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Abstract 

We propose a functional implementation of Multivariate Tower Automatic Diffe詑 ntiation.Our imple-
mentation is intended to be used in implementing 000-structure computation of an arbitrary Weil algebra, 
which we discussed in [5]. 

1 Introduction 

Automatic • rentiation (AD) is known as a powerful technique to compute diげerentia~-~oe~cient~ of 
a given (piecewise) smooth function efficiently and accurately. In the upcoming paper [5], the author 

proposed to use C00-rings and Weil algebras to provide a modular and exprresive framework for forward-

mode automatic difrerentiation. There, compute the C00-structure of an arbitrary Weil algebra as a 

quotient of that of the formal power series ring JR[X]. The C00-structure of政[X]was then computed 

via multivariate tower AD. It can be implemented in various ways, such as Lazy Multivariate Tower 

AD [8], or nested Sparse Tower AD [7, module Numeric.AD.Rank1.Sparse]. 
Theoretically, such existing methods can be used to compute the C00-structure of股[X].However, 

these methods are somewhat complex and not optimised for our purpose. In this paper, we will propose 
another implementation of Lazy Multivariate Tower-Mode AD using tree representation and exploiting 

smoothness to save memory consumption. Our method can be seen as aforementioned existing imple-

mentations [8, 7]. 

2 Implementation 

As an implementation language, we adopt a Haskell [3], a purely functional lazy programming language. 

It has several virtues useful for our purpose: 

1. It supports higher-order functions natively. 

2. It is a lazy language, enabling us to treat infinite structures. 

3. The type-class mechanism in Haskell allows us to use function overloading in handy. 

4. Its type system allows us to implement complex inductive types safely. 

For a general discussion on the advantages of using Haskell in computer algebra, we refer readers to 

Ishii [4]. 

We follow the standard pattern in implementing ADs in Haskell: we use the function overloading to 

implement operations on types corresponding ADs. This strategy is taken, for example, in Karczmar-

c~uk [6],_ Elliott ~1] a~d im~lement~d in ~d pa~k~ge.[7]. In Has~ell, :heビ-豆Btype-class gives arl 

abstraction over floating-point numbers that admit elementary functions, as excerpted in Listing 1. 

For example, a simple forward-mode AD implemented as a dual number can be defined as in List-

ing 2. The data-iype匹〕encapsulatesa value ofsome univariate function and its first-order differential 
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, class Fractional a => Floating a where 

2 pi : : a 

3 exp : : a -> a 

4 log : : a -> a 

s sin : : a -> a 
6 asin : : a -> a 

Listing 1: The Floating class 

data AD a= AD a a deriving (Show, Eq, Ord) 

instance Floating a=> Floating (AD a) where 
exp (AD ff')= AD (exp f) (f'* exp f) 

sin (AD ff') = AD (sin f) (f'* cos f) 

log (AD f f') = AD (log f) (f'I f) 

Listing 2: The definition of AD 

coefficient and calculates the result using the Chain Rule, using[万-…／)-operationson the coefficient 

G〕・
So our goal is to implement ~ data-type conveying information of all the higher-order 

derivatives of an n-variate smooth function on [口，whichhas ~ instances for all 

~ and n. In addition, we demand the implementation to be succinct and efficient, in a sense 

that it avoids equivalent calculation as much as possible. For example, if we want to calculate fxy2 (a, b) 
and f丑y(a, b) for some smooth f :配→恥 itshould calculate the derivatives up to fxy at most once and 

share their results in computing both f xy2 and f丑y;in other words, results up to fxy must be memoised. 

To that end, we employ an infinite tree representation. The main idea is to use an n-ary infinite tree 

to express a (piecewise) smooth functions: the root node corresponds to the value f(a), and its child 

in the nth branch corresponds to 8xnf(a). The intuition in the trivariate case is depected in Figure 1. 

This can be viewed as a nested trie (or prefix-tree) for memoising functions with n-many natural number 

arguments. Actually, this representation is isomorphic to the one we can obtain when ~ tower 
from ad package [7] to the fixed-length vectors. However, as we assume f to be (piecewise) smooth, there 

are space for optimisation. That is, in the above representation, fxy and fyx must almost always coincide 
except on non-smooth points. In other words, we can assume partial differential operators to be almost 

always commutative on inputs. In many applications, the value on the non-smooth points is negligible 

and hence we must use more succinct representation making use of the commutativity. 

／ 
f(a) 

| 
fx(a) - fy(a) 

＼ 
fz(a) 

/ | ＼ / | ＼ / | ¥ 
fxx(a) fxy(a) fxz(a) fyx(a) fyy(a) fyz(a) fzx(a) fzy(a) fzz(a) 
. •. • ;’•. ・ •. •. ： •. •. ．．． • ; • •....• ; •...• • ; •. • •. • ; • •..• • : •.... • ; • • • 

•• ':'•. ．． • :'•. :. ： •. • • 9. • : •. •. ．． •. :'•...•. • : • •.. : : ： ・ •.. .• ̀．: • •.. .•. • : • [ •.' •• •. 

