n}}\left|C_{j, k}\right|^{p}\right)^{q / p}<\infty
$$

where $\tilde{s}=s+n / 2-n / p$.
We can define the local Besov spaces $B_{p, q}^{s}(U)$ by restriction (see the previous section), and we now give the definition of the two-microlocal Besov spaces $B_{p, q}^{s, s^{\prime}}(U)$, where U is an open subset of \mathbb{R}^{n}.

Definition 3.3 (two-microlocal Besov space). Let $s>0, s^{\prime} \in \mathbb{R}$ and $1 \leq p, q \leq \infty$. Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is said to belong to the two-microlocal Besov space $B_{p, q}^{s, s^{\prime}}(U)$ if the following two-microlocal estimate holds:

$$
\left\|f \mid B_{p, q}^{s, s^{\prime}}(U)\right\|=\left[\sum_{j \in \mathbb{Z}} 2^{j \tilde{s} q}\left\{\sum_{k \in \mathbb{Z}^{n}}\left|\left(1+2^{j} d\left(k 2^{-j}, U\right)\right)^{s^{\prime}} C_{j, k}\right|^{p}\right\}^{\frac{q}{p}}\right]^{\frac{1}{q}}<\infty
$$

where $d\left(k 2^{-j}, U\right)$ denotes the distance from $k 2^{-j}$ to U.
In order to state the local Besov type conditions in our theorem below, we shall use the following notation as an analogue of Hörmander's notation [H]: If $g(\rho)$ is a function of the real variable ρ, defined for all positive ρ, we write $g(\rho)=\mathcal{O}^{(p)}\left(\rho^{-s}\right)$ if and only if

$$
\int_{0}^{R}\left(g(\rho) \rho^{s}\right)^{p} \frac{d \rho}{\rho}=\int_{0}^{R} g(\rho)^{p} \rho^{s p-1} d \rho<\infty \quad \text { for every } R>0
$$

Theorem 3.4. Let $s>0, s^{\prime}<0$ and $1 \leq p \leq \infty$. Let U be an open subset in \mathbb{R}^{n} and $A_{\rho}=\left\{x \in \mathbb{R}^{n} ; d(x, U)<\rho, x \notin U\right\}$. Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $B_{p, p}^{s, s^{\prime}}(U)$ if and only if there exists a decomposition $f=f_{1}+f_{2}$ such that

$$
f_{1} \in \dot{B}_{p, p}^{s}\left(\mathbb{R}^{n}\right)
$$

and

$$
\left\|f_{2} \mid B_{p, p}^{s+s^{\prime}}\left(A_{\rho}\right)\right\|=\mathcal{O}^{(p)}\left(\rho^{-s^{\prime}}\right) .
$$

Proof. We assume that the wavelet ψ is compactly supported and that $0 \in \operatorname{supp} \psi$. We denote by C^{\prime} the diameter of the support of the wavelet ψ. Let $f \in B_{p, p}^{s, s^{\prime}}(U)$. Then its wavelet coefficients satisfy

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} 2^{j \tilde{s} p} \sum_{k \in \mathbb{Z}^{n}}\left|\left(1+2^{j} d\left(k 2^{-j}, U\right)\right)^{s^{\prime}} C_{j, k}\right|^{p}<\infty \tag{4}
\end{equation*}
$$

We write f as

$$
f=\sum_{\operatorname{supp} \psi_{j, k} \cap U \neq \emptyset} C_{j, k} \psi_{j, k}+\sum_{\operatorname{supp} \psi_{j, k} \cap U=\emptyset} C_{j, k} \psi_{j, k}=: f_{1}+f_{2} .
$$

If supp $\psi_{j, k} \cap U \neq \emptyset$, then $2^{j} d\left(2^{-j} k, U\right)$ is estimated from above by some constant comparable to C^{\prime}. Therefore $f_{1} \in \dot{B}_{p, p}^{s}\left(\mathbb{R}^{n}\right)$.

