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Abstract: In this work, we apply a dynamic mode decomposition (DMD) to epileptic EEG 

data to figure out the spatio-temporal patterns in the data. It is found that some patterns 

with high frequency have direct influence on the epileptic seizure, and instantaneously capture 

the abnormal patterns of the neuron firing with high precision. We prepare an ictal and 

interictal EEG data for an epileptic patient, and investigating the dyamics of the DMD modes 

captured by the proposed algorithm for the windowed EEG signals. From the results we 

conclude that the DMD modes extracted from the EEG signals can be useful for analyzing 

and understanding the dynamics of the epileptic EEG data. 

Keywords: epileptic seizure; dynamic mode decomposition; EEG; spatio-temporal pattern; 

pattern recognition, high frequency in signal. 

1. Introduction 

The dynamic mode decomposition (DMD) originated introduced by Schmid [14] in the fluid 

dynamics community as a method to decompose complex flows into a simple representation 

based on spatiotemporal coherent structures [14, 4, 15]. After its introduction, DMD was 

reframed by Rowley et al. [13] as a numerical technique to approximate the Koopman operator 

[9], establishing a strong connection to the analysis of nonlinear dynamical systems [2]. The 
DMD is an equation-free, data-driven method capable of providing an accurate decomposition 

of a complex system into spatiotemporal coherent structures that may be used for short-time 

future-state prediction and control [7]. Thus, DMD yields a set of modes along with a linear 

evolution model. The development of DMD is timely due to the concurrent rise of data science, 

encompassing a broad range of techniques, from machine learning and statistical regression to 

computer vision and compressed sensing [7]. 

Epileptic seizure is often signified by abnormal synchronization in neuronal firing either 

in a focal region or across several regions in the brain [8]. It is reported that the epileptic 
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zone may be localized by the abnormal signal pattern of the high-frequency domain so-

called persistent high-frequency oscillations (HFO) [6, 10]. However, using conventional 

transformation algorithms to extract features from the EEG signals does not guarantee to 

achieve high accuracy [11]. In recent years, newly developed methods based on the DMD have 

been proposed in order to extract features from EEG data [7, 16]. The DMD estimates the 

complex frequencies and magnitudes (called "modes") corresponding to the signals. One of 

the advantage of DMD is that these modes are provided in linearly independent normalized 

vectors, so that the high-frequency mode pattern can be clearly detected. 

In this paper, we present the feature extraction method using DMD modes for recognizing 

spatial-temporal patterns of the epileptic EEG data between ictal and interictal states. In 

section 2, we describe the structure of data and explain the process of feature extraction. 

Finally, in Section 3, we interpret spatial-temporal patterns of the features and the DMD 

modes through numerical results. 

1.1. Background : Dynamic Mode Decomposition 

Assume that data is collected from a dynamical system 

(1.1) 
dx 

＝ 
dt 

f(x, t), 

where x(t) E町 isa vector representing the state of a dynamical system at time t and f(•) 
represent the dynmaics. In general, it is impossible to construct a solution to the nonlinear 

equation (1.1), so numerical solutions are used to approximate the dynamics and predict 

future states. The DMD procedure constructs the proxy, approximate locally linear dynamical 

system 

(1.2) 
dx 

＝ 
dt 

Ax 

with inital condition x(O) and solution 

x(t) =区¢kexp（叫）bk=4> exp(nt)b, 
k=l 

where ¢k and wk are the eigenvectors and eigenvalues of the matrix A, and the coefficients bk 

are the coordinates of x(O) in the eigenvector basis. 

The continuous dynamics in (1.2) can be described by analogous discrete-time system 

sampled every△t in time such as 

xk+I = Axk, k = 0, l, 2,..., m 

where A = exp(A△t) and mis the number of the states. The solution to this system is simply 

expressed by 

n 

(1.3) Xk+l = Lい訊＝ <I>Akb
J=l 

whereふand¢j are the eigenvalues and eigenvectors of the discrete-time map A respectively, 

and b is the coefficient of the initial contion x0 (= x(O)) in the eigenvector basis so that 
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x0 = ≪I>b. The final goal of the DMD algorithm is to produce a low-rank eigendecomposition 

(1.3) of the matrix A that optimally fits xk for k = 0, 1,..., min a le邸 t-sqauresense so that 

(1.4) llxk+l -Axkll2 

is minimized for k = 0, 1,..., m -l. 

Let X = [x0ぷ 1,...，Xm]E賊nx(m+l)be the data matrix, then to minimize the approxima— 

tion error (1.4), we arrange the matrix into two data matrices 

(1.5) 
ふ＝ ［Xo, X1,...'Xm-1] E股nxm,

ふ＝ ［X1,X2, ・ ・ ・，心］ E恥nxm.

