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Abstract 

Let F = {F,,...,Fm+1} C IQ)[x,u] be a given system, where m+l 2: 3, (x) = (x,,...,xm) and 
(u) = (u,,...，叫）， withVxi,-Vuj. Let GB(F) = {G1, G2, ・・・},with G,--< G2 --<・ ・ ・, be the reduced 
Grabner basis of F w.r.t. the lexicographic order. In a previous paper [10], one of the authors proposed a 
m__'.:th<_>__d of enhancing Buchberger's algor~hm for computing GB(F). His ide":._is to compute a set g':= 
{ G1, G2,... } C IQ)[x, u], such that each Gi is either O or a small multiple of Gi, and apply Buchberger's 

algorithm to FU g'. He propos::d a sc~eme of computing G,, G2,... by the PRSs (polynomial remainder 
sequences) and the GCDs in "G1 ⇒G2 ⇒ ・・・’'order, without computing Spolynomials. The scheme is 

supported by two new useful theorems and one proposit½?n to remove th~ extraneouヅfactor.In fact, for a 
simple but never toy example, his scheme has computedふsuccessfully(G, became G1 by the proposition 

mentioned above). However, an unexpected difficulty occurred in computing G2; it contained a pretty 
large extraneous factor which was not removed by the proposition. In this paper, we find a surprising 
phenomenon with which we can remove the above mentioned extraneous factor in G2 and obtain G2. As 
for G3 and G4, we obtain very good "body doubles" of t~em, by eliminating variables in leading coefficients 
of intermediate remainders of the PRSs computed for G,. For systems of many sub-variables, n 2: 3, our 
method introduces an extra factor in Q[u3,..，叫， intothe "LCto W" polynomial; see the text for the 
LCto W polynomial. Furthermore, we present several techniques to enhance the computation. 
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1 Introduction 

In this paper, by民， xand u we denote a number field, variables x1,..., Xm (m :>: 2) and sub-variables 
u1,..., Un, where x; and Uj are ordered as'ix。>--¥/uj. By〈r〉,withF c図［x,u], we denote an ideal 

generated by the polynomials of F. By PRSx(G,H), with G,H E K[x,u], we denote a polynomial 

remainder sequence (PRS in short) w.r.t. x, started from G and H. In this paper, we mostly discuss 

on the PRS and only a little on the Grobner basis. So, we explain basic concepts on Grobner basis 

here. We use, without explanation, the leading monomial (abbreviated to "lmn", and used as lmn(P)), 

the Spolynomial, Spol(P1, P2) for P1, P2 E底［x,u], and the Mreduction ("M" means monomial). By 
H ~ 

G―≫  G, we denote successive Mreductions of G by H so that each monomial of G is Mirreducible w.r.t. 

H. By GB(F), we denote the reduced Grabner basis w.r.t. the lexicographic {LEX)。rder,of F; here, 

"reduced" means that any elements G; and G]が ofGB(F) are mutually Mirreducible. 

Let G,H E恥[x,u] be relatively prime. The last element of PRSx(G, H) is in図[u],and called the 

resultant R = resェ(G,H). R is a (often a large) multiple of the lowest-order element G of the elimination 

ideal〈{G,H}〉n区[u].Polynomial R厄iscalled the extraneous factor in the algebraic elimination; see 

a nice introductory paper by Kapur [7]. G is also the lowest-order element of GB({G,H}), and we can 

compute it by Buchberger's algorithm [4, 5]. Buchberger's algorithm is known to be quite heavy, in 

particular, for the LEX order and when m + n ≫ 1. So, the authors of [11] tried to compute G by the 

PRS method. They got the following nice theorem in [11]; contェ(A)below is the content of A w.r.t. x. 

~: Let Pk be the last element of PRSx(G, H), and Ak and Bk be the cofactors of Pk, satisfying 

Pk= AkG + BkH. Then, Pk/ gcd(contx(Ak), contx(Bり） isa constant multiple of G.ロ
The above authors tried to extend Theorem A to (m+l)-polynomial system F :={Fi,..., Fm+i} C 

K[x, u]. They failed but obtained a very useful theorem, Theorem B below, by restricting F to be 

"healthy" in [12]. Fis called healthy if i) all them variables尤 canbe eliminated, ii) none of n sub-

variables u can be eliminated, and iii) GBぽ） nK[u]=/cB1 U ・ ・ ・ U Bz> 1 where B1,..., Bz are non-empty 
P;,P・

reduced Grobner bases in K[u], s.t. Spol(P;, Pj)'---'--"≫ 0 for any pair (P;, P丘;),P; E B; and Pj E Bj・

~: If F is healthy then GB(F) n訳[U]＝ ｛6}．□This theorem is not useful if we compute only 

one multiple of G. Sasaki proposed a simple and outstanding idea which he called "rectan~ular PRSs" 
(rectPRSs in short); see 2. With rectPRSs we can compute several different multiples of G. App]:Ying 

this idea to a system Jhown in 3, he found that the GCD of the m~ultiples was a small majtiple of G. 

