Kazama-Suzuki Coset Vertex Superalgebras at Admissible Levels

Ryo SATO (joint work with Shinji Koshida)
Institute of Mathematics, Academia Sinica

1 Introduction

1.1 Verlinde Formula for Irrational Theories

One of the most fundamental problems in the study of two-dimensional conformal field theories (CFTs) is to compute fusion rules among primary fields. Each model of CFT specifies a vertex operator superalgebra as its chiral symmetry algebra. Mathematically, primary fields in a given model are identified with highest weight modules of the vertex operator superalgebra and their fusion rules are defined by the corresponding 3-point conformal blocks on the genus zero curve $\mathbf{P}^{1}(\mathbb{C})$ (see e.g. [Zhu94]). When the vertex operator superalgebra satisfies certain good conditions (rationality and C_{2}-cofiniteness), fusion rules can be computed in terms of the modular S-matrix via the Verlinde formula, which is originally proposed by E. Verlinde in [Ver88] and proved by Y.-Z. Huang in [Hua08]. Such models are referred to as rational CFTs and have been extensively studied in various contexts.

Recently, a certain class of irrational chiral CFTs turns out to play an important role in the conjectural $2 \mathrm{~d} / 4 \mathrm{~d}$ correspondence firstly investigated by C. Beem et. al. in $\left[\mathrm{BLL}^{+} 15\right]$. One of the best studied irrational chiral CFTs is the Wess-Zumino-NovikovWitten (WZNW) model associated with the simple affine vertex operator algebra $L_{k}\left(\mathfrak{s l}_{2}\right)$, where k is a special rational number known as a Kac-Wakimoto admissible level (see [KW88] for detail). D. Adamović and A. Milas proved in [AM95] that irreducible highest weight $L_{k}\left(\mathfrak{s l}_{2}\right)$-modules coincide with the Kac-Wakimoto admissible highest weight modules of the affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ of level k. Based on the celebrated modular invariance property of the Kac-Wakimoto characters, one can define the corresponding modular S matrix. However, there are no known general results about relationships between fusion rules and the modular S-matrix. In fact, a naive application of the Verlinde formula computes negative fusion rules from the modular S-matrix. To fix this failure, T. Creutzig and D. Ridout in [CR13] computed an extended modular S-data and proposed a conjectural Verlinde formula. We note that this conjectural Verlinde formula is verified only for ordinary ($=\mathfrak{s l}_{2}$-integrable) highest weight $L_{k}\left(\mathfrak{s l}_{2}\right)$-modules by T. Creutzig, Y.-Z. Huang, and J. Yang in [CHY18].

1.2 Our Result

In this note we consider a super-analog of Creutzig-Ridout's conjecture. More precisely, we construct the $\mathcal{N}=2$ superconformal vertex operator superalgebra $\mathbb{L}_{c(k)}$ from the affine vertex operator algebra $L_{k}\left(\mathfrak{s l}_{2}\right)$ by the Kazama-Suzuki supersymmetric coset construction and formulate an analogous Verlinde formula for $\mathbb{L}_{c(k)}$. Based on the modular S-data associated with irreducible highest weight $\mathbb{L}_{c(k)}$-modules at a general Kac-Wakimoto admissible level

$$
k=-2+\frac{p}{p^{\prime}} \quad\left(\left(p, p^{\prime}\right) \in \mathbb{Z}_{\geq 2} \times \mathbb{Z}_{\geq 2}: \text { coprime }\right)
$$

computed by the author in [Sat19], we obtain the following result:
Theorem 1.1. Fusion rules among irreducible highest weight $\mathbb{L}_{c\left(-\frac{1}{2}\right)}$-modules are correctly computed from the modular S-data in [Sat19] via the conjectural Verlinde formula.

We divide our computation of fusion rules into two steps. First, we estimate the fusion rules from above by using the Frenkel-Zhu theory. Roughly speaking, the Zhu algebra associated to a vertex operator superalgebra V is an associative superalgebra $\mathrm{Zhu}(V)$ generated by the degree preserving adjoint actions of V. More generally, in [FZ92], I. Frenkel and Y. Zhu constructed Zhu (V)-bimodules from highest weight V-modules. Frenkel-Zhu's bimodules have nice applications to the computation of fusion rules. For more details of the Frenkel-Zhu theory, we refer the reader to [KW94, DLM98a, DLM98b, Li99, DZ06].