Then the locally linear approximation (1.2) can be written by 

X2 ~ AX1 

and the best-fit A matrix is given by 

(1.6) A=X因，

where t denotes the Moore-Penrose pseudoinverse. The solution (1.6) minimize the error 

IIX2 -AX1IIF, 

where ll・IIF is the Frobenius norm [12] given by 

for ME股pxq_Thus, the DMD of the pair (X1, X砂isthe eigendecomposition of the matrix 

A. However, in practice, if the state dimension n is large, the matrix A may be intractable to 

analyze directly. Instead, we compute a low-rank approximation A by the following algorithm 

[15]: 

(1) Compute the reduced and appropriately truncated SVD [1] of the data matrix X1 in 

(1.5) 

(1.7) X1 ~ Uぶ Vrベ

where the columns of Ur E股nxrand V,. E良mxrare orthonormal eigenvectors ofふX[

and X[ X1, respectively, the diagonal entries of江 E股rxrare the square roots of the 

non-negative eigenvalues of bothふX『andX[ X1, and r(< min n, m) refers to the 

reduced rank of the approximated matrix given in (1.7). It is notable that the columns 

of Ur are called the left singular vectors of X 1・

(2) Define a low-rank approximation A of A in (1.6) 

(1.8) A=  u;Aur = u：ふVぶr-1.

(3) Compute the eigendecomposition of A in (1.8) 

(1.9) Aw=  WAr, Ar= diag（ふ，入2,...，入r)
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where the columns of W E crxr and the diagonal entries of Ar E crxr are the 

eigenvectors and the eigenvalues of A respectively. 
(4) Since the eigenvalues in (1.9) is also the eigenvalues of A, the DMD mode (i.e. the 

eigenvector of A) corresponding to the DMD eigenvalue入in(1.9) is given by 

¢i三 Ur叫，

where wi is the ith column of Win (1.9). 

Each snapshot xk is approximated by xk ~ Axk-l, and so, this algorithm allows us to express 

a local approximtation of a windowed signal as a composition of a coupled spatio-temporal 

model 

(1.10) Xk =Ax。＝屯A柘，

where屯 Ecnxr consists of the columns ofぷandc is the coefficient of the initial condition 

x0 satisfying x0＝屯c[7]. The phase of eigenvalues can be converted to frequency (Hz) by 

(1.11) f; = 
's(log（入，）／△t)

21r 

where's(・) is the imaginary part of a complex number. f; represents the frequency of oscillation 

of modeぷinunits of cycles per second. 

The spatial resolution for neurological signals is usually less than the temporal resolution, 

e.g. we have 49 electrodes sampling at 2000Hz. Therefore the standard DMD algorithm 

representcd above must be modificd to capturc the dynamics of the neurologocial activity 

properly. The modification is adopted to augment the data matrix X by stacking h number 

of observation vectors xk such that the number of rows in X beeomes at least twice the 

number of columns. The augmented matrix for the data matrix X with stacking number h is 

represented by 
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(1.12) 

(1.13) P; = 2le;l/v'h 

where c; is ith entry of c given in (1.10). Meanwhile, the DMD mode power is defined by 

ぷ11:[3, 16]. 
Figure 1.1 illustrates the variation in spectral information and DMD modes corresponding 

to signals from different data regions of the EEG recordings such as interictal and ictal states. 

The signals used in this work are obtained from 49 channel with one-second duration and they 

are resampled by a sampling rate of 500Hz with 50 stacking number defined in 1.12, hence, 

the data matrix X contains 2450 columns and 450 rows (the original sample has 500 columns 

and 49 rows.). In Figure 1.1 we see that while the amplitudes at high frequencies are relatively 
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FIGURE 1.1. Examples of the patterns of DMD modes and power spectrums 

for ictal signals and interictal signals. 

much smaller than the amplitudes at other frequencies, the patterns of high-frequency of the 

DMD mode are more significant than those of other frequencies. Beside high frequency DMD 

mode patterns are relatively significant than low. Since our purpose is to detect anormal 

spatial-temporal patterns of high frequency from electrode signals, we ignore these biased 

spectral information to focus on DMD mode patterns itselves in this study. Therefore, in order 

to detect abnormal spatial-temporal patterns of high frequencies from electrode ictal and 

interictal signals, we ignore the biased spectral information to focus on DMD mode patterns 

themselves in this study. 

2. Material and Method 

In this paper, a kind of EEG data, called ECoG, is used. The ECoG recordings are sampled 

at intervals of 0.2 second, and they are segmented with one second duration. Each windowed 

signal is decomposed by the DMD into a dynamic mode, and the columns of the mode are 

sorted according to their frequencies and then vectorized. Those vectors are projected to the 

approximated left singular vector space so that the features are extracted. 