Thus, so long as G is concerned, we are now able to compute G or its small multiple G by the PRSs 

and the GCDs quite fast. This pushed Sasaki to propose a method of enhancing Buchberger's algorithm 

by using PRSs and GCDs in [10]. His idea is to compute small multiples of important elements of GB(F), 

by utilizing the intermediate elements of PRSs computed for G, and apply Buchberger's algorithm for 

the system FU  9', where 9'is a set of polynomials thus computed by the PRSs and the GCD operation. 

~: We note that many ele四entsof 9'are not multiples oj corresponding ones of叩(F).What 

happens actually is as follows. Let G; E 9'be a "body double" of Gi E GB(F). Then, lmn(G;) is a small 

multiple of lmn(Gi)-Wee叩 ressthis situation as that G; is a small lmn-multiple of Gi. I I 
Let GB(F) = {G1, G2, G3, ・・・},where G=G1--< G2 --< G3 --<．．．． Let R := {R1,..., Rz} be a family 

of remainders of rectPRSs, of the same main variable and the same degree. For computing polynomials 

in 9', Sasaki eliminated variables of the leading coefficients of R. Letでbethe GCD of the variable-

eliminated leading coefficients. Then, Sasaki constructed a polynomial LCtoW(で)E〈F〉,havingでas胆
leading coefficient; he called it "LeadingCoefficient-to-Whole" polynomial; see 4.1 for details. For G2 
of the example shown in 3, however, the LCtoW polynomial contained a large extraneous factor which 

could not be removed by Proposition 1. That is, Sasaki faced a big problem in [10]. 

In 2, we explain critical concepts in our scheme of elimination: the leading-term elimination and 

PRSs, rectangular PRSs, u-cofactors and relating proposition for removing the extraneous factors. In 
3, we explain our current problem in details. In 4, we show an unexpected phenomenon which opens 

a door to S£lve the jifficulty mentioned above, and explain how we have solved the difficulty. In 5, we 

show how G3 and G4 are computed by Sasaki's scheme. Finally, in 6, we give various theoretical and 

computational considerations. In particular, we modify the previous definition of LCtoW polynomial. 
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2 Preliminary and a brief survey 

Recursive representation and leading-term elimination It is well-known that the Grabner basis 
theory is based on the monomial representation of polynomials. So, in this paper, we explain only the 
recursive representation of polynomials. In computing the PRS, polynomial G E沢［x],with尤1>-・・・>-
Xm, and its coefficients are represented recursively w.r.t. its variables, as follows. 

G = 9dxf+9d-1x炉＋・・• +go, where Vi, g; E底[xか・・・ ,xm]- (1) 

By deg(G), ltm(G), lcf(G) we denote the degreed, the leading term gdxt and the leading coefficient 
gd, of G, respectively. Given G and H = hぷ＋ he-1砕―1+ ・・. E区[x],with d 2". e, the leading-term 
elimination of G and His defined by (the "!cm" below is the operation of the least common multiple): 

ltmElim(G, H) 
def LCM _ LCM 

G -
lcf(G) - lcf(H) 

畔汎 whereLCM= lcm(lcf(G),lcf(H)). (2) 

Let (E1 = G, 恥＝ H,Eふ•.．， E;,... ，恥） be a leading-term elimination sequence (LES in short) w.r.t. 
x1, computed by formula E; := ltmElim(E;-2, E;-1) ='f/i-2E;-2 -'f/i-1砂—1E;-1, where i 2': 3, d;-1 = 
deg(E;_2) -deg(E;_i), and'f/;-2 and'//i-l are multipliers specified in (2). Then, the cofactors A; and B; 
of E; for i 2': 3, with (A1,A2) = (1,0) and (B1,B叫＝ （0, 1), are computed by the formulas 

A; :='f/;-2A;-2 -'f/;-1 砂— 1A;-1, B; :='f/;-2B;-2 -'f/;-1 砂—1B;-1- (3) 

Note that ltmElim(G, H) is quite similar in shape to Spol(G, H). In fact, by eliminating ltm(G) by 
ltm(H) with Buchberger's algorithm, we obtain ltmElim(G, H). This shows that both eliminations are 

connected with each other in the most basic level. We obtain the PRS by taking out strictly degree-
decreasing sub-sequence of the LES. 

"Rectangular PRSs" to utilize Theorem B By lastPRSx, (Fii, Fh) and nmlastPRSx, (Fj1, Fi,) 
we denote the last element of PRSx, (Fii, Fゎ） andits normalized version by Theorem A, respectively. 