Second, we estimate the fusion rules from below by using a certain free field realization. By using the oscillator representation of the affine Lie algebra $\widehat{\mathfrak{s l}}_{2}=\widehat{\mathfrak{s p}}_{2}$ of level $k=-\frac{1}{2}$, we identify the simple vertex operator algebra $L_{-\frac{1}{2}}\left(\mathfrak{S l}_{2}\right)$ with a \mathbb{Z}_{2}-orbifold of the free bosonic $\beta \gamma$-system. Then, by the Kazama-Suzuki coset construction, we realize the simple vertex operator superalgebra $\mathbb{L}_{c\left(-\frac{1}{2}\right)}$ as a Heisenberg coset of a \mathbb{Z}_{2}-orbifold of the tensor product of the $\beta \gamma$-system and the free fermionic $b c$-system. This construction enables us to find non-trivial intertwining operators (cf. [Zhu94, Proposition 7.4]) and completes our computation.

The detail of the proof will appear soon in a substantially revised version of our earlier draft [KS18].

Acknowledgement. The author would like to thank the organizer of Recent Advances in Combinatorial Representation Theory, online, October 5-8, 2020.

2 Superconformal Vertex Algebra

2.1 Notation

We first recall the vertex operator superalgebra associated with the two-dimensional $\mathcal{N}=2$ superconformal algebra of central charge $c \in \mathbb{C}$.

Proposition 2.1 ([Ada99]). There exists a unique vertex superalgebra \mathbb{V}^{c} which is strongly generated by \mathbb{Z}_{2}-homogeneous fields $\mathbf{L}(z), \mathbf{J}(z), \mathbf{G}^{+}(z), \mathbf{G}^{-}(z)$ with parity

$$
\operatorname{deg}(\mathbf{L}(z))=\operatorname{deg}(\mathbf{J}(z))=\overline{0}, \quad \operatorname{deg}\left(\mathbf{G}^{ \pm}(z)\right)=\overline{1}
$$

only subject to the following operator product expansions:

$$
\begin{aligned}
& \mathbf{L}(z) \mathbf{L}(w) \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 \mathbf{L}(w)}{(z-w)^{2}}+\frac{\partial_{w} \mathbf{L}(w)}{z-w}, \\
& \mathbf{L}(z) \mathbf{G}^{ \pm}(w) \sim \frac{\frac{3}{2} \mathbf{G}^{ \pm}(w)}{(z-w)^{2}}+\frac{\partial_{w} \mathbf{G}^{ \pm}(w)}{z-w}, \quad \mathbf{L}(z) \mathbf{J}(w) \sim \frac{\mathbf{J}(w)}{(z-w)^{2}}+\frac{\partial_{w} \mathbf{J}(w)}{z-w}, \\
& \mathbf{J}(z) \mathbf{J}(w) \sim \frac{c / 3}{(z-w)^{2}}, \quad \mathbf{J}(z) \mathbf{G}^{ \pm}(w) \sim \frac{ \pm \mathbf{G}^{ \pm}(w)}{z-w}, \\
& \mathbf{G}^{ \pm}(z) \mathbf{G}^{ \pm}(w) \sim \frac{2 c / 3}{(z-w)^{3}}+\frac{2 \mathbf{L}(w)+2 \mathbf{J}(w)}{(z-w)^{2}}+\frac{\partial_{w} \mathbf{J}(w)}{z-w} .
\end{aligned}
$$

In addition, the Virasoro field $\mathbf{L}(z)$ gives rise to a vertex operator superalgebra structure of central charge c on \mathbb{V}^{c}.

Remark 2.2. Every \mathbb{V}^{c}-module admits a natural action of the Neveu-Schwarz sector of the $\mathcal{N}=2$ superconformal algebra generated by

$$
L_{n}:=\mathbf{L}_{(n+1)}, \quad G_{r}^{ \pm}:=\mathbf{G}_{\left(r+\frac{1}{2}\right)}^{ \pm}, \quad J_{n}:=\mathbf{J}_{(n)},
$$

where

$$
A_{(n)}:=\oint z^{n} A(z) \frac{\mathrm{d} z}{2 \pi \sqrt{-1}}
$$

The Verma module $\mathcal{M}_{h, j, c}$ of highest weight $(h, j, c) \in \mathbb{C}^{3}$ is a \mathbb{Z}_{2}-graded \mathbb{V}^{c}-module freely generated by an even vector $|h, j, c\rangle$ subject to the relations

$$
\begin{aligned}
& L_{n}|h, j, c\rangle=G_{r}^{ \pm}|h, j, c\rangle=J_{n}|h, j, c\rangle:=0 \quad(n, r>0), \\
& L_{0}|h, j, c\rangle:=h|h, j, c\rangle, \quad J_{0}|h, j, c\rangle:=j|h, j, c\rangle, \quad C|h, j, c\rangle:=c|h, j, c\rangle .
\end{aligned}
$$

We write $\mathcal{L}_{h, j, c}$ for the irreducible quotient \mathbb{V}^{c}-module of $\mathcal{M}_{h, j, c}$.

