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Abstract 

In this note, we overview the basic theory of frame analysis in Hilbert 
spaces. We also introduce some important aspects of specific frames in L信）：
a Gabor frame and a wavelet frame. 

1 Introduction 

A collection of functions {fn}nEZ in a Hilbert space 1-l is said to be a 

frame if the ineq叫 ities

AくこnEz|〈f,f砂12< B 
― ||f||2 -

(1) 

hold for all f E 1{, where A and B are positive constants. If A = B = l, 

then the condition (1) is written as 

LI〈fふ〉12= II!|| > (2) 
nEZ 

If we find such functions, by the polarization identity, 

〈f,g〉=i{Iii+ 9112 -Iii -9112 + i (Iii+ i9ll2 -Iii -i9|ド)｝, f,g €礼
we can show that any i E甘 canbe represented as a linear combination 

of {in}nEZ: 

!=L 〈fふ〉 fn• (3) 
nEZ 

This is called the frame expansion or frame decomposition of f. 
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At first glance, frames and bases have very similar concepts because 

the frame expansion (3) looks similar to an orthonormal expansion. In 

fact, a frame {fn}nEZ satisfies the Parseval identity (2) that holds usually 

when {fn}nEZ is an orthonormal basis. However, unlike an orthonormal 

expansion, (3) is a nonunique decomposition of f, which is to say that 

there are several ways to represent f with respect to {fn}nEZ・ Despite the 

convenient properties of frames, the condition (1) is weaker than that for 

orthonormal bases, which is what makes frames a universal tool in various 

scientific fields such as pure and applied mathematics and signal processing, 

both in theory and in applications. 

A frame satisfying the inequality (1) was originally introduced by Duffin 

and Schaeffer in 1952 [22] in the context of nonharmonic Fourier analysis. 

According to [12], frames did not, however, receive much attention from 

mathematicians and the related scientific community at that time, until the 

1980s. In 1980, Young re-introduced the concept of a frame in his book [35], 

though he still focused on it as a tool for nonharmonic Fourier series. 

The modern concept of a frame and its usefulness were established by 

Daubechies, Grossmann and Morlet in 1986 [16], when their breakthrough 

was to connect frames with Gabor systems and wavelets. Gabor frames and 

wavelet frames have specific structures in L刊股）， whichare generated by 
a Gabor system { e27rimb・g(・ -na)} mnr::-'l/,, g E L信） anda wavelet system m,nEZ' 
{ aml2g(am • -nb)}m,nEZ, respectively. They have played very important 
roles in both theory and applications. For more details on how frame 

theory and signal processing relate, see [1, 7, 15, 25, 26]. 

2 Frame and Basis 

We begin by highlighting some important relations between a frame and a 

basis. Other quick introductions to frames are given in [11, 24]. Through-

out this paper, we shall use the Fourier transform normalized as犀） ：＝ 
I股f(x)e―21riex dx, and <•, •> andII・ II will denote respectively the inner prod-
uct and norm on either 1l orび（罠）． Letus now give a formal definition of 
a frame. 
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Definition 2.1. Let I be a countable index set. A sequence of elements 

{fふEIin a separable Hilbert space甘 iscalled a frame for 1l if there exist 
two constants A, B > 0 such that 

Allfll2 こ LI 〈f,fn〉 |2 さ B||f|| 〗 VJ E甘 (4) 
nEI 

The constants A and B are called an upper frame bound and a lower 

frame bound, respectively. When A = B, {fn}nEI is called a tight frame; 

when A=  B = 1, {fn}nEI is called a Parseval frame. The inequality (4) is 

called the frame condition or the frame inequality. 

From the frame inequality (4), we observe some important relations 

between frames and bases as follows. 

(i) A sequence {fn}nEI in 1-l is a Bessel sequence if there exists a constant 

B > 0 such that 

LI〈fぷ〉12:::;Bll!ll2,'i/f E 1-l. 
nEI 

(ii) A Bessel sequence {fn}nEI is a frame for 1{ if there exists a constant 

A > 0 such that 

Allfll2:::; L:|〈fふ〉12, Vf E H. 
nEI 

(iii) A sequence {fふEIis a basis or Schauder basis for 1-l if there exist 
unique coefficients { Cn (f) }nEI such that 

f=区％（f)fn, ¥;/ f E 1-l. 
nEI 

(iv) A basis {fn}nEI is an orthonormal basis for 1{ if it is orthonormal, i.e., 

〈fm,f砂＝心，n,

for every m, n E I. In this case, the coefficients become en(!) 

