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Abstract 8 

The occurrence of prolonged dry spells and the shortage of precipitation are two different 9 

hazardous factors affecting rainfed agriculture. This study investigates a multi-state Markov 10 

chain model with the states of dry spell length coupled with a probability distribution of 11 

positive rainfall depths. The Nineveh Plains of Northern Iraq is chosen as the study site, where 12 

the rainfed farmers are inevitably exposed to drought risks, for demonstration of applicability 13 

to real-time drought risk assessment. The model is operated on historical data of daily rainfall 14 

depths observed at the city Mosul bordering the Nineveh Plains during the period 1975-2018. 15 

The methodology is developed in the context of contemporary probability theory. Firstly, the 16 

Kolmogorov-Smirnov tests are applied to extracting two sub-periods where the positive rainfall 17 

depths obey to respective distinct gamma distributions. Then, empirical estimation of transition 18 

probabilities determining a multi-state Markov chain results in spurious oscillations, which are 19 

regularized in the minimizing total variation flow solving a singular diffusion equation with a 20 

degenerating coefficient that controls extreme values of 0 and 1. Finally, the model yields the 21 

statistical moments of the dry spell length in the future and the total rainfall depth until a 22 

specified terminal day. Those statistical moments, termed hazard futures, can quantify drought 23 

risks based on the information of the dry spell length up to the current day. The newly defined 24 

 
1 Corresponding author. E-mail address: unami.koichi.6v@kyoto-u.ac.jp Phone: +81-75-753-6161 (K. Unami) 



2 

 

hazard futures are utilized to explore measures to avert drought risks intensifying these 25 

decades, aiming to establish sustainable rainfed agriculture in the Nineveh Plains. 26 

 27 

Keywords: Dry spell length, Rainfall depth, Multi-state Markov chain model, Northern Iraq, 28 

Hazard futures, Minimizing total variation flow 29 

 30 

1. Introduction 31 

 32 

The occurrence of prolonged dry spells and the shortage of precipitation are two different 33 

hazardous factors affecting rainfed agriculture, whose measures of risk aversion, such as 34 

irrigation facility or weather insurance, are vulnerable. This study shows that a multi-state 35 

Markov chain model with the states of dry spell length (DSL) coupled with a probability 36 

distribution of positive rainfall depths, referred to as a multi-state Markov chain model, has 37 

overwhelming advantages in application to drought risk assessment in rainfed agriculture. The 38 

Nineveh Plains of Northern Iraq, where the rainfed farmers are inevitably exposed to drought 39 

risks, is chosen as the study site for demonstration. 40 

The shortage of precipitation in the future is traded as futures contracts since the 41 

introduction of rainfall derivatives at the Chicago Mercantile Exchange (CME) in 2011, 42 

motivating slow but steady development of studies on stochastic processes modeling time 43 

series of hydrological phenomena (Tong and Liu 2021). Turvey (2001) was one of the earliest 44 

studies arguing the applicability of rainfall derivatives to risk hedges in agriculture. Leobacher 45 

and Ngare (2011) introduced a discrete-time Markovian model for pricing rainfall derivatives, 46 

with numerical illustrations of Monte Carlo simulations. Masala (2014) proposed a semi-47 

Markov model defined on the probability space to price some rainfall contracts issued by CME. 48 

These two papers in the 2010s cited above did not explicitly consider the filtration of 49 

information. As can be found in textbooks of probability theory such as Williams (1991), most 50 



3 

 

objects in such a financial engineering context involve the filtered probability space to 51 

rigorously deal with a stochastic process whose future behavior depends on the information 52 

available up to the current time. Cabrera et al. (2013) stated that the standard approach of 53 

pricing a weather futures contract at the current time is to calculate the risk-neutral expectation 54 

of an index, which is an accumulated value of the weather variable during a given period of 55 

time, based on the filtration, requiring a model for the index or the underlying weather variable. 56 

Unfortunately, most methodologies developed by hydrologists lack such a mathematical 57 

perspective on the filtered probability space. A range of statistical methods and descriptors of 58 

drought characteristics are utilized for a-posteriori evaluation of drought severity in the sense 59 

of return period (Wilby et al. 2015). The World Meteorological Organization (2012) patronizes 60 

the standardized precipitation index (SPI), which is the accumulated precipitation depth during 61 

a given period standardized with its statistical moments. SPI is widely applied to drought risk 62 

assessment, linked with different probability distribution functions (Angelidis et al. 2012), 63 

spatial characterization (Cavus and Aksoy 2019), and intensity-duration-frequency curves 64 

(Cavus and Aksoy 2020). 65 

On the other hand, financial engineers and actuary scientists have not been pursuing the 66 

DSL, which is defined as the number of consecutive days without rainfall of a specified 67 

threshold depth (Anagnostopoulou et al. 2003; Vicente-Serrano and Beguería-Portugués 2003). 68 

Unlike the other indexes depending on the weather variables during a given period of time, the 69 

DSL is given as a variable period of time. A prolonged dry spell cannot afford to keep the soil 70 

moisture in the root zone readily available for water consumption by rainfed crops, as it mostly 71 

stems from infiltrated local rainfall (Sharifi et al. 2016). Therefore, the temporal distribution of 72 

DSL significantly affects the structure of drought that may lead to famine. Knowledge of DSL 73 

coupled with the probability distribution of precipitation depths can aid in drought prediction 74 

and hence drought disaster preparedness. A primitive method for such purposes is an analysis 75 

using the weather generator (WGEN) model of Richardson and Wright (1984), which considers 76 
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a first-order Markov chain with two states: dry day and wet day. WGEN and its variants are 77 

still in use for drought research with practical applications (Fischer et al. 2013; Yadeta et al. 78 

2020), although the first-order Markov chain with two states generates DSL with incorrect