2.2 Oscillator Realization

Let $V^{k}\left(\mathfrak{s l}_{2}\right)$ be the universal affine vertex algebra generated by $\mathbf{E}, \mathbf{H}, \mathbf{F}$ and π_{h}^{k} its Heisenberg vertex subalgebra generated by \mathbf{H}. Let $\langle\beta \gamma\rangle$ and $\langle b c\rangle$ denote the free bosonic $\beta \gamma$ system and the free fermionic bc-system, respectively. By using the Kazama-Suzuki coset construction (see e.g. [Ada99])

$$
\mathbb{V}^{\frac{3 k}{k+2}} \otimes \pi_{\mathfrak{h}}^{k+2} \rightarrow V^{k}\left(\mathfrak{s l}_{2}\right) \otimes\langle b c\rangle,
$$

which is uniquely determined by

$$
\mathbf{G}^{+} \otimes \mathbf{1} \mapsto \sqrt{\frac{2}{k+2}} \mathbf{E} \otimes b, \quad \mathbf{G}^{-} \otimes \mathbf{1} \mapsto \sqrt{\frac{2}{k+2}} \mathbf{F} \otimes c, \quad \mathbf{1} \otimes \mathbf{H} \mapsto \mathbf{H} \otimes \mathbf{1}+\mathbf{1} \otimes 2 b_{(-1)} c
$$

and the oscillator representation (see e.g. [FF85])

$$
V^{-\frac{1}{2}}\left(\mathfrak{s l}_{2}\right) \rightarrow\langle\beta \gamma\rangle ; \quad \mathbf{E} \mapsto-\beta_{(-1)} \beta, \quad \mathbf{H} \mapsto-\beta_{(-1)} \gamma, \quad \mathbf{F} \mapsto \gamma_{(-1)} \gamma,
$$

we construct a free field realization of \mathbb{V}^{-1} as follows.

Lemma 2.3. There exist a unique vertex algebra homomorphism

$$
\begin{equation*}
\mathbb{V}^{-1} \otimes \pi_{\mathfrak{h}}^{\frac{3}{2}} \rightarrow\langle\beta \gamma\rangle \otimes\langle b c\rangle \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{aligned}
& \mathbf{G}^{+} \otimes \mathbf{1} \mapsto-\frac{1}{\sqrt{3}} \beta_{(-1)} \beta \otimes b, \\
& \mathbf{G}^{-} \otimes \mathbf{1} \mapsto \frac{1}{\sqrt{3}} \gamma_{(-1)} \gamma \otimes c \\
& \mathbf{1} \otimes \mathbf{H} \mapsto \phi^{-} \otimes \mathbf{1}+\mathbf{1} \otimes 2 \phi^{+},
\end{aligned}
$$

where $\phi^{-}:=-\beta_{(-1)} \gamma$ and $\phi^{+}:=b_{(-1)} c$.
Let \mathbb{L}_{c} denote the simple quotient vertex operator superalgebra of \mathbb{V}^{c}.
Corollary 2.4. The map (2.1) induces a vertex superalgebra isomorphism

$$
\mathbb{L}_{-1} \simeq C:=\operatorname{Com}\left(\pi_{h}^{\frac{3}{2}},\langle\beta \gamma\rangle \otimes\langle b c\rangle\right)
$$

Proof. One can verify that the induced homomorphism $\mathbb{V}^{-1} \rightarrow C$ is surjective by comparing their graded dimensions. Since $\pi_{h}^{\frac{3}{2}}$ and $\langle\beta \gamma\rangle \otimes\langle b c\rangle$ are simple, so is C (see e.g. [ACKL17, Lemma 2.1]). This completes the proof.

2.3 Spectral Flow Twist

In this subsection V denotes $\langle\beta \gamma\rangle$ or \mathbb{L}_{c} and \mathbf{A} denotes ϕ^{-}or \mathbf{J}, respectively. Since $A_{0}:=\mathbf{A}_{(0)}$ acts diagonally on V with integer eigenvalues and fixes the conformal vector, $\sigma:=\exp \left(\pi \sqrt{-1} A_{0}\right)$ gives a vertex operator superalgebra involution of V. In addition, one can consider the notion of strongly (\mathbb{C}-)graded V-modules in the sense of [HLZ14, Definition 2.25] with respect to the operator A_{0}. A strongly graded V-module M admits A_{0}-eigenspace decomposition

$$
M=\bigoplus_{\lambda \in \mathbb{C}} M_{\lambda}
$$

and each component M_{λ} further decomposes into finite-dimensional L_{0}-eigenspaces with the lower truncation condition. Such modules play an important role in a non- C_{2}-cofinite situation. In fact, neither $\langle\beta \gamma\rangle$ nor \mathbb{L}_{-1} is C_{2}-cofinite.