The conventional way of eliminating xis to triangularize F w.r.t. x. On the other hand, we eliminate 

x as follows: {F1, F2,..., Fm+l}⇒{G1, G2,..., Gm+i}⇒...⇒ {H1, H2,..., Hm+1}, where Gj := 
nmlastPRSx,(Fj,Fj+1) with Fm+1 = F1, ・・・,Hi:= nmlastPRSx=(G1,Gい） withG伝ョ＝ G~. Thus, 
we obtain mx (m+l) PRSs, which we call rectangular PRSs (rectPRSs in short). By Theorem B, each 

^―def Hj is a multiple of G, so H ~· gcd(H1,..., Hm+i) will be a small multiple of G. 

u-cofactors and removal of remaining extraneous factors Theorem Bis quite powerful, however, 

万definedabove usually contains extraneous factors. In f 121, the authors presented a method of predicting 
extraneous factors in Hい...,Hm+l (hence in H). Each H; can be expressed as H; = A;,1凡＋・・・十

Ai,m+lFm+l• Since A;,j is often a big polynomial, the authors introduced u-cofactors as follows. 
def 

(a;,1,..., ai,m+1) ~• (A;,1,..., Ai,m+1)lx=s, (4) 

wheres= (s1,...,sm) E Z叫 weusually chooses= (0,..., 0) if no polynomial of F disappe紅 sby this 
choice. On u-cofactors, they proved the following proposition; see [12] for the proof. 

Proposition 1: Let (!1,..., fm+i) := (Fi,..., Fm+l)|X=B・ If f := gcd(J1,..., fm+i) is a non-numeric 

polynomial then f is a factor of G. Let祐：＝ gcd(a;,1,...,a;,m+1)- If —• is a factor of G. Let a; := gcd(a;.1,..., a;,m+1). If a; is a non-numeric polynomial 

then a; is an extraneous factor of万 (hencenot a factor of G). 

3 Explanation of current big problem by an example 

Example FExl being used so far So far, we used the following example mainly: 

｛瓦＝が・(y+U)＋丑(y-2w)＋ （2u+w)， 
五xl= ~ F2 = x4 ・ (y u)＋丑(y+2w)+ (3u-w), 

凡 ＝己(y-u)＋丑(2y+u)+ (u-2w). 

(5) 
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The Gri:ibner basis GB(FExi) contains 10 polynomials; we show only the last four. 

G1 = 176158 • • • y2w + y x (286608 • • • w 7 -2549237 w6 -424132 w5 + • • • -659890 • • • w3 + 239969 • • • wり
+ 985216 ・・．砂w4-・ ・ ・ + 686666 ・ ・ ·炉研＋・・• -642027 • • • u4研＋・• • -358260 • • • u3記＋・・・十・・・十 ， 

Gs = y x (142799 ・ ・ ・ u -168202 ・ ・ ・ w 7 + ・ ・ ・ -192531・..w2 + 291426 ・ ・ ・ w) 
-578194・・．砂w4+ ・ ・ ・ -402984 ・ ・ ·炉研＋・• • +963657 ・ ・ ・ u4研＋・• • +210252 ・ ・ ・ u3記＋・・・十...十．． ， 

Cg = yx (48000w8 -419640w7 -• • • -1041048記） ＋ 6500砂w5-430980砂w4-・ ・ ・ -5430496 w汽
G10 = 33足＋23u6w-126u6 -55研w2-343 u5w + 316 u5 -12 u4w3 -130 u4記＋544u4w-202糾＋ 32u3w4

+ 218企w3+ 548企w2-128u3w + 144記w4+428研w3-420記w2+ 144uw4 -256uw3 -32w4. 

The numerical coefficients of G1 ~ G8 are of about 30 digits, and G9 and G10 consist of 61 and 20 
monomials, respectively. Note that G10 is simplest in both the number of terms and the coefficient size. 

Unexpected difficulty happened in the computation of Gg The Gg is computed from three 
remainders of degree 1 in y, with leading coefficients C1, C2, C3 E Z[u, w]. Since C1, C2, C3 are of degrees 

14, 12, 12, respectively, w.r.t. u, each (RゎCj)was Mreduced as (Rj,切）竺半 (R1,c_;), which gives 

R~ = y x (-349136896959研研＋・・ • + 249988316347584wり
+ (-915846376989u6w8 + ・ ・ ・ -417398434490880w4), 

(6) 

for example. Coefficients of both y1-and y0-terms consist of 68 monomials. Even by this Mreduction, the 
computation of PRSs and cofactors is quite expensive (computational difficulty). For example, a1 and 
b1 satisfying c1 := nml邸 tPRSu(C{,Cり＝ a心＋b心 consistof 432 and 420 monomials, respectively, 
and W{ := LCtoW(c1) = a沢＋b忍 EZ[y, u, w] consists of 1016 monomials. 

The computational difficulty mentioned above will be reduced very much by devising efficient PRS 
algorithms. However, in [10], the author faced a theoretical difficulty, too; he found that, for each 

j E {1, 2, 3}, Gg w邸 obtained邸 WI竺 WII ⇒ G9 = W;'/conty(W;'), but he could not give any 
theoretical justification of this. Without solving this problem, he could not advance anymore. 