〈f,f砂． Asa consequence, we have 

f＝こ〈fよ〉f加
nEI 
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for all f E 1-l, which is an orthonormal expansion in terms of the 

orthonormal basis {fふcI・

(v) A sequence {fn}加 1in 1-l is a Riesz basis if it is a complete sequence 

for 1-l, i.e., span{fn}nEI = 1-l, and there exist two constants A, B > 0 
such that, for all square summable sequences { cn}nEI in 1-l, 

A区le記＜
2 

:=:; II L CnfnW :=:;BL lenl2, 
nEI nEI nEI 

where constants A and Bare called Riesz bounds. If {fn}底 Iis a Riesz 

basis, it is called an exact frame and there exists a unique sequence 

{gn}灰 1in 1l such that 

f＝ど〈f,g砂fか
nEI 

for all f E H. The sequence {gn}nEI is also a Riesz basis for甘
and is called a dual Riesz basis. When {gn}nEI = {fn}nEI, it is an 
orthonormal basis. A frame that is not a Riesz basis is called an 

overcomplete frame or redundant frame. 

From these observations, all orthonormal bases, Riesz bases, and frames 

are Bessel sequences. We also see that every orthonormal basis is a Riesz 

basis and a frame. However, every frame is not a Riesz basis (or orthonor-

mal basis). A frame {fn}nEI is a Riesz basis if and only if, for all square 

summable sequences { cn}nEI, 

LCふ＝ 0 ⇒ Cn = 0,'in EI. 
nEI 

This means that the frame elements {fn}nEI might be linearly depen-

dent. This is equivalent to the statement that frame coefficients { cn}nEI = 
{〈f,fn〉}nEIare not necessarily uniquely determined and, as we mentioned 
before, the representation 

f＝L Cnfn 
nEI 
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is not necessarily unique for every f E H. They are unique if and only if 
{fふEIis a Riesz basis. 
Below, we show simple examples of frames and bases, including a finite-

dimensional case. 

Example 2.2. Let b > 0. Consider a set of functions {fn(x) = e21ribnx}疇

(i) If b = 1, {fn}nEZ is an orthonormal basis forび([O,l]). 

(ii) If b < 1, {fn}nEZ is not a Riesz basis forび([O,1]). 

(iii) If b ~ 1, {fn}nEZ is a tight frame for L2([0, 1]). 

Example 2.3 (Harmonic frame in finite dimensions). Let m 2': n. Consider 
a set of vectors ｛叫f~1 C en defined by 

1 
Uk= ~ (1, e21rik/m,..., e21rik(n-l)/m T 

石'
, e21rik(n-l)/m).L. 

(i) If m > n, {u虞闊 isa tight frame for C匹

(ii) If m = n, {u虞冒 isan orthonormal basis for C匹

A frame {fn}nEI comprising elements equal in norm, llfnll = c for all 

n E I, is called an equal norm frame. If c = 1, it is called a unit norm frame. 

Thus, the above examples are equal norm frames, and every orthonormal 

basis is a unit norm frame. 

3 Frame Operator 

In order to develop more insight on frame theory, we revisit the frame 

ineq叫 ity(4) from the point of view of operator theory in 1-l. Let 

叩）：＝｛m ＝ ｛xn}nEI : %E  C，ご戸<00}
be a space for square summable sequences in 1-l. For x = {xn}nEI, y = 

｛珈｝nEJE佐(I),we define an inner product and its norm by 

〈x,y〉炉(I)：＝ど％翫 llx||『（I)：=《:五二．
nEI 
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Let {fn}nEI be a frame for 1l. Consider the analysis or decomposition 

operator 

C: 1-l→佐(I), Cf:=｛〈f,f砂｝nEI,

which is also called the pre-frame operator. We can say that a sequence 

{fn}nEI is a Bessel sequence if the analysis operator is bounded, i.e., there 

exists a constant B > 0 such that 

IICJ||£2(])さBllfll,

for all f E 1-l. This leads to the second inequality of the frame condition 

(4): 