Now we recall the following construction known as "spectral flow twist".
Lemma 2.5 ([Li97, Proposition 2,1]). Let $\varepsilon, \varepsilon^{\prime} \in\left\{0, \frac{1}{2}\right\}$ and $\theta \in \mathbb{Z}+\varepsilon^{\prime}$. For a $\sigma^{1-2 \varepsilon_{-}}$ twisted strongly graded V-module $\left(M, Y_{M}\right)$, we define

$$
\Delta(\theta \mathbf{A} ; z):=z^{\theta A_{0}} \exp \left(\sum_{\ell=1}^{\infty} \frac{\theta A_{\ell}}{-\ell}(-z)^{-\ell}\right) \in \operatorname{End}(V) \llbracket z^{ \pm\left(1-\varepsilon^{\prime}\right)} \rrbracket .
$$

Then the even mapping

$$
Y_{M^{\theta}}(? ; z):=Y_{M}(\Delta(\theta \mathbf{A} ; z) ? ; z): V \rightarrow \operatorname{End}(M) \llbracket z^{ \pm\left(\frac{1}{2}+\left|\varepsilon-\varepsilon^{\prime}\right|\right)} \rrbracket
$$

gives rise to a new $\sigma^{1-2 \mid \varepsilon-\varepsilon^{\prime}}$-twisted strongly graded V-module $M^{\theta}:=\left(M, Y_{M^{\theta}}\right)$, called a spectral flow twisted module of M.

Fusion rules are compatible with the spectral flow twist in the following sense.
Lemma 2.6 ([Li97, Proposition 2.4]). There exists a natural isomorphism

$$
\mathrm{IO}\left(\begin{array}{c}
N \\
L \\
\hline
\end{array}\right) \simeq \mathrm{IO}\left(\begin{array}{c}
N^{\theta+\theta^{\prime}} \\
L^{\theta}
\end{array} M^{\theta^{\prime}}\right)
$$

for any \mathbb{Z}_{2}-graded strongly graded V-modules L, M, N, and $\theta \in \frac{1}{2} \mathbb{Z}$, where $\operatorname{IO}\left({ }_{L}{ }^{N}{ }_{M}\right)$ denotes the space of \mathbb{Z}_{2}-graded intertwining operators of type $\binom{N}{L}$.

Since all the irreducible strongly graded \mathbb{L}_{c}-modules are highest weight modules and they are closed under taking the spectral flow twist, we only need to consider a complete system of representatives with respect to the twist.

3 Fusion Rules at Central Charge $c=-1$

In this section, we determine all the fusion rules among (\mathbb{Z}_{2}-graded) irreducible highest weight \mathbb{L}_{-1}-modules. Our computation is divided into two steps:

1. estimation from above by using the Frenkel-Zhu theory;
2. estimation from below by using the free field realization.

The Zhu algebra Zhu (V) for a vertex operator superalgebra V is firstly introduced in [KW94] as a natural generalization of the original one in [Zhu96]. When $V=\mathbb{V}^{c}$ or \mathbb{L}_{c}, the following isomorphism is well-known (e.g. [Ada99, Remark 1.1]) and is proved in the same way as [KW94, Lemma 3.1].
Lemma 3.1. For $c \in \mathbb{C}$, there exists a unique algebra isomomorphism

$$
\mathbb{C}[\mathrm{h}, \mathrm{q}] \xrightarrow{\simeq} \mathrm{Zhu}\left(\mathbb{V}_{c}\right) ; \quad \mathrm{h} \mapsto[\mathbf{L}], \quad \mathrm{q} \mapsto[\mathbf{J}],
$$

where $[A]$ denotes the natural image of $A \in \mathbb{V}_{c}$ in the quotient space $\operatorname{Zhu}\left(\mathbb{V}_{c}\right)$. Moreover, $\operatorname{Zhu}\left(\mathbb{L}_{c}\right)$ is obtained as a quotient algebra of $\operatorname{Zhu}\left(\mathbb{V}_{c}\right) \simeq \mathbb{C}[\mathrm{h}, \mathrm{q}]$.