4 On LCtoW polynomial of second-lowest element of GB(F) 

We consider the computation of LCtoW polynomial for Gg in Example FExl, with variable notations 
used in the example. Without changing the essence of computation, we set民＝ Zpwith p = 1073738843, 
so as to simplify the outputs. Hence, given are {R1, R2, R叶cZp[y,u,w], and {C1,C2心｝ CZp[u，叫，
where, for each j E {1,2,3}, degy(Rj) = 1 and Cj = lcfy(Rj)- Furthermore, C1,C2,C3 are mut叫 ly
prime. We treat the case where both Rand C have been Mreduced by G10, so treat R1 and c;. (If a 
polynomial Pis Mreduced by G10 twice then we express the Mreduced polynomial as P"). 

In our computation, a procedure Mreduce plays an important role. Given polynomials G and H, 
with deg(G) :;:> deg(H), expressed recursively w.r.t. their variables, Mreduce(G,H) performs successive 

H 
Mreductions of G by H, G―≫  R, as if G and H are given in the monomial representation, and returns 
R by saving a polynomial Q satisfying G = QH  + R. We express Q and Ras quopol(G,H) and 
rempol(G, H), respectively. 

4.1 Computation of LCtoW polynomial for G9 in Example FExl 

Let CJ:= lastPRSu(c;,cい）， whereC~ = Ci. Then, we obtained 

｛叶＝ 182913124w79 -310233643w78 + • ・ • + 301414704w庄
c; = 504 782002 w 79 + 10544 7348 w 78 + ・ ・ ・ + 465634055 w 11, 
c; = -242692664 w67 -17207621 w66 + ・ ・ ・ + 211285272 w11, 

(7) 

and cofactors a'; and b'; satisfying c'; = a';C; + b';Ci+l・ By these, we obtainedざ：＝ gcd(Ci,c;, cも as
J J 3 3 

follows (We setで'monic,because G¢D modulo p can be determined only up to a numerical multiplier)． 

で'=w17-56371298w16 + 138243860w15 -521121094w14 
-96457750 w13 -382429906 w12 -247496825 w11. 

(8) 
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Secondly, we computed w; := LCtoW（灼） ＝ a;閏＋bJRJ+i・ Thirdly, we computed W':= LCtoW（で＇），
as follows. As for FExl, we noticed thatで'=gcd(cい;J)E Zp[w] for ViヂVj.This allows us to compute 
で’as せ：＝ lastPRSぃ (c~ ，怜）． Let the cofactors ofざ thuscomputed be a~,f3f E Zp[w], which satisfy 

で'=a~ c~ + /3~ c;. Hence, we obtain 胄＝ a~W{ + /3~ W~. We note that not only w; but also可 isin 

〈FExl〉,becauseaJ, bJ E Zp[u, w] and a~, /3~ E Zp[w]. 
~: The above c~ and c; are in石[w],so are cofactors a~ and /3~, too. Hence, we can compute 
bothせand(a~ ，糾） by the PRS method easily. In general case, although we haveがE訳[wl,・・.,Wn四],
we have a~, f3f E恥(w2,..,wn) [w1]. In 6.1, we will discuss this point in details. / / 

The aJ and bJ are dense polynomials of degree 5 w.r.t. u and pretty large, making W1 a big polynomial; 

for example, W{ consists of 1016 monomials. W'is a polynomial of the form巧＋開， where飢 E

Zp[u, w], of degree 11 w.r.t. u. Hence, we Mreduce it by G10, W" := Mreduce（可，G10),obtaining 

―II W" = y x (w17 -56371298 w16 + • • • -24 7 496825 w11) 

+ u6 x (503315083 w14十 511368115w13 + • • • + 365540993研）
+ u5 x (123032576 w15 + 461931391 w14 -• • • + 29125264研） （9) 

+ u0 x (357912951 w18 + 304225978 w17 -・ ・ ・ -342880717 w12). 

If we compute the above W" over Z then we have W" = w9 x G9 （研 isthe extraneous factor). 

Summarizing the above derivation, we can express W" as follows. 

W" = redpol(a~W~ + {3~W~, G10) = redpol(a~(a~R~ + b~Rい＋ /3~(a;R; + lらR;),G10)- (10) 

―II 
4.2 Surprising phenomenon observed on w・・ in (10) 

How did the extraneous factor w9 appear in W11? We thought that two Mreductions by G10 created 
the factor. In order to check this expectation, we have computed redpol(ui, G10) for i = 7,..., 11, and 

recognized that the effect of the Mreduction was not large. In fact, we will see below that the Mreduction 
does not create the w9 factor. Cofactors aJ and bJ have no common factor. In fact, the tuple (cJ, aJ, bJ) has ） 
been normalized so that we have gcd(contu (aJ), contu (bり） ＝1. (Without this normalization, cofactors 

have a common factor w21 which has been removed by Theorem A.) 