I:1〈fよ〉12::; BIIJll2-
nEI 

Consequently, a Bessel sequence {f n}筵 1is a frame when the analysis op-

era tor is bounded below as in the first inequality of (4): 

AIIJll2 ~区 I 〈fぷ〉 12.
nEI 

Then we define the synthesis operator or reconstruction operator as 

ぴ：佐(I)→1l, ぴ{Cn}nEI:＝Lcnfn-
nEI 

This is an adjoint operator for C :社→炉(I),because for x = { cn}nEI E 
叩） andy E 1i, we have 

〈C*x,y〉=〈x,Cy〉炉(I)

=〈｛Cn}nEI,｛〈Y,fn〉}nEI〉炉(I)

=>%<y,J砂＝信；％fn,Y〉・
The composition of these two operators S = C*C :社→社 iscalled 

the frame operator of a given frame {fふEIfor 1i and is defined by 

Sf:＝びCf=L〈f,f砂fn・
nEI 

The frame operator S : 1i→甘 hasthe following properties: 
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(i) S is bounded. 

(ii) S is positive, as for a given x E 1--l, 

〈Sx,x〉=〈C℃x,x〉=〈Cx,Cx〉炉(I)~ 0. 

(iii) Sis self-adjoint, i.e., S = S*. From the definition of a frame operator, 

we have 

＝ゞ（C*C)*= C*(C*)* = C℃ =S. 

In general, if S is positive, then we have 〈Sx,x〉€股 for all x E 1--l, 

which yields 

〈Sx,x〉=〈Sx,x〉=〈x,S*x〉=〈S*x,x〉.

(iv) S : 1-l→1--l is injective (ker(S) = { x E 1--l : Sx = O} = {O}) and also 
surjective (R(S) = {Sx: x E 1--l} = 1--l). Thus, S: 1-l→1--l is bijective 
and there exists an inverse operator s-1. 

Using the frame operator S, we have 

〈Sf,f〉=区|〈fふ〉12.
nEI 

Thus, we can rewrite the frame condition (4) as 

Allfll2 s:〈Sf,f〉s:Bllfll2, 
or 

AI:::; S:::; BI, 

where I denotes the identity operator on 1i. Since S is self-adjoint and 

invertible, we obtain 

J = s(s-1 f) ＝こ〈S―1fぷ〉 fn ＝こ〈f,S—1fn〉 fn·
nEI nEI 

Similarly, using f = s-1sJ, we obtain 

f = s —1(Sf) ~ S―l（こ〈f,f砂f,.)＝ご〈f,f砂S―1f,,. 
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Thus, we have the frame expansion 

f ＝区〈f,S—1fn〉fか
nEI 

or 

f＝こ〈f,f砂S―1fn,
nEI 

(5) 

(6) 

for all f E H. A frame {S—加｝nEI that satisfies (5) and (6) is called a 
canonical dual frame for 1i with frame bounds 1/ Band 1/A. 

If {fn}nEI is a frame but not_a Riesz basis, i.e., an overcomplete frame, 

then there exist other frames {f n}nEI # { s-1 f n lnEI such that 

f＝こ〈f，J砂fn＝こ〈f,f砂J加 (7) 
nEI nEI 

for all f E 1-l. In this case, {fn}nEI is called a dual frame of {fn}nEI・ In 
general, it is known that there exist many dual frames for a given frame 

{fn}nEI in 1-l besides its canonical dual frame. For a canonical d叫 frame,
it is not always easy to find s-1, but s-1 has a unique property that its 

frame coefficients{〈f,s-lf砂｝nEIin the representation of (5) have the least 
炉norm.

For the expansion formulas as in (5), (6) and (7), the frame coefficients 

are calculated by the inner product on 1-l. This property is useful, but 

inverting the frame operator is not easy in the infinite-dimensional case; 

this difficulty of inverting the frame operator is the fundamental prob-

lem with frames. One way to avoid this problem is to find a dual frame 

{fn}nEI -I-{ s-1 f n tEI that satisfies (7). Another way is to consider a 
tight frame. If a frame is tight, then fn = A-1丘 whichgives the frame 
expans10n 

1 
J=-3i区〈fぷ〉fn, VJ E 1-l. 
nEI 

4 Gabor System 

In the rest of this paper, we introduce two applications of frames in L刊股）：
a Gabor frame and a wavelet frame. Let us first define three types of 
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unitary operators on L信） thatare closely related to these frames. 