Let $\operatorname{lrr}\left(\mathbb{L}_{c}\right)$ denote the set of isomorphism classes of \mathbb{Z}_{2}-graded irreducible highest weight \mathbb{L}_{c}-modules and $\operatorname{Irr}\left(\mathbb{L}_{c}\right) / \mathbb{Z}$ denote the set of \mathbb{Z}-orbits with respect to the \mathbb{Z}-action induced by the spectral flow twist. From the classification result in [Ada99, Theorem 7.2] and direct calculation, we obtain the following.

Proposition 3.2. The disjoint union

$$
\begin{gathered}
\left\{\mathcal{L}(\epsilon):=\mathcal{L}_{\frac{4}{3} \epsilon^{2}, \frac{4}{3} \epsilon,-1}, \Pi \mathcal{L}(\epsilon) \left\lvert\, \epsilon \in\left\{0, \pm \frac{1}{2}\right\}\right.\right\} \sqcup\left\{\mathcal{L}_{j}:=\mathcal{L}_{-\frac{1}{8}-\frac{2}{3} j^{2}, \frac{4}{3} j,-1}, \Pi \mathcal{L}_{j} \mid j \in \mathbb{C}\right\} \\
\left(\text { resp. }\left\{\mathcal{L}(\epsilon), \Pi \mathcal{L}(\epsilon) \left\lvert\, \epsilon \in\left\{0, \frac{1}{2}\right\}\right.\right\} \sqcup\left\{\mathcal{L}_{j}, \Pi \mathcal{L}_{j} \mid j \in S\right\}\right)
\end{gathered}
$$

gives a complete representative set of $\operatorname{Irr}\left(\mathbb{L}_{c}\right)\left(\operatorname{resp} . \operatorname{lrr}\left(\mathbb{L}_{c}\right) / \mathbb{Z}\right)$, where

$$
S:=\left\{x+y \sqrt{-1} \left\lvert\,-\frac{1}{2} \leq x<\frac{1}{2}\right., x \notin\left\{ \pm \frac{1}{4}\right\}, y \in \mathbb{R}\right\}
$$

and Π stands for the \mathbb{Z}_{2}-parity reversing functor.
The corresponding irreducible left $\mathbf{Z h u}\left(\mathbb{L}_{-1}\right)$-modules are denoted by

$$
\left\{\mathbb{C}(\epsilon), \Pi \mathbb{C}(\epsilon) \left\lvert\, \epsilon \in\left\{0, \pm \frac{1}{2}\right\}\right.\right\} \sqcup\left\{\mathbb{C}_{j}, \Pi \mathbb{C}_{j} \mid j \in \mathbb{C}\right\}
$$

3.1 Estimate from Above

We set a \mathbb{Z}_{2}-graded structure on

$$
\mathrm{M}:=\bigoplus_{a, b \in\{0,1\}} \mathbb{C}\left[x_{\ell}, x_{r}, y\right] \psi_{a, b}
$$

by $\operatorname{deg}\left(f \psi_{a, b}\right)=\overline{a+b}$ for $f \in \mathbb{C}\left[x_{\ell}, x_{r}, y\right]$. For $j \in \mathbb{C}$, we define a \mathbb{Z}_{2}-graded $\mathbb{C}[\mathrm{h}, \mathrm{q}]$ bimodule structure π_{j} on M by

$$
\begin{aligned}
\text { h. } f \psi_{a, b} & :=x_{\ell} f \psi_{a, b}, \text { q. } f \psi_{a, b}:=(y+j+a-b) f \psi_{a, b}, \\
f \psi_{a, b} \text { h } & :=x_{r} f \psi_{a, b}, f \psi_{a, b} \cdot \mathbf{q}:=y f \psi_{a, b} .
\end{aligned}
$$

Then there exists a unique \mathbb{Z}_{2}-graded $\mathbb{C}[h, q]$-bimodule isomorphism

$$
\mathrm{M}_{j}:=\left(\mathrm{M}, \pi_{j}\right) \xrightarrow{\simeq} \mathrm{Zhu}\left(\mathcal{M}_{h, j, c}\right)
$$

such that $\psi_{a, b} \mapsto\left[\left(G_{-\frac{1}{2}}^{+}\right)^{a}\left(G_{-\frac{1}{2}}^{-}\right)^{b}|h, j, c\rangle\right]$ for $a, b \in\{0,1\}$.
Lemma 3.3. The kernel of the natural surjective $\mathbb{C}[\mathrm{h}, \mathrm{q}]$-bimodule homomorphism