How can we remove the extraneous factor研 ofW"? The u-cofactors method seems to be most 

hopeful; we can define u-cofactors for W'and W" (the latter is obtained by Mreducing the former by 

G10). We have computed u-cofactors of W'and W"; the former consists of 4746 monomials and the 
latter 2900 monomials. We found that the contents of these u-cofactors w.r.t. u are 1, which means 
that Proposition 1 cannot remove any extraneous factor. We thought that our computation could be 

formulated by a determinant theory like the sub-resultant theory of two multivariate polynomials [6, 2, 3]. 
Developing such a theory seems to be quite difficult; see [9] for your reference. Thus, removing the w9 
factor was a big problem for us many months. 

We have tested various possibilities. One day, observing aJRJ and bJRい(jE {1, 2}) separately, we 
found the following surprising fact; below, by [P]'we denote the Mreduction of polynomial P by G10. 

{ redpol(a;R;，W)争 0(modp)， 
redpol([a1R1]', w)羊 0 (mod p), 

redpol(b1R.f+l, w)羊 0 (mod p), 

redpol([b.iRい］＇， w)争 0 (modp), 
(11) 

These relations tell that the Mreduction by G10 does not create the factor w9. On the other hand, the 

w in (9) and relations in (11) tell that, for O :S Vi :S 9, the wi-terms of aJRJ and bJRJ+l (resp. [aJRJ]' 
and [bJRい］＇） cancelone another in each coefficient w.r.t. u. That is, we have 

{ redpol(a;R;，研）ニーredpol(b;R;+19研） （mod p)， 
redpol([a1R1]', w9) = -redpol([b1R1+1]', w9) (mod p). 

Similar relations hold for a1q and b1C.i+l; we omit them because of the page limit. 

(12) 
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―II 4.3 Removal of the extraneous factor研 ofW" in (10) 

Relations in (12) suggest us strongly that the term cancellations in the additions冗：＝ a内＋ b；R;+1 
―II 

and W" := [a;閏l'+[b1Rい］＇occurredsystematically. Systematic term-cancellations occur frequently in 
the PRS computation. However, the cancellations seem to be not reflected on u-cofactors; in fact, what 
we have done on cofactors is only to make them relatively primitive by Theorem A. If this observation is 
correct, we must modify the u-cofactors so as to rcflcct thc systcmatic canccllations. 

Lemma 1 
The wi-terms,'vj s 9, in the u-cofactors of瓦'and瓦”canbe cut off. 

—I 
Proof It is enough to show that凱 and冗 arenot changed by this cutoff. u-cofactors of W1, for 
example, are expressed by a function Ucar(%P[l], %P[2], %P[3]) := a1,1 %P[l] + aj,2 %P[2] + a1,3 %P[3], 

satisfying Ucaf (Fi, F':凸） ＝訊',where(aj,l, a1,2, a1,3) is the tuple of u-cofactors and each %P[i] is 

a system variable representing F;. Since each F;(O,u,w) has a w0-term, all the wi-terms, j s 9, of 

叫，1,aj,2, a1,3 cancel each other if we substitute F;(O, u, w) for %P[i], 1 S Vi S 3. This means that the 

w1-terms, j s 9, play no role in the u-cofactors, so can be cut off. ロ

Now, we return back to the system F and put (u') := (u2,.., nn), for simplicity. Let the given 

remainder set be {R1,...,Rz} c民[xm氾 1,u'],with l :::,. 3 and degxm(R1) = ・ ・ ・ = degx=(Rリ＝ 1.
For Vj E {1,..., l}, let Ci := lcf叫 n(Jし） E 区[u1,u'] and compute Cj := lastPRSu, (Cj, Cj+l) E 応[u'],
with Cz+i = C1, and Wj := LCtoW(cj)-Then, computeで：＝ gcd(c1,...,ez)and W := LCtoW（で） ＝ 
a出＋・・ • + az Wz, where a1,..., az E訳[u']are determined to satisfy 屁＝ a1c1+・・・＋叩； for c, see 

6.1. If necessary, we Mreduce W by G: Mreduce(W, G) = W'. Then, similarly as in (10), we can express 

w'as w'= [a叫＋・・・＋叫]'.

Proposition 2 
Put (u') = (u2,.., un)-Let]:= gcd(f1,..., fm+i), where f; := cont叫F;(O,u1,u'))fori = 1,...,m+l. 

―I If f and w・ are such that, for each i E {2,..., n} and for at least one j E {1,..., l}, we have 

{しlSdpd;:［霊喜〗；；心urt not bydtuここ，
redpol(W'，砂） ＝0 for any d; < di,max, 

(13) 

redpol(ajRj, u?)ヂ0 for some ej < di,max• 

Then, rr:＝2 ←i,max-ei. u-:•,max-c, is an extraneous factor of w・. 