Figure 1: Tri variate case, first trial 
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／ 
f(a) 

| /  
fx(a) ん（a) ~ fz(a) 

/ | ＼ | ¥ | 
fx2(a) fxy(a) fxz(a) /y2(a) fyz(a) fz2(a) 

• ： •. . ... • • : •• 

Figure 2: Trivariate case, succinct version 

--------.', ----------f(a) 

fx(a) ~ fx(a) ~ / f(a) ~ 

fx2(a) fx(a) ん（a) f(a) 

••••••••• ＼ / ＼ ／ ＼ | 
fx2(a) J・~y(a) fx(a) /y2(a) /y(a) fz(a) 

/ ¥ ／ ＼ |.. •••• ・ •...... | | 
f丑y(a)f丑（a) 加ら(a) fxz_(a) ・ ・ fyz_(a) f丑・(a)

|.．. •. • • • •• •. 1 : 

fx2z(a) fxyz 

Figure 3: Trivariate case, tweaked succinct version 

The idea is simple: if once one goes down ith path, we can only choose Ph branches for j：：： i. This 
trick is illustrated in Figure 2 for trivariate case. This can be seen as a special kind of an infinite trie (or 

prefix-tree) of alphabets ax, with available letter eventually decreasing. 
We further tweak this representation to make data-type definition and algorithm simple (Figure 3). 

This has two advantages: 

1. We can directly express the tree structure purely as an algebraic data-type (ADT); we need to use 
fixed-length vectors here otherwise. 

2. Derivatives can be computed simply by induction on the number of variables. 

To see these,_advant~ges, we _now _turn ~o the Has~ell i_mpl:_mentatio~ (~isti~g 3)_-~ is_ the 
type corresponding to the n-variate formal power series ring. Instance declarations implements functions 

and their derivatives on ~ - It might seems circular at the first glance, but these definitions 
works several reasons. For example, the definitions of sin and cos works because: 

1. The calls of sin and cos in the first arguments（□正こ）andG戸刀）arethose on the value巳〕in

the coefficient field口〕，not~ 'whose implementation is already given. 

2. The second calls of sin and cos (（df * cos f l and (-df * sin x)） is those on the (STower. n a) itself 
and results in an infinite loop. However, we are constructing an infinite trees that carries all the 
partial derivative coefficients, and those coefficients are stored as the first argument of Q巨〕，which
has definite values by the discussion in (1). 
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, data STower n a where 

2 ZS :: !a-> STower 0 a 

3 SS :: !a-> STower (n + 1) a-> STower n a-> STower (n + 1) a 

s instance Numa=> Num (STower n a) where 
6 ZS a+ ZS b = SZ (a+ b) 

r SS f df dus + SS g dg dvs = SS (f + g) (df + dg) (dus + dvs) 

8 

9 ZS a* ZS b: ZS (a* b) 

10 SS f df dus * SS g dg dvs = (f * g) (f * dg + df * g) (dus * dvs) 

11 

12 

13 instance Fractional a => Fractional (Slower n a) where 

14 ZS a / ZS b = ZS (a / b) 

,, SS f df dus I SS g dg dvs = SS (f / g) (df / g -f * dg / gA2) (dus / dvs) 

16 

17 instance Floating a => Floating (STower n a) where 

1s log (ZS a) = ZS (log a) 

19 log (SS f df dus) = SS (log f) (df / f) (log dus) 

20 sin (ZS a) = ZS (sin a) 

21 sin (SS f df dus) = SS (sin f) (df * cos f) (sin dus) 

22 cos (ZS a) = ZS (cos a) 

23 cos (SS f df dus) = SS (cos f) (-df * sin f) (cos dus) 

24 exp (ZS a) = ZS (exp a) 

2s exp (SS f df dus) = SS (exp f) (df * exp f) (exp dus) 

26 

Listing 3: Definitions of operations of STower 

3. The direct c~lls i~, final_ a~g~ments _(~三三） and 区三三〕） seems looping, but they are indeed 

on power series with strictly less variable,that is, on ~ , instead of ~ - As 
these arity strictly decreases, this stops after finite steps. 

Note that (2) works also because both G回〕and巨百〕aremembers of the ~ class. In other 

words, member functions of the [~ class is closed under derivatives. More generally, if the class 

こ providesa familyofnumerical functions on巨 whichisclosed under derivatives (together with 

functions from their superclasses), we can likewise derive the instance ~ as above. This 

idea is embodied in ~ function in Listing 4, and the usage is illustrated by the alternative 
definitions of instances that follows. 