$$
\mathrm{M}_{\frac{2}{3}} \simeq \operatorname{Zhu}\left(\mathcal{M}_{\frac{1}{3}, \frac{2}{3},-1}\right) \rightarrow \operatorname{Zhu}\left(\mathcal{L}\left(\frac{1}{2}\right)\right)
$$

has a set of explicit generators.
Lemma 3.4. Assume that $j \in S$ and set $s:=\frac{4}{3} j$. Then the following vector

$$
\chi_{1}:=\left(4(s-1) L_{-1}+3(s-1)(s+1) J_{-1}+4 G_{-\frac{1}{2}}^{+} G_{-\frac{1}{2}}^{-}\right)\left|-\frac{1}{8}\left(1+3 s^{2}\right), s,-1\right\rangle
$$

gives an even singular vector in $\mathcal{M}_{-\frac{1}{8}\left(1+3 s^{2}\right), s,-1}$. In addition, the kernel of the natural surjective $\mathbb{C}[\mathrm{h}, \mathrm{q}]$-bimodule homomorphism

$$
\mathrm{M}_{s} \simeq \operatorname{Zhu}\left(\mathcal{M}_{-\frac{1}{8}\left(1+3 s^{2}\right), s,-1}\right) \rightarrow \operatorname{Zhu}\left(\mathcal{M}_{-\frac{1}{8}\left(1+3 s^{2}\right), s,-1} /\left\langle\chi_{1}\right\rangle\right)
$$

has a set of explicit generators.
By Lemma 3.3, Lemma 3.4, and [Li99, Proposition 2.10], we obtain the following.
Proposition 3.5 (Koshida-S.). For $\epsilon, \epsilon^{\prime} \in\left\{0, \pm \frac{1}{2}\right\}, j, j^{\prime} \in S$, and $j^{\prime \prime} \notin\left\{\frac{1}{4}\right\}+\frac{1}{2} \mathbb{Z}$, we have

$$
\begin{aligned}
& \operatorname{dim} \operatorname{IO}\binom{\mathcal{L}\left(\epsilon^{\prime}\right)^{\theta}}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}(\epsilon)}= \begin{cases}(1 \mid 0) & \text { if } \epsilon^{\prime}=\epsilon+\frac{1}{2} \text { and } \theta=0 \\
(0 \mid 1) & \text { if }\left(\epsilon, \epsilon^{\prime}\right)=\left(\frac{1}{2}, 0\right) \text { and } \theta=-1, \\
(0 \mid 0) & \text { otherwise, },\end{cases} \\
& \operatorname{dim} \operatorname{IO}\binom{\mathcal{L}_{j^{\prime \prime}}}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}(\epsilon)}=(0 \mid 0), \\
& \operatorname{dim} \operatorname{IO}\binom{\mathcal{L}_{j^{\prime \prime}}}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}_{j}} \leq \begin{cases}(1 \mid 0) & \text { if } j^{\prime \prime}=j+\frac{1}{2}, \\
(0 \mid 0) & \text { otherwise },\end{cases} \\
& \operatorname{dim} \operatorname{IO}\binom{\mathcal{L}_{j^{\prime \prime}}}{\mathcal{L}_{j} \mathcal{L}_{j^{\prime}}} \leq \begin{cases}(0 \mid 1) & \text { if } j^{\prime \prime}=j+j^{\prime} \pm \frac{3}{4}, \\
(0 \mid 0) & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Remark 3.6. Since we have isomorphisms

$$
\mathcal{L}\left(\pm \frac{1}{2}\right)^{ \pm 1} \simeq \Pi \mathcal{L}\left(\mp \frac{1}{2}\right), \quad \mathcal{L}(0)^{\vee} \simeq \mathcal{L}(0), \quad \mathcal{L}\left(\pm \frac{1}{2}\right)^{\vee} \simeq \mathcal{L}\left(\mp \frac{1}{2}\right)
$$

where (? $)^{\vee}$ stands for the contragredient dual, the symmetry of intertwining operators (see e.g. [HL95, §7]) and Lemma 2.6 imply

$$
\mathrm{IO}\binom{\mathcal{L}(0)}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}\left(-\frac{1}{2}\right)} \simeq \mathrm{IO}\binom{\mathcal{L}\left(\frac{1}{2}\right)}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}(0)} \simeq \mathrm{IO}\binom{\mathcal{L}\left(\frac{1}{2}\right)}{\mathcal{L}(0) \mathcal{L}\left(\frac{1}{2}\right)} \simeq \mathbb{C}^{1 \mid 0}
$$

and

$$
\mathrm{IO}\binom{\mathcal{L}(0)^{-1}}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}\left(\frac{1}{2}\right)} \simeq \operatorname{IO}\binom{\mathcal{L}(0)}{\mathcal{L}\left(\frac{1}{2}\right) \Pi \mathcal{L}\left(-\frac{1}{2}\right)} \simeq \mathbb{C}^{0 \mid 1}
$$