Proof The top condition in (13) is the same as the first claim of Proposition 1 in 2. Middle two conditions 
are for the above Lemma 1. The bottom condition is to confirm the cancellation of low u;-power terms. 
Then, Lemma 1 allows us to cut off low-power part of u-cofactors, so the second claim of Proposition 1 
leads us to this proposition. ロ

~: Contrary to Proposition 1 which requires expressions of u-cofactors, Proposition 2 does not 
require u-cofactors. Proposition 2 is available only if we know the cancellation of low u;-power terms 

from w・ and a直 1,...,a直／／

5 Utilizing intermediate elements of rctPRSs fully 

First of all, we give a simple and widely usable theorem for the intermediate elements of the PRS. 

Theorem 3 
Assume that F is healthy. For each i = 1, 2,..., m, let the i-th PRS of the rectPRSs of F start from 

R1 and R2 in恥[x;,..,u] and end at Rk in K［叫＋1,..,u],where Xm+i = nil. Let Rj (3::; Vj < k) be 
the j-th remainder of this PRS, and Aj, Bj be cofactors of Rj. If Aj, Bj E区[x;,..,u] then Rj E 〈乃
Furthermore, if c := gcd(contx, (Aj), contx, (Bj)) is a non-numeric polynomial then Rj/c E〈F〉.
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Proof Since RJ = AJR1 + BJR2 and R1, R2 E沢［叩，．．，u]C 訳[x,u], the former part is obvious. The 
latter part of the theorem is a direct consequence of凡＝ A凡＋BJR2・ロ

Now, we consider the computation of lmn-multiples of elements G8 and G1 of GB(FExi), with variable 
notations used in FExl, by setting応＝ Zv(p = 1073738843), as in 4. We will see that our method based 
on the PRSs and GCDs are quite effective for these elements, too, and that our method will eliminate 
variables in the leading coefficients recursively. Furthermore, we will show in 5.2 very simple techniques 
for reducing the order of LCtoW polynomials quickly, without using Mreductions. 

5.1 C amputation of lmn-multiples of G8 and G7 

We first consider G8 of GB(FExi), For computing the G9 in 4, we used the remainders R~, R;, R; E 
Zp[y,u,w], with degy(R1) = 1, and their leading coefficients q,q,q E Zp[u,w], where degu(q) = 6. 
Then, in 4, we have eliminated u by computing吟：＝ lastPRSu(q, Cい），（j=l,2,3).

In order to compute an lmn-multiple of G8, we utilize the same remainders R~, R;, R; and the same 
leading coefficients Cf,q,q E Zp[u,w] as above. Furthermore, we compute PRSu(q,cい） foreach 

j E {1, 2, 3}. However, in the case of G8, we utilize the second-last element of the PRS, let it be C1, such 

that C'.＝包u十c',;n, where 2,, 2 S,o, where S, S,o E Zp[w]. For reference, we show Cf, Cふ噂

C~ = U X (-400332453 w83 -486798555 w82 + ・ ・ ・ + 610926431 w21) 
(-847591772w83 - 61235712w82 -・ • ・ -480188577w22), 

C~ = U X (-132983355 w83 + 431258669 w82 -・ ・ ・ -1005915583 W叫
(-319905788 w83 -433089862 w82 -・ ・ ・ + 670117391 w22), 

C~ = U X (-619696314 W 73 - 7 49238305 W 72 +.. ・ + 351193054 w21) 
(-504553108w73 -211546057 w72 -• • • -900386305 w22). 

(14) 

Let号内 EZp[u,w] be the cofactors of豆， satisfying豆＝a；c; ＋亙CJ+i.At this point, we noticed 

that gcd（均忍） ＝gcd（忍忍） ＝gcd（忍名） ＝w24 and that contu（号） ＝cont,,（亙） ＝w12 for each j. So, 

Theorem 3 allows us to replace (c;, a;，亙） by（豆／w12,号／w12,亙／w12).The LCtoW polynomial for c; 
• 一・

is given by W; := 
J 

•‘. 

a~R' 
J J 

-・ 

+b~R'. J J+1 
. For reference, we show W{: 

W{ = yx [ ux (-400332453w71 -486798555w70 + • • • -462812412研）
+ 226147071 w71 + 61235712研0+ ・ ・ ・ -480188577 w10 ] 

+ u10 x (-257318739 w68 + 143266264 w67 + ・ ・ ・ -292767155) (15) 
＋砂x(-259677 448 w69 + 498387731 w68 + • • • -201039176) 

This W! i is a big polynomial, of degree 10 w.r.t. u, so we Mreduce it by G10: W;':= := rempol(W;, G10). 

By this Mreduction，面 whichconsists of 908 monomials, for example, becomes而『 consistingof 564 
monomial. However, its coefficients w.r.t. u are still of high degrees. 

The next step, which was the final step so far, is to compute an LCtoW polynomial W" := LCtoW（で），
whereで：＝ gcd（碕，忍名） ＝w12. Sinceで＝ gcd（碕祐）， wecompute'Y := lastPRSw（巧，忍）， forexample. 