Definition 4.1. The following are three types of bounded linear operators 

onび（民）：

(i) For b E股， atranslation operator is defined by 

(Tけ）（x):= f(x -b). 

(ii) For~ E股， amodulation operator is defined by 

(M, f)(x)：＝凸町(x).

(iii) For a E股+,adilation operator is defined by 

(Da J)(x) := a112 f(ax). 

We now define a set of functions, called a Gabor system, that is gener-

ated by translations and modulations of a fixed function g EL憫）：

Q(g, a, b) := { MmbTnag(x) = e27rimbxg(x —叫｝m,nEZ' 

where a, b > 0. The set { (na, mb) }m,nEZ C配 iscalled the time-frequency 
lattice and { MmbTna9 }m,nEZ are called the Gabor atoms. 

Definition 4.2. Let a, b > 0 and g E L信） begiven. A Gabor system 
Q(g, a, b) is called a Gabor frame for L囁） ifa frame condition holds. 
Namely, there exist constants A, B > 0 such that 

Allfll2 ::; L I〈f,MmbTna9〉|2::;Bllfll2, 'if EL町股）．
m,nEZ 

A Gabor frame is also called a Weyl-Heisenberg frame. As in the general 

frame theory, the analysis operator C9 : L信） →炉(Zりassociatedwith 
the Gabor system Q(g, a, b) is defined by 

C』:=｛〈f,MmbTna9〉}m,nEZ・
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Similarly, we define the synthesis operator c;：炉（匹） → L嘔） by

勾｛Cm,n}m,nEZ:=LCm,nMmbTna9 • 
m,nEZ 

The frame operator S : L嘔） →び（民） isthen defined by 

Sf :=cmf＝区〈f,MmbTna9〉MmbTna9・
n,mEZ 

A system g (g, a, b) is a frame forび（艮） ifand only if S is a bounded, 
self-adjoint, bijective linear map ofび（艮） ontoitself. 

or 

The frame expansion associated with a Gabor frame can be written as 

f = s(s―lf)＝区〈S―1f,MmbTna9〉MmbTna9
m,nEZ 

=L〈f,S―1叫 Tna9〉MmbTna9,
(8) 

m,nEZ 

f = S―1 (Sf)~ S―1 (mごz〈f,MmbTnag〉MmbTnag)(9)
＝区〈f,MmbTna9〉S―1MmbTna9・
m,nEZ 

Note that the operators Sand MmbTna commute for all m, n E Z, i.e., 

S (MmbTnaf) = Mmbに (Sf). (10) 

We see that the operators s-1 and MmbTna commute as well in a similar 

manner. Thus, we have the following theorem. 

Theorem 4.3 (Reconstruction formula for Gabor frame). Let a, b > 0. 
Suppose that Q (g, a, b) is a Gabor frame forび（恥） withframe bounds A, B, 
and Q(S-1g, a, b) is the canonical dual frame for L嘔） withframe bounds 
1/ B, l/A. Then, 

f=区〈f,Mmbに S―lg〉MmbTna9
m,nEZ 

=L 〈f,Mmbにg〉 MmbTnaS—lg,
m,nEZ 

(11) 

(12) 
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for all f EL嘔）．

We next make a few remarks on Theorem 4.3. We have two types of 

the canonical d叫 frames{ MmbTnaS-1g }m,nEZ and { 5-l MmbTna9 }m,nEZ・ 
While the canonical dual frame { MmbTnaS-1g }m,nEZ is obviously a Gabor 

frame, the canonical dual frame { s-1 MmbTna9 }m,nEZ has also the Gabor 

structure due to the commutator relation (10), which is a nice property of 

a Gabor frame. The frame expansions with Gabor frames (11) and (12) 
are efficient compared to (8) and (9) because we only need to consider the 

inverse operator s-1 of g instead of a whole set { MmbTna9 }m,nEZ・ On the 

other hand, as in the general theory of frame analysis, it is convenient to 

use a dual Gabor frame Q(g, a, b) with g EL信） suchthat 

f＝区〈f,MmbTna9〉MmbTna9
m,nEZ 

=L〈f,MmbTnag〉MmbTna9,
(13) 

m,nEZ 

for all f EL信）．
Duality conditions for a pair of Gabor systems that guarantee that the 

dual frame has the Gabor structure were obtained by Ron and Shen [30,31]. 