3.2 Estimate from Below

Let $\Lambda=\mathbb{Z} a^{+}+\mathbb{Z} a^{-}$be a lattice equipped with the non-degenerate symmetric integer form defined by $\left\langle a^{ \pm}, a^{ \pm}\right\rangle= \pm 1$ and $\left\langle a^{+}, a^{-}\right\rangle=0$. The Friedan-Martinec-Shenker (FMS) bosonization is an embedding of $\langle\beta \gamma\rangle$ to the lattice vertex algebra V_{Λ} defined by:

$$
\langle\beta \gamma\rangle \rightarrow V_{\Lambda} ; \quad \beta \mapsto\left|a^{+}+a^{-}\right\rangle, \quad \gamma \mapsto-a_{-1}^{+}\left|-a^{+}-a^{-}\right\rangle .
$$

For $(\ell, \lambda) \in \mathbb{C}^{2}$, we define

$$
\Pi_{\ell}(\lambda):=\Pi\left(\ell a^{-}+\lambda\left(a^{+}+a^{-}\right)+\mathbb{Z}\left(a^{+}+a^{-}\right)\right)=\bigoplus_{n \in \mathbb{Z}} \mathcal{F}_{\Lambda, \ell a^{-}+(n+\lambda)\left(a^{+}+a^{-}\right)},
$$

where $\mathcal{F}_{\Lambda, \alpha}$ stands for the Heisenberg Fock \mathcal{F}_{Λ}-module of highest weight α. Then this carries a natural twisted $\langle\beta \gamma\rangle$-module structure via the FMS bosonization. More precisely, we obtain the next lemma.

Lemma 3.7. Let σ be the involution of $\langle\beta \gamma\rangle$ defined in $\S 2.3$. For $\ell \in \frac{1}{2} \mathbb{Z}$, the vector space $\Pi_{\ell}(\lambda)$ carries a natural $\sigma^{2 \ell}$-twisted strongly graded $\langle\beta \gamma\rangle$-module structure. Moreover, the $\sigma^{2 \ell}$-twisted $\langle\beta \gamma\rangle$-module $\Pi_{\ell}(\lambda)$ is irreducible if $\lambda \notin \mathbb{Z}$.

Now, by using Corollary 2.4, we obtain the following.
Proposition 3.8. For $j \in S$ and $b \in \mathbb{Z}$, we have isomorphisms

$$
\langle\beta \gamma\rangle \otimes V_{\mathbb{Z}} \simeq \bigoplus_{\theta \in \mathbb{Z}} \Pi^{\theta}\left(\mathcal{L}(0)^{-\theta} \otimes \mathcal{F}_{\mathbb{Z}, \sqrt{\frac{4}{3}} \theta} \oplus \mathcal{L}\left(\frac{1}{2}\right)^{-\theta} \otimes \mathcal{F}_{\mathbb{Z}, \sqrt{\frac{1}{3}}\left(\theta+\frac{1}{2}\right)}\right)
$$

and

$$
\Pi_{\frac{1-b}{2}}\left(2 j+\frac{1}{2}\right) \otimes V_{\mathbb{Z}} \simeq \bigoplus_{\theta \in \frac{1}{2} \mathbb{Z}} \Pi^{b} \mathcal{L}_{j+\theta} \otimes \mathcal{F}_{\mathbb{Z}, \sqrt{\frac{4}{3}}\left(j+\theta+\frac{3 b}{4}\right)}
$$

of \mathbb{Z}_{2}-graded strongly graded $\mathbb{L}_{-1} \otimes \mathcal{F}_{\mathbb{Z}}$-modules.
The next proposition follows from the result by D. Adamović and V. Pedić.

Proposition 3.9 ([AP19]). For any

$$
\left(\ell_{i}, \lambda_{i}\right) \in \mathbb{Z} \times(\mathbb{C} \backslash \mathbb{Z}) \quad\left(i \in\{1,2,3\}, \lambda_{1}+\lambda_{2} \notin \mathbb{Z}\right)
$$

we obtain the following fusion rule among $\langle\beta \gamma\rangle$-modules:

$$
\operatorname{dim} \operatorname{IO}\binom{\Pi_{\ell}\left(\lambda_{3}\right)}{\Pi_{\frac{1}{2}}\left(\lambda_{1}\right) \Pi_{\frac{1}{2}}\left(\lambda_{2}\right)}= \begin{cases}1 & \text { if } \ell \in\{0,1\} \text { and } \lambda_{3}=\lambda_{1}+\lambda_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.10 (Koshida-S.). Assume that

$$
j, j_{1}, j_{2} \in S, \quad j_{3}:=j_{1}+j_{2} \pm \frac{3}{4} \notin\left\{\frac{1}{4}\right\}+\frac{1}{2} \mathbb{Z}
$$