Next we split the wavelet decomposition of f_{2} into three sums $f_{2}=\sum_{1}+\sum_{2}+\sum_{3}$: Let $R>0$ be fixed. The first, \sum_{1}, corresponds to the wavelets whose supports do not intersect A_{R}, and we can forget this sum.

Next we consider the sum \sum_{2} whose coefficients satisfy $2^{j} R \leq 10 C^{\prime}$; in that case, because $2^{j} d\left(2^{-j} k, U\right)$ can be estimated from above by some constant comparable to $10 C^{\prime}$, we have that $\sum_{2} \in \dot{B}_{p, p}^{s}\left(\mathbb{R}^{n}\right)$.

Finally we consider the remaining sum \sum_{3} whose coefficients satisfy $2^{j} R \geq 10 C^{\prime}$. We decompse A_{R} into the "curved annuli" as follows:

$$
\begin{equation*}
A_{R}=\bigcup_{m \in \mathbb{Z} ; 2^{-m} \leq R}\left\{x \in \mathbb{R}^{n} ; 2^{-m-1} \leq d(x, U) \leq 2^{-m}\right\}=\bigcup_{m ; 2^{m} R \geq 1} D_{m} \tag{5}
\end{equation*}
$$

By using this decomposition (5), we can write (4) as follows:

$$
\begin{equation*}
\sum_{j ; 2^{j} R \geq 10 C^{\prime}} 2^{j \tilde{s} p} \sum_{m ; 2^{m} R \geq 1}\left(1+2^{j-m}\right)^{s^{\prime} p} \sum_{k ; k 2^{-j} \in D_{m}}\left|C_{j, k}\right|^{p}<\infty . \tag{6}
\end{equation*}
$$

The case where $m>j+L\left(C^{\prime}\right), L\left(C^{\prime}\right)$ being an integer dependent only on C^{\prime}, is negligible because $\operatorname{supp} \psi_{j, k} \cap U=\emptyset$. Therefore we obtain from (6) that

$$
\begin{align*}
& \sum_{j ; 2^{j} R \geq 10 C^{\prime}} \sum_{\substack{m ; 2^{2 m} R \geq 1 \\
m \leq j+L\left(C^{\prime}\right)}} 2^{j \tilde{s} p} 2^{(j-m) s^{\prime} p} \sum_{k ; k 2^{-j} \in D_{m}}\left|C_{j, k}\right|^{p}= \\
= & \sum_{m ; 2^{m} R \geq 1} 2^{-m s^{\prime} p} \sum_{\substack{j ; 2 j^{2} \geq 10 C^{\prime} \\
j \geq m-L\left(C^{\prime}\right)}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{k ; k 2^{-j} \in D_{m}}\left|C_{j, k}\right|^{p}<\infty . \tag{7}
\end{align*}
$$

On the other hand, the $\mathcal{O}^{(p)}$-condition that for every $R>0$,

$$
\int_{0}^{R}\left(\rho^{s^{\prime}}\left\|f_{2} \mid B_{p, p}^{s+s^{\prime}}\left(A_{\rho}\right)\right\|\right)^{p} \frac{d \rho}{\rho}<\infty
$$

follows from the condition that

$$
\begin{equation*}
\sum_{u \in \mathbb{Z} ; 2^{-u} \leq R} 2^{-u s^{\prime} p} \sum_{j ; 2^{j}}{ }_{R \geq 10 C^{\prime}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{v \in \mathbb{Z} ; v \geq u} \sum_{k ; k 2^{-j} \in D_{v}}\left|C_{j, k}\right|^{p}<\infty . \tag{8}
\end{equation*}
$$

Because supp $\psi_{j, k} \cap U=\emptyset$, and the geometric series $\sum_{u ; u \leq v} 2^{-u s^{\prime} p}$ is estimated from above by some constant comparble to $2^{-v s^{\prime} p}$ (note that $s^{\prime}<0$), this last condition (8) follows from that

$$
\begin{equation*}
\sum_{v ; 2^{v} R \geq 1} 2^{-v s^{\prime} p} \sum_{\substack{j_{2}, 2 \\ j \geq v \geq 10 C^{\prime} \\ j \geq v-L\left(C^{\prime}\right)}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{k ; k 2^{-j} \in D_{v}}\left|C_{j, k}\right|^{p}<\infty . \tag{9}
\end{equation*}
$$

It follows from (7) and (9) that the remaining sum \sum_{3} satisfies the local Besov $\mathcal{O}^{(p)}$-condition, as desired.