Theorem 4.4 (Ron and Shen). Given a, b > 0 and g, g E L囁）， two
Bessel sequences Q(g, a, b) and Q(g, a, b) are a pair of dual Gabor frames if 

and only if, for all n E Z, 

Lg(x -ka -n/b) g(x -ka)＝砿，o, a.e. x E [O, a]. 
kEZ 

As is clear from the history of the development of Gabor systems, a 

Gabor frame is closely related to time-frequency analysis and signal pro-

cessing. The Gabor atoms { MmbTna9 }m,nEZ are used for the short-time 

Fourier transform (STFT) defined by 

Vgf（パ）：＝〈f,M心〉＝J f(t)g(t-X)e―21rit(dt. 
恥
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This gives a time-frequency representation off into ½』(x，~) on記 For
g,g EL刊股） suchthat〈g,g〉=/-0, we have the following inversion formula: 

f(t) = ~ J 12 V9f(x，い）M心 (t)dxdふ
〈g,g〉即

(14) 

which is called the inverse STFT. By sampling the STFT on the lattice 

aZ x bZ and using its coefficients {Vgf (ma, nb) }m,nEZ E炉（四）， wesee that 
the frame expansion in terms of a Gabor frame (13) is the discretization 

of the inverse STFT (14). 

Let us now consider a specific function g Eび（艮） fora Gabor frame. 
Let g(x) = X[o,i](x) and O < a, b:::; 1; then the Gabor system 

{ e21rimbxX[o,1](x -na)} m,nEZ 

forms a tight frame for L信）． Ifa = b = l, the system becomes an 
orthonormal basis for L信）． However,for the more general case where g E 
L囁） isa continuous function with compact support, the associated Gabor 
system Q(g, a, b) cannot form an orthonormal basis and Riesz basis. The 

condition determining whether Gabor systems are Gabor frames involves 

the product ab. 

Theorem 4.5 (Density Theorem). Let g E L嘔） anda, b > 0 be given. 
Then the following statements hold: 

(i) I囚 (g,a, b) is a frame forび（罠）， thenO < ab :::; 1. 

(ii) If ab> l, then Q(g, a, b) is incomplete inび（股）．

(iii) If Q (g, a, b) is a frame for L打艮） withab= l, then Q(g, a, b) is a Riesz 
basis. 

(iv) If Q(g, a, b) is a tight frame for L2(囮） withab= l and 11911 = 1, then 
Q(g,a,b) i is an orthonormal basis. 

The value 1/(ab) is called the redundancy of a Gabor frame. The-

orem 4.5 shows that O < ab =::; 1 is a necessary condition for Q(g, a, b) 
to be a frame forび（罠）． Forexample, the Gabor system Q(g, a, b) with 
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g(x) = e―x2 is a frame if and only if O < ab < 1. If ab ~ 1, Theorem 4.5 
(iii) indicates that Q(e―x2, a, b) should form a Riesz basis. However, this is 

not possible due to the following restriction on a Gabor frame. 

Theorem 4.6 (The Balian-Low Theorem). Let g EL囁） anda> 0. If 

Q(g, a, 1/a) is an orthonormal basis forび（罠）， then

(J恥|xl2lg(x)l2dx) (l股ltl2l§(t)l2dt) = 00  
The Balian-Low Theorem claims that if a Gabor frame is a Riesz basis 

for L囁）， thenthe Heisenberg product becomes infinite. This means that 

the function g E L信） cannotbe well localized in both the time and the 
frequency domains. To overcome the Balian-Low theorem, a Wilson basis 

was proposed [19]. 

We mention that it is not always possible to generate a Gabor frame 

with O < ab ~ l. The combination of (a, b) E記 isdifferent depending on 
the functions. This is known as the frame set problem for Gabor frames. 

The frame set of a function g E L刊戦） isdefined by 

眉）：＝｛（a,b) E記： Q(g,a, b) is a frame for L暉）｝．

Example 4. 7. Examples of the frame set for Gabor frames. 