Then we have

$$
\operatorname{dim} \operatorname{IO}\binom{\mathcal{L}_{j+\frac{1}{2}}}{\mathcal{L}\left(\frac{1}{2}\right) \mathcal{L}_{j}}=(1 \mid 0), \quad \operatorname{dim} \operatorname{IO}\binom{\mathcal{L}_{j_{3}}}{\mathcal{L}_{j_{1}} \mathcal{L}_{j_{2}}}=(0 \mid 1) .
$$

Moreover, the Verlinde formula in the sense of [Sat19, Conjecture 5.1] correctly computes the above fusion rules.

References

[ACKL17] T. Arakawa, T. Creutzig, K. Kawasetsu, and A. R. Linshaw. Orbifolds and Cosets of Minimal W-Algebras. Commun. Math. Phys., 355(1):339-372, 2017.
[Ada99] D. Adamović. Representations of the $N=2$ superconformal vertex algebra. Int. Math. Res. Not., IMRN, 2(2):61-79, 1999.
[AM95] D. Adamović and A. Milas. Vertex operator algebras associated to modular invariant representations for $A_{1}^{(1)}$. Math. Res. Lett., 2:563-576, 1995.
[AP19] D. Adamović and V. Pedić. On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Phys., 60(8):081701, 2019.
$\left[\right.$ BLL $\left.^{+} 15\right]$ C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B.C. Van Rees. Infinite chiral symmetry in four dimensions. Commun. Math. Phys., 336(3):1359 1433, 2015.
[CHY18] T. Creutzig, Y.-Z. Huang, and J. Yang. Braided tensor categories of admissible modules for affine lie algebras. Commun. Math. Phys., 362(3):827-854, 2018.
[CR13] T. Creutzig and D. Ridout. Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B, 875(2):423-458, 2013.
[DLM98a] C. Dong, H. Li, and G. Mason. Twisted representations of vertex operator algebras. Math. Ann., 310(3):571-600, 1998.
[DLM98b] C. Dong, H. Li, and G. Mason. Vertex operator algebras and associative algebras. J. Algebra, 206(1):67-96, 1998.
[DZ06] C. Dong and Z. Zhao. Twisted representations of vertex operator superalgebras. Commun. Contemp. Math., 8(01):101-121, 2006.
[FF85] A.J. Feingold and I.B. Frenkel. Classical affine algebras. Adv. Math., 56:117172, 1985.
[FZ92] I. Frenkel and Y. Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J., 66(1):123-168, 1992.
[HL95] Y.-Z. Huang and J. Lepowsky. A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Math.(N.S.), 1(4):757, 1995.
[HLZ14] Y.-Z. Huang, J. Lepowsky, and L. Zhang. Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules. In Conformal field theories and tensor categories, pages 169-248. Springer, 2014.
[Hua08] Y.-Z. Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math., 10(01):103-154, 2008.
[KS18] S. Koshida and R. Sato. "On resolution of highest weight modules over the $\mathcal{N}=2$ superconformal algebra". arXiv preprint arXiv:1810.13147v1, 2018.
[KW88] V. Kac and M. Wakimoto. Modular invariant representations of infinitedimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci., 85(14):4956-4960, 1988.
[KW94] V. Kac and W. Wang. Vertex operator superalgebras and their representations. Contemp. Math., 175:161-192, 1994.
[Li97] H. Li. The physics superselection principle in vertex operator algebra theory. J. Algebra, 196(2):436-457, 1997.
[Li99] H. Li. Determining Fusion Rules by $A(V)$-Modules and Bimodules. J. Algebra, 212(2):515-556, 1999.
[Sat19] R. Sato. Modular Invariant Representations of the Superconformal Algebra. Int. Math. Res. Not., IMRN, 2019(24):7659-7690, 022019.
[Ver88] E. Verlinde. Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B, 300:360-376, 1988.
[Zhu94] Y. Zhu. Global vertex operators on Riemann surfaces. Commun. Math. Phys., 165(3):485-531, 1994.
[Zhu96] Y. Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 9(1):237-302, 1996.

Institute of Mathematics
Academia Sinica
Taipei 106319
TAIWAN
E-mail address: sato@gate.sinica.edu.tw