Conversely let us assume that $f=f_{1}+f_{2}$ satisfies the following conditions:

$$
\begin{equation*}
f_{1} \in \dot{B}_{p, p}^{s}\left(\mathbb{R}^{n}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{2} \mid B_{p, p}^{s+s^{\prime}}\left(A_{\rho}\right)\right\|=\mathcal{O}^{(p)}\left(\rho^{-s^{\prime}}\right) \tag{11}
\end{equation*}
$$

We note that if the support of the wavelet $\psi_{j, k}$ is completely included in A_{ρ}, then any function extending f_{2} outside A_{ρ} has the same wavelet coefficient $C_{j, k}$. From this remark and (11), we have that for any $R>0$,

$$
\begin{equation*}
\sum_{u ; 2^{u} R \geq 1} 2^{-u s^{\prime} p} \sum_{j \in \mathbb{Z}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{k ; k 2^{-j} \in A_{2-u}}\left|C_{j, k}\right|^{p}<\infty . \tag{12}
\end{equation*}
$$

The condition (12) is equivalent to that

$$
\sum_{j \in \mathbb{Z}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{k \in \mathbb{Z}^{n}}\left|C_{j, k}\right|^{p} \sum_{\substack{u ; 2^{u} u \geq 1 \\ 2^{u}\left(2^{-}>\left(k 2^{-j}, U\right) \leq 1\right.}} 2^{-u s^{\prime} p}<\infty .
$$

After the calculation of the geometric sum, we arrive at the following:

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} 2^{j p\left(\tilde{s}+s^{\prime}\right)} \sum_{k \in \mathbb{Z}^{n}}\left|C_{j, k}\right|^{p}\left(d\left(k 2^{-j}, U\right)^{s^{\prime} p}-R^{s^{\prime} p}\right)<\infty \tag{13}
\end{equation*}
$$

Note that $s^{\prime}<0$. Then as $R \rightarrow \infty$ in (13), we obtain that

$$
\sum_{j \in \mathbb{Z}} 2^{j \tilde{s} p} \sum_{k \in \mathbb{Z}^{n}}\left|\left(1+2^{j} d\left(k 2^{-j}, U\right)\right)^{s^{\prime}} C_{j, k}\right|^{p}<\infty
$$

that is $f_{2} \in B_{p, p}^{s, s^{\prime}}(U)$. Taking into account the assumption (10) that $f_{1} \in \dot{B}_{p, p}^{s}\left(\mathbb{R}^{n}\right)$, we conclude that $f=f_{1}+f_{2} \in B_{p, p}^{s, s^{\prime}}(U)$.

4 Two-microlocal Besov spaces with dominating mixed smoothness

Moritoh (2016) considers "two-microlocal Besov spaces with dominating mixed smoothness" as a natural extension of Jaffard-Meyer (1996) and Moritoh-Yamada (2004) by taking account of uncertainty functions given by Weyl-Hörmander calculus (BonyLerner, 1989). See [Mo] and [BL].

We treat only the case where $n=2$. Let us now consider an orthonormal wavelet basis on \mathbb{R}^{2} composed by translations and dilations of $\psi\left(x_{1}\right) \psi\left(x_{2}\right)$, where $\psi(x)$ is a one-dimensional compactly supported smooth wavelet. Let $\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ for $j \in \mathbb{Z}, k \in \mathbb{Z}$. Then every $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ will be written

$$
f(x)=\sum_{\boldsymbol{j} \in \mathbb{Z}^{2}} \sum_{\boldsymbol{k} \in \mathbb{Z}^{2}} C_{\boldsymbol{j}, \boldsymbol{k}} \psi_{j_{1}, k_{1}}\left(x_{1}\right) \psi_{j_{2}, k_{2}}\left(x_{2}\right),
$$