(i) g E {e―x2, 1/ cosh(1rx), e―x|}⇒F(g) = {(a,b) E記： ab<l} {23}. 

(ii) g(x) = e―”X[o,+(X)）（x)⇒F(g) = { (a, b) E 記： ab~ l}. 

(iii) g(x) = X[o,c)(x), c > 0⇒see {14} (abc problem). 

(iv) g(x) = max(l -lxl, 0)⇒see {29}. 

Figure 4 shows the frame set for a Gabor system Q(g, a, b) with g(x) = 
e-x2. This frame set is very simple, but those for (iii) and (iv) in Exam-

ple 4. 7 have very complicated structures. More details on these results, 

including a well-written tutorial for Gabor analysis, are given in [29]. 
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0.5 1.0 1.5 2.0 2.5 3.0 

a 

Figure 1: 汽g)= { (a, b) E記： ab<l} with g(x) = e-x2. 

5 Wavelet System 

A wavelet system is very similar to a Gabor system. A wavelet is a 

function心EL露） andit has dilation and translation parameters a > 
O,b E股definedby 

1 x -b 
加，b(x)＝砂喜(x)＝冥心 (a)．

After discretization of the point (a, b) to { (a―}, kba―J) h,kEZ, we define a 
wavelet system that has the form 

w（心，a,b) := { Tkba→い(x)= DajTi醐 (x)= aj/2心(ajx -kb) } j,kEZ, 

where a > l, b > 0. Given心E£2(罠）， ifa wavelet system W（ゆ，a,b) is a 
frame for L刊股）， thenwe call it a wavelet frame. In this note, we consider 
the case of the dyadic wavelet system defined by 

{D汀砂｝j,kEZ= { 2j /2心(2位ー k)} , 
j,kEZ 

which has been well investigated in the study of discrete wavelet theory. 

If a wavelet frame forび（戦） witha frame operator S : L打罠） →び（罠）
is given, we can represent the frame expansions associated with a wavelet 
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frame as 

f＝区〈f,S―1凡 T砂〉凡T砂
j,kEZ 

=L 〈f,D2jい〉s—1応T砂，
j,kEZ 

for all f EL直）． UnlikeGabor frames, it is possible for a wavelet frame 
to be a Riesz basis and even an orthonormal basis, both of which are 

smooth, continuous functions and have compact support. However, the 

nice feature of Gabor frames that the canonical dual frame always has a 

Gabor structure is not maintained for wavelet frames. This is because a 

wavelet frame operator S does not commute with both the dilation and 

translation operators, i.e., for the canonical dual wavelet frame, we have 

s—1(D23T砂）＝几(S―1T砂）ヂ D2出(S― l心）．

As a result, the canonical dual frame is not necessarily a wavelet system 

[9, 17]. This means that the canonical dual frame for a wavelet frame 

may not be generated by dilations and translations of a single function. 

Moreover, some of the important properties of wavelets such as smoothness 

and compact support might be loosened for the canonical dual wavelet 

frame. 

Therefore, we are led to consider a tight frame or a pair of dual frames. 

We introduce some conditions, obtained by Chui and Shi [10], for con-

structing these from wavelet systems in the case of multiwavelet frames. 

Definition 5.1. Consider a collection of functions｛卯｝『＝1CL順）． Ifa 
system { D2i Ti凸｝］，K叫＝1，…，nforms a wavelet frame forび（股）， wecall it a 
multiwavelet frame. 

Note that a multiwavelet frame is often called simply a wavelet frame. 

We therefore will not distinguish between them here. 

Theorem 5.2 (Chui and Shi). Let仇，．．．，卯 EL憫）． Awavelet system 

{D2iTk切｝］，kEZ,£=1,…，nforms a tight wavelet frame forび（股） witha frame 
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bound A if and only if 

n 
2 

どと切(2梵）＝A,a.e. (E罠，
£=1 jEZ 

n oo 

ここ切(2jt)切(2ぽ＋2k+ 1)) = 0, k E Z, a.e. t E艮．
£=1 j=O 

For a fixed £, if { D』占｝j,kEZis a tight wavelet frame with a frame 

bound A = l and||切||=1, then { D2jTi凸｝j,kEZis an orthonormal wavelet 
that forms an orthonormal basis for L信）． Waveletframes for higher 
dimensions, such as curvelets [4-6], shearlets [27] and contourlets [20], are 
tight frames forび（配） withframe bounds A = B = l. We remark that 
there have been significant developments in wavelet frames for L％配） over
the last two decades (see [21] for more details). 