One might note that (3) and the last argument in the区豆lausein ~ is really simple 
recursion. We adopted the tweaked representation as depicted in Figure 3, instead of Figure 2, for this 
simplicity. If we make branching n-ary as in Figure 2, the implementation gets more complicated as the 
number of variable decreases. One might worry that the same coefficient gets duplicated among multiple 

branches, but if we choose a language with a sharing (like Haskell), these value are shared across the 
siblings1l. 

1lWe could achieved this also in more low-level langauges, such as C/C++, by representing each node as a pointer instead 
of a direct value. 
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1 liftSTower 
2 :: forall c n a. (KnownNat n, ca, forall x k. c x => c (STower k x)) 
3 => (forall X. C X => X -> x) 

＾ 
- - A Function 

5 -> (forall X. C X => X -> x) 
- - A its first-order derivative 

r -> STower n a 
s -> STower n a 
o liftSTower f df (ZS a)= ZS (fa) 

10 li ftSTower f df x@(SS a da dus) = SS (f a) (da * df x) (f df dus) 
11 

12 instance Floating a => Floating (STower n a) where 
13 log = liftSTower @Floating log recip 
14 sin = liftSTower @Floating sin cos 
,, cos = liftSTower @Floating cos (negate. sin) 
1s exp = liftSTower @Floating exp exp 

Listing 4: Helper function for implementing derivatives 

3 Benchmarks 

We report several benchmarks on the proposed method with the existing implementation in the ad [7] 
package. 

The code used in the benchmarks is implemented as a Haskell library and hosted on GitHub2l. All the 
benchmark code was compiled with GHC 8.10.4 with the flag -threaded -02. We ran the benchmark suites 
on a virtual Linux environment available on GitHub Actions (Standard_DS2_v2 Azure instance) with 

two Intel Xeon Platinum 8171M virt叫 CPUs(2.60GHz) and 7 GiB of RAM. The Gauge framework [2] 
was used to report the run-time speed. 

3.1 Tower Automatic Differentiation 

In this subsection, we compare the run-time speed and memory consumption of the existing multivariate 
tower AD and the proposed method. In univariate case, we compare our proposed method with two 

existing implementations： 巳~ and Q互三〕 both from ad package. The former is the generic im-

plementation of multivariate tower AD, and the former is speciailised implementation for the univariate 
case. 

Figures 4 and 5 show the run-time speed and heap allocation of the existing implementations（ビ5-〕
and 巳互~ only for univariate case), and the proposed method. In univaricate case, the existing imple-

~entati~n for uni~ari~te tower A~,prov'.ded,.~.e. q:互口fromadpackage, peforms thebest both in terms 

of run-time speed and memory allocation. Notably, our implementation outperformsビ-三)bothin 

time and space. In particular, althoughビ-王〕performslinearly both in time and space when applied 

to the identity, our method performs eventually constantly. This is because our actual implementation 
employs some heuristics to detect a function whose higher derivatives are eventually zero. 

Compared to巨-王}ourproposed method performs always better both in univariate and mul-

tivariate cases. In particular,~り presents a steep quadratic growth both in time and space, our 

proposed method peroforms almost linearly. 
In summary, our method performs really well both in terms of time and space in the multivariate 

case, although we need more optimisation in univariate cases. 

2) https: / /gi thub. com/konn/smooth/tree/d3386a1 5c97f23d4071 b09f97b7bc87f2c4b1 da4 
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Figure 6: Speed benchmarks for Weil algebra W = JR[x, y]/（企— y叫炉）．
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Figure 7: Heap benchmarks for Weil algebra W =民［x,y]/（企— y汽炉）．

3.2 Weil Algebra Computation 

In this subsection, we compare the performances of Tower AD applied to Weil algebra computation as 

described in [5]. 
Figures 6 and 7 present the time and space performance of Weil algebra computation based on the 

existing implementation (Sparse) and the proposed method. In particular, we evaluated three functions 

(the identity, ex, and sinx • e炉＋z)on a Weil algebra W =民［x,y]/（企— y汽炉）． We feed three types of 
inputs: a sparse input (1), 1 + d, and dense input 1 + d1 + d2 + dy + d心＋ d~. In any case, our proposed 
method largely outperforms the existing implementation. 

4
 

Conclusion 

We presented a succinct and efficient implementation of a multivariate lazy forward-mode tower auto-
matic differentiation. This can be viewed as a mixture of existing methods but optimised exploiting the 
commutativity of partial differential operators. The basic idea is to store all the partial derivatives in 
some kind of a prefix-tree, in which the number of branching will eventually decrease as the right branch 
is chosen. We applied laziness and the advanced type-system in Haskell. 

Our implementation performs particularly well in multivariate cases and gives pleasing improvements 
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both in time and space when applied to Weil algebra computation as described in [5]. For univariate case, 
however, there is much room for improvements. It might be a good future work to explore the special 
treatment in the univariate case to remove overheads. 
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