where $\boldsymbol{j}=\left(j_{1}, j_{2}\right)$ and $\boldsymbol{k}=\left(k_{1}, k_{2}\right)$.
Let $s_{1}, s_{2}>0$ and $1 \leq p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$. Then the homogeneous Besov space with dominating mixed smoothness $S \dot{B}_{\boldsymbol{p}, \boldsymbol{q}}^{s}\left(\mathbb{R}^{2}\right)$ is defined as the set of all tempered distributions f (modulo polynomials) satisfying

$$
\begin{aligned}
& \left\|f \mid S \dot{B}_{\boldsymbol{p}, \boldsymbol{q}}^{s}\left(\mathbb{R}^{2}\right)\right\| \\
& =\left[\sum_{j_{2} \in \mathbb{Z}}\left(\int_{\mathbb{R}}\left(\sum_{j_{1} \in \mathbb{Z}}\left(\int_{\mathbb{R}}\left|2^{j_{1} s_{1}+j_{2} s_{2}}\left(\varphi_{j_{1}} \varphi_{j_{2}} \hat{f}\right)^{\vee}\left(x_{1}, x_{2}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{q_{1}}{p_{1}}}\right)^{\frac{p_{2}}{q_{1}}} d x_{2}\right)^{\frac{q_{2}}{p_{2}}}\right]^{\frac{1}{q_{2}}}<\infty
\end{aligned}
$$

where $\boldsymbol{s}=\left(s_{1}, s_{2}\right), \boldsymbol{p}=\left(p_{1}, p_{2}\right), \boldsymbol{q}=\left(q_{1}, q_{2}\right)$, and

$$
\left(\varphi_{j_{1}} \varphi_{j_{2}} \hat{f}\right)^{\vee}\left(x_{1}, x_{2}\right)=\left(\varphi_{j_{1}}\left(\xi_{1}\right) \varphi_{j_{2}}\left(\xi_{2}\right) \hat{f}\left(\xi_{1}, \xi_{2}\right)\right)^{\vee}\left(x_{1}, x_{2}\right)
$$

See Schmeisser-Triebel [ST].

Let us recall the fact that $f \in S \dot{B}_{\boldsymbol{p}, \boldsymbol{q}}^{s}\left(\mathbb{R}^{2}\right)$ if and only if

$$
\left(\sum_{j_{2} \in \mathbb{Z}}\left(\sum_{k_{2} \in \mathbb{Z}}\left(\sum_{j_{1} \in \mathbb{Z}}\left(\sum_{k_{1} \in \mathbb{Z}}\left|2^{j_{1} \tilde{s}_{1}+j_{2} \tilde{s}_{2}} C_{\boldsymbol{j}, \boldsymbol{k}}\right|^{p_{1}}\right)^{\frac{q_{1}}{p_{1}}}\right)^{\frac{p_{2}}{q_{1}}}\right)^{\frac{q_{2}}{p_{2}}}\right)^{\frac{1}{q_{2}}}<\infty
$$

where $\tilde{s}_{i}=s_{i}+1 / 2-1 / p_{i}(i=1,2)$. See $[\mathrm{B}]$ and $[\mathrm{V}]$. We treat only the case where $\boldsymbol{p}=\boldsymbol{q}=(p, p), 1 \leq p \leq \infty$. We can define the local Besov space $S B_{p, p}^{s}\left(\mathbb{R}_{x_{1}} \times A_{\rho}\right)$ as usual, where $\mathbb{R}_{x_{1}} \times A_{\rho}$ denotes the horizontal strip $\left\{\left(x_{1}, x_{2}\right) ; x_{1} \in \mathbb{R},\left|x_{2}\right|<\rho\right\}$ for $\rho>0$. We can also give the definition of the two-microlocal Besov space with dominating mixed smoothness $S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)$ as follows:
Definition 4.1. Let $s_{1}, s_{2}>0, s_{3} \in \mathbb{R}$, and $1 \leq p \leq \infty$. Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ is said to belong to the two-microlocal Besov space with dominating mixed smoothness $S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)$ if the following two-microlocal estimate holds:

$$
\begin{aligned}
& \left\|f \mid S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)\right\| \\
& :=\left[\sum_{\boldsymbol{j} \in \mathbb{Z}^{2}} \sum_{\boldsymbol{k} \in \mathbb{Z}^{2}} 2^{\left(j_{1} \tilde{s}_{1}+j_{2} \tilde{s}_{2}\right) p}\left(1+2^{j_{1}}+\left(\left|k_{2}\right|+1\right) 2^{-j_{2}} 2^{j_{1} \vee j_{2}}\right)^{s_{3} p}\left|C_{\boldsymbol{j}, \boldsymbol{k}}\right|^{p}\right]^{\frac{1}{p}}<\infty,
\end{aligned}
$$

where $j_{1} \vee j_{2}=\max \left\{j_{1}, j_{2}\right\}$.
Our main theorem of this section is the following:
Theorem 4.2. Let $s_{i}>0, s_{3}<0, s_{i}+s_{3}>0(i=1,2)$, and $1 \leq p \leq \infty$. Then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ belongs to $S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)$ if and only if there exists a decomposition $f=f_{1}+f_{2}+f_{3}+f_{4}$ such that

$$
\begin{gathered}
f_{1} \in S \dot{B}_{p, p}^{\left(s_{1}, s_{2}\right)}\left(\mathbb{R}^{2}\right), \quad f_{2} \in S \dot{B}_{p, p}^{\left(s_{1}+s_{3}, s_{2}\right)}\left(\mathbb{R}^{2}\right) \\
f_{3} \in S \dot{B}_{p, p}^{\left(s_{1}+s_{3}, s_{2}-s_{3}\right)}\left(\mathbb{R}^{2}\right)
\end{gathered}
$$

and

$$
\left\|f_{4} \mid S B_{p, p}^{\left(s_{1}, s_{2}+s_{3}\right)}\left(\mathbb{R}_{x_{1}} \times A_{\rho}\right)\right\|=\mathcal{O}^{(p)}\left(\rho^{-s_{3}}\right)
$$

Skech of the proof: We employ the method used in the proof of Theorem 4.2. Let $f \in S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)$. Then its wavelet coefficients satisfy

$$
\begin{equation*}
\sum_{\boldsymbol{j} \in \mathbb{Z}^{2}} \sum_{\boldsymbol{k} \in \mathbb{Z}^{2}} 2^{\left(j_{1} \tilde{s}_{1}+j_{2} \tilde{s}_{2}\right) p}\left(1+2^{j_{1}}+\left(\left|k_{2}\right|+1\right) 2^{-j_{2}} 2^{j_{1} \vee j_{2}}\right)^{s_{3} p}\left|C_{\boldsymbol{j}, \boldsymbol{k}}\right|^{p}<\infty \tag{14}
\end{equation*}
$$

We decompose f as follows:

$$
f=f_{1}+f_{2}
$$

where f_{1} and f_{2} correspond to the cases where $0 \in \operatorname{supp} \psi_{j_{2}, k_{2}}$ and $0 \notin \operatorname{supp} \psi_{j_{2}, k_{2}}$, respectively.

First: We decompose f_{1} into three parts according to $\left\{j_{1}>0, j_{2}>0\right\},\left\{j_{2}<\right.$ $\left.0, j_{1}>j_{2}\right\}$, and $\left\{j_{1}<0, j_{2}>j_{1}\right\}$.

Second: We decompose f_{2} into three parts, among which the case where $2^{j_{2}} R \geq$ $10 C^{\prime}$ is the most important.

Third: We decompose this important term into three parts according to $\left\{j_{1}<\right.$ $\left.0, j_{2}<m\right\},\left\{j_{1}>0, j_{2}<j_{1}+m\right\}$, and $\left\{j_{2}>m, j_{2}>j_{1}+m\right\}$. The last term yields the function f_{4} characterized by the local Besov type condition with dominating mixed smoothness.