A result for ad叫 framesimilar to Theorem 5.2 is given below, namely 

the duality condition for a wavelet frame that corresponds to Theorem 4.4 

for a Gabor frame. 

Theorem 5.3 (Chui and Shi). Let店，．．．，卯 EL信） and咋．．．，叫 E

び（艮）． Twowavelet systems { D汀凸｝］，kE勾＝1,…，nand { D2jTi凸｝］，kEZ,f=l,…，n
are a pair of dual wavelet frames for L囁） ifand only if 

tI:切(2JC)嘉(2梵）＝ 1,a.e. ~ E恥
f=l jEZ 

n oo 

とこ^
2 

切 (2Jく）卯 (2パ~+2k+l)) =0, kEZ a.e. ~ E恥
f=l j=O 

Dual wavelet frames are also called sibling frames or bi-frames. It is 

possible to construct a pair of dual wavelet frames directly from Gabor 

frames [13]. 

In the case of a wavelet frame, there is no analog to the Balian-Low 

theorem. For systematic constructions of a wavelet frame, two standard 

methods are available. One way is to use a frame multiresolution analysis 

(FMRA), as introduced by Benedetto and Li [3]. 
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Definition 5.4. A frame multiresolution analysis consists of nested se-

quences of a closed subspace {½}jEZ ofび（罠）， forwhich the following 
hold. 

(i) Vj C叫 1,'ijE Z. 

(ii) o;;化＝ザ（政） andnjEZ ½ = {O}. 

(iii) VJ= D2j Vo, ¥/j E Z. 

(iv) f E Vo⇒九fE Vo,'ik E Z. 

(v) There exists a function <p E Vo such that {Ti印｝kEZis a frame for Vo. 

A MRA as originally defined for constructing orthonormal wavelets 

requires the existence of a function <p E Vo such that {Ti印｝kEZis an or-
thonormal basis for Vo. The FMRA provides a more relaxed condition, 
needing¢ E Vo to be a frame for Vo instead of an orthonormal basis. Once 
we find such a frame, we can then construct a wavelet frame by using a 

strategy similar to that for a MRA. 

We next introduce the second way for constructing a wavelet frame, 

called the unitary extension principle, which was proposed by Ron and 

Shen [32, 33]. 

Theorem 5.5 (Unitary Extension Principle). Let心oEL憚）． Assume
that the following two conditions hold. 

1. There exists a bounded measurable 1-periodic function R。EL00('Ir) 
such that 

い。(~) = Ho(~/2) ~。（~/2).

2. limい0 伽（~) = 1. 

Let H1,..., Hn E L00('TI'）and define叫，．．．，叫 Eび(IR)by 

ぃ£(＜） ＝ H八~/2) 1/J。〖／2), R = 1,..., n. 
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The wavelet system { D』占｝jEZ,kEZ,£=1,…，nforms a tight wavelet frame for 

び（股） witha frame bound A = 1 if and only if 

ど鱈）ド＝ 1,
f!=l 

こ犀）H心＋ 1／2)＝0,
f!=l 

for a.e. ~ E'II'. 

The unitary extension principle can be extended to multiple dimensions. 

For example, in the case ofび（配）， spline-basedwavelet frames [2,28,32,34] 
have been proposed. There is also a more flexible concept for constructing 

wavelet frames, called the oblique extension principle, available that was 

proposed by Chui et al. [8] and Daubechies et al. [18] independently. 

6 Concluding Remarks 

In this note, we surveyed the general frame theory and two examples of 

frames in L％恨）： aGabor frame and a wavelet frame. As we have seen, a 
frame is considered to be a generalization of a basis, and therefore is used in 

both theory and applications in various scientific fields, including applied 

harmonic analysis and signal processing. A Gabor frame and a wavelet 

frame have been studied in detail not only for L嘔） butalso for more 
general function spaces, such as modulation spaces in the Gabor case and 

Sobolev spaces, Besov spaces, and Triebel-Lizorkin spaces in the wavelet 

case. 
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