Let a,(3 E均[w]be cofactors of'Y, then we obtain厨：＝ a而＋9切．

―II w・ = yx[ ux(-404859241研）
-204727648 w132 + 206842818 w131 + ・ ・ ・ + 103862554 w10 ] 

＋叫0x (119889236 w129 + 55962549 w128 + ・ ・ ・ -111119948) (16) 
＋砂x(-377202328 w130 + 508306222 w129 + • • • + 143418763) 

W" consists of 908 monomials; we surprise that the coefficients w.r.t. u are of very high degrees. 



78

So, we simplify W"by G9 and G10(= G). We see that G9 simplifies only the terms proportional toy 

and G10 does the terms proportional to u7. By W"'we denote the result of these two Mreductions. 

w = yx [ ux (356795158厨＋ 73463847研＋・ ・ • + 767 455355研）
-253977356 w 7 -607 493081 w6 -• -．十 745350398研） ］ 

＋研x(364685846 w4 + 395558891 w3 + ・ ・ ・ -226413303) (17) 
＋研 X(-334168995研＋ 111185898w4 + ・ ・ ・ + 962099779) 

―川一Ill

We surprise that the Mreductions by G9 and G10 make W so simple; W consists of only 59 monomials. 

However, compared with G8, we must decrease the order ofW"'further, which will be done in 5.2. 
―/II 
Wi  

―II RfilnfilU: Although the expression W is simple, an intermediate expression W is ve内 big.This is the 
intermediate expression growth which occurs often in the algebraic computation. In 6.2, we present a 
tiny idea to suppress this intermediate expression growth. / / 

5.2 Decreasing the leading monomials by leading-term elimination 

We have seen that the Mreductions are very effective for reducing LCtoW polynomials. In this sub-
section, we show that the leading-term elimination is very eifective for reducing the leading coefficients. 
Furthermore, we will compute an lmn-multiple polynomial G7 for G7. 

Our technique is to apply the leading-term elimination to W"'and u x G9. Let the yu-terms of 
―/II 
W"" and u x G9 beで”’xyu and g9 x yu, respectiv丹y,henceで”'，g9E Zp[w], where degw 屈”)~ 7 and 

degw（函） ＝8. Let 1 := lastPRSw（で”'函） andii, /3 be cofactors of可， satisfying可＝年”'+(3gg.We 
―/II 

obtain 1 = -39740130研 andW_'.," := aW"'+ JLuxG9 consisting of 108 monomials. Finally, Mreducing 
W"'by Gg and G10, we obtain Gs := redpol面”',G9, G1o), as follows. 

伍＝ yx[ ux (-39740130研）

-598398494研＋512248306研＋・ • ・ - 5175136研］
＋ 砂 X(-272808160記＋ 232623453研＋・・・十 759618044) (18) 
+ u5 x (-255214102 w5 -803994460 w4 + • • • -362431630) 

伍 isour lmn-multiple of G8. Note that lmn(G8) = constxwlmn(G砂

We will compute an lmn-multiple of G1 from remainders R1,R2,R3 E Z[y,u,w], degy(R1) = 2, and 
their leading coefficients C1, C2, (忍 EZ[u,w]. (See [10] for rough expression of R砂

Let c1 := lastPRSu(C1,C1+1) (j = 1,2,3) andで：＝ gcd(c1,c2, c3). 

{ ：；ロロ悶闊悶悶悶悶：：：霜塁霊に：：： 口1：悶悶悶霊ご：
硲 ＝ー1440000000w14 + 15072000000 w13 + ・ ・ ・ + 5167800000 w尺 (19) 

で＝ gcd(c1,c2,c3)= c3. 

Using cofactors a3, b3 E Z[u, w] of c3, we computed W1 := LCtoW(c3) = aふ＋訊1E Z[y, u, w], and 
5)ヂfound that redpol(a3凡＋ b3凡，w0)-I O and redpol(a3凡＋妬R1,w0) -I 0. Hence, the method of 

extraneous-factor removal described in 4.2 failed in this case. This is reasonable because Theorem B is 
not used in the above W7. 

Fortunat~y, we can compute an lmn-multiple of G7, similarly as we have computed the lmn-multiple 
polynomial Gs of Gs above. Let cg:= lcfy(Gg) andる：＝ lcfy(W1)/100.For reference, we show西：

西＝ー 14400000w14+ 150720000w13 -2040884700w12 -195976380w11 + • • • + 51678000w互 (20)

We compute the GCD of希 andc9 by the PRS method, obtaining "I := gcd（み心） ＝260166204w2 
and its cofactors a, f3 E Z[w] satisfying aで7+ f3cg ='Y・ Since W1 =希炉＋ y1-terms+ y0-terms and 
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G9 = c9 y + y0-terms, we can decrease the order of W7 by G9 as G7 := a W7 + f3 y x G9, where G7 is as 
follows. 