Summing up, the case where $2^{j_{2}} R \geq 10 C^{\prime}$ (R is a fixed positve number), $j_{2}>m$, $j_{2}>j_{1}+m\left(m>-\log _{2} R\right)$ yields the function f_{4}.

We finally remark that the case where $j_{1}>j_{2}$ and $j_{2}<0$ in the wavelet decomposition of f_{1} yields the function $f_{3} \in S \dot{B}_{p, p}^{\left(s_{1}+s_{3}, s_{2}-s_{3}\right)}\left(\mathbb{R}^{2}\right)$.

Remark 4.3. The idea of this theorem is that every f belonging to the generalized function space $S B_{p, p}^{\left(s_{1}, s_{2}\right), s_{3}}\left(\mathbb{R}_{x_{1}} \times\{0\}\right)$ has a good decomposition $f=\sum_{i=1}^{4} f_{i}$, where
the term f_{4} represents the singularities of the function f along the line $\mathbb{R}_{x_{1}}$; they satisfy the local Besov type conditions in the neighborhood of the x_{1}-axis. (As we have seen in section 2 , every $f \in B_{p, p}^{s, s^{\prime}}\left(x_{0}\right)$ has a good decomposition $f=f_{1}+f_{2}$, where the term f_{2} represents the singularities of the function f at the point x_{0}.) Our future research is a more complete theory of two-microlocal spaces using WeylHörmander calculus.

Remark 4.4. The typical examples considered by Jaffard-Meyer are an indefinitely oscillating function of the form $x^{\alpha} \sin \left(1 / x^{\beta}\right)$, and Riemann's nondifferentiable function $\sigma(x)=\sum_{n=1}^{\infty}\left(1 / n^{2}\right) \sin \left(\pi n^{2} x\right)$, where the Hölder regularity at a point x_{0} depends on the Diophintine approximation properties of x_{0}. Higher dimensional singularities will be studied in our future research.

Remark 4.5. The two-microlocal Besov spaces of product type are easily introduced and characterized. It is associated with the uncertainty functions $\lambda_{i}=1+\left|x_{i}\right|\left|\xi_{i}\right|$ ($i=1,2$); the norm of the wavelet coefficients $C_{j, k}$ is defined by means of the weighted coefficients $2^{\left(j_{1} \tilde{s}_{1}+j_{2} \tilde{s}_{2}\right)}\left(1+\left|k_{1}\right|\right)^{s_{1}^{\prime}}\left(1+\left|k_{2}\right|\right)^{s_{2}^{\prime}}\left|C_{\boldsymbol{j}, \boldsymbol{k}}\right|$.

References

[B] Bazarkhanov, D. B., Wavelet representations and equivalent normings for some function spaces of generalized mixed smoothness, (Russian), Mat. Zh. 5 (2005), no. 2 (16), 12-16.
[Bo] Bony, J.-M., Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984), 11-49, Academic Press, Boston, MA, 1986.
[BL] Bony, J.-M. and Lerner, N., Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), no. 3, 377-433.
[D] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909-996.
[H] Hörmander, L., On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197-218.
[JM] Jaffard, S. and Meyer, Y., Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 123 (1996), no. 587.
[M] Meyer, Y., Ondelettes et Opérateurs, I, Actualités Mathématiques, Hermann, Paris, 1990.
[Mo] Moritoh, S., Detection of singularities in wavelet and ridgelet analyses, RIMS Kôkyûroku Bessatsu B57 (2016), 1-13.
[MY] Moritoh, S. and Yamada, T., Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana 20 (2004), no. 1, 277-283.
[ST] Schmeisser, H.-J. and Triebel, H., Topics in Fourier analysis and function spaces, A Wiley-Interscience Publication, John Wiley \& Sons, Ltd., Chichester, 1987.
[T] Triebel, H., Theory of Function Spaces, Monographs in Mathematics 78, Birkhäuser, Basel, 1983.
[V] Vybiral, J., Function spaces with dominating mixed smoothness, Dissertationes Math. (Rozprawy Mat.) 436 (2006).