2.1. Dataset 

The ECoG recording of an epileptic patient was provided by Ikeda laboratory at Kyoto 

University. The recording is measured through 49 channels and composed of only two types 

of signals: an ictal signal and an interictal signal. Since the sampling rate of the original data 

provided is very large as 2000Hz, it has been reduced to 500Hz to match the rate used in 

most of the previous related studies. 
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2.2. Feature Extraction 

Each DMD mode is used for the feature extraction after being vectorized and aligned. The 

left singular vectors are obtained by decomposing the matrix constructed with the modes. 

Then, the features are extracted by projecting the computed modes to the truncated left 

singular vector space which is prepared in the previous states. The feature to be used in the 

proposed method is a vectorized and aligned DMD mode. The dimension of the feature is 

reduced by a linear transformation mapped to the space of truncated left singular vectors, 

which come from a row-wise stacked feature matrix of modes. The detail of feature extraction 

is explained below. 

For simplicity of notation without loss of generality we define the signal set from windowed 

regions of EEG recordings as follows 

(2.1) W = {X(j) E股nx(m+l)lj= 1,2,・・・,J} 

where n and (m + 1) are the number of channels and that of snapshots within one second 
durations at 0.2 second intervals, respectively. Note that J is the number of the windowed 

signals in the sert. 

Let X(j) = ［硲 xい，・・• ,x詔］ E W be a j-th data matrix of the signal set in (2.1). 

Then we denote the augmented matrix X畠definedin (1.12). For each X畠wecalculate 

屈） E股nhxr,JU) and pU) defined in (1.10), (1.11) and (1.13) respectively. Here for the 

purpose of extracting optimal features, the low-rank approximation size r is fixed (in this 

paper r = 200). The discussion for choosing an optimal threshold on the singular values can 
be found in [5]. After that we get the aligned modes by frequency as follows 

(2.2) 的{gn= [¢闊，紺贔，・・・，羹］
where u is a permutation of {1, 2, ・ ・ ・, r} satisfying 

凰 2f嘉ぶ 2::..．ミf晶
In order to reduce the computational cost in featuring process without loss of the information 

one can extract submatrix by truncating the rows by 

(2.3) 叫闊nc＝中盆~n[l : n, 1 : r] 

where Z[u, v] denotes a submatrix of Z indexed by sequences u and v, and i : k implies the 

index sequences { i, i + 1, i + 2, • • •, k} satisfying i ::; k respectively. Note that in this paper 

h'P 
(j) 

the size of each'Pt~nc is given by 49 x 200 for j = 1, 2,..., J. The remarkable point is that 
most of entries of 徊!~nc are close to zero (or almost sparse matrices) and can be clustered trunc 
by small groups. So we suppose that dynamics of every signals from the EEG recording can 

be explained by a few entry of DMD modes. It means that we can apply low rank reduction 

schemes to the modes such as singular value decomposition (or principle component analysis). 

From the windowed signals, the corresponding truncated DMD modes in (2.3) are gathered 

to form libraries. Construction of the libraries is performed as follows 

(2.4) ,C = [ ¢1心．．．ふJ] E罠nrxJ,
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where 

む＝vec（的に） E町．

<I>畠 isa algined DMD mode matrix in (2.3) for the j-th signal of Win (2.1), and the vec (M) 

represents a column vector obtained by rearranging M = [ m1 四•.． mk ] E (CPXqwith 

vertically stacking the column vectors mi of ther matrix below in the order of the index, that 

lS 

vec(M) ＝ [ ／: l E CpqX1 

Here we only consider the absolute values of DMD modes. Thus the features deternmined in 

d-dimensional left singular vector space is given by the transformation of each column of I.Cl 
onto the first d left singular vectors of I.Cl such as 

(2.5) 1£1 = Uc,均 v;_ and 凡＝ UJl£1E罠dxJ

where Uc E囮nxnand Ve E艮JxJare matrices orthogonal to each other,翫 E罠nxJis a 

non-negative diagonal matrix, UJ is the transpose of the first d columns of Uc, and columns 

of Fe E股dxJare regarded as the features of the signal set, respectively. 

3. Result 

Figure 3.1 and Figure 3.2 shows spatio-temporal patterns of the DMD modes and the 

features captured by the proposed algorithm for the windowed signals of the EEG recordings 

respectively. 

In Figure 3.1, the DMD modes of the channel 33 and 47 capture the HFO phenomenon 

at the front of the ictal onset. Besides that of channel 38 derives significant values in the 

ictal area. Figure 3.2 exhibits the dynamics of the features generated by projection to the 

left singular vector space of the library £ in 2.4. The graph shows the feature components 

associated with the high-frequency patterns of the ictal and interictal signals. The components 

corresponding the third and fifth left singular vectors indicate the patterns of correlated 

channels and frequencies at front of the ictal onset. Besides, that of the second left singular 

vectors shows corelated channels and frequencies in the ictal area. 
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