G1 = y2 X (260166204研）
+ y1 x [ u6 x (890901532 w16 +.. ・ + 736495066 w -263471195) 

＋研 x(-360952533w17 + • • • -539864510w -470888958) 

l (21) 
+ y0 x [ u6 x ( 890901532 w16 +・・・十 736495066w -263471195) 

＋砂 x(-360952533w17 + • • • -539864510w -470888958) 

]. 

G1 is our lmn-multiple of G7. Note that lcf（ふ） ＝const x炉w叫whilelcf(G1) = constxy箪

6 Various theoretical and computational considerations 

6.1 On  LCtoW polynomials of many sub-variables 

In this sub-section, we use the variables notations x and u for F, with n 2'. 3, and put (u') := (u2,.., un), 
(u") := (uふ•.， un)- For 1 :S Vj :S l, we express the remainder by Rj E訳[Xm,ul,Cj = lcfXm(R3) E沢[u],

ci = nmlastPRSu1(Cj,CH1) E JK[u']，で＝ gcd(c1,...,cz) E恥[u'],and LCtoW（で）， asin 4. 
1) We discard Proposition 1 in page 31 of the paper [10], because it is useless. 

2) If n 2'. 4, we can eliminate u2 of the set {c1,...,q} as rj = nmlastPRSu,(cj,Cj+1) (1 :S j'.S l). 
This will give LCto W polynomials with leading monomials Xm吃，Xm咋，・・・.

3) As we mentioned in 4.1, if nミ3,we must be careful in computing LCtoW（で）． Ifwe set the 
leading coefficient of LCto W（で） toでthenmany coefficients of the LCto W polynomial become rational 
functions in u". In this sub-section, we clarify this point in details, and show how to compute LCtoW 

polynomials with polynomial coefficients. It must be noted first that we compute gcd(c1,..., cz) (l 2'. 3) 
by repeating two-argument GCDs as follows:で1,j:= gcd(c1, cj) (j E {2,.., l})⇒で1,2,j:= gcd（疋，2亙ぃ）
(j E {3,.., l}), and so on. 

We assume that c1, c2 E応[u']are made primitive w.r.t. u2, i.e., conら (c1)= cont叫叫＝ 1,and 
で：＝ gcd(c1,c叫issuch that degu2(で)＜min(deg叫叫，degu2位））．（Ifthe last condition is not satisfied, 
the situation is trivial.) Below, we consider computingで andtry to find瓦互2E 氏[u']satisfying 
瓦 C1十和 C2=で（thisturns out to be impossible). 

We computeでefficientlyby the EZGCD algorithm [8]. Since釘：＝ c虚 and伶：＝ c嘉 arein 
恥[u']and relatively prime, we can eliminate u2 of system｛釘，伶｝ bythe PRS method. Thus, we obtain 
c := nmlastPRS叫釘，伶） E恥[u"]and its cofactorsふ，必 E 図[u'],satisfying c = a凸＋ d嚢 This
equality gives usで＝ （ふ／c)XC1 +（＆嘉）xc2. Thus, unless c E恥， wemust introduce rational functions 
of denominatorも． Onthe other hand, it gives the following proposition at once. 

Proposition 4 

Let W1, W2 E照[xm,u] be LCtoW polynomials of c1 and c2, respectively. Computing LCtoW（で） as

LCtoW（で） ：＝もx（ふ剛＋伍 Wか (22) 

we obtain LCtoW（で） in照[x加 u]. 口

6.2 On  enhancing PRS and extended PRS algorithms 

In our method, the most expensive operation is the computation of resultants and their cofactors. We 
have so far developed an efficient PRS algorithm by utilizing the power-series [9], however, its efficiency 
is never satisfiable. We are now developing several other methods. 

Here, we present a tiny idea. In 5.1, we have faced very large polynomials,面 in(15)皿 dW"in 
(16), etc. They were generated by eliminating variable u from Cf, Cふ C~ E Z氾，w],where each C1 is of 

degree 6 w.r.t. u; see R~ in (6), where Cf = lcfy(R~). However, these polynomials were made quite small 
by Mreductions by G10 (and G9). Then, the u-elimination process will be enh皿 cedmuch if we apply 
the Mreductions each time the elimination decre邸 esthe degree of u by 1. 
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6.3 On  treatment of systems of many main-variables 

Our current scheme eliminates the main variables x1,..., Xm  at once. This will give m very big resultants. 
If m 2: 3, we should employ "divide-conquer elimination" which we have proposed in [10]. 

6.4 On  treatment of non-healthy systems 

One may think that the treatment of non-healthy systems will be difficult, which is wrong, although 
the implementation will be complicated. Non-healthy systems cause only branching of the control of 

computation. The scheme of our computation is based on the PRS, and the PRS computation branches 
off by whether its arguments are relatively prime or not. The resultant of PRS branches off by whether 
the case iii) specified in 1 occurs or not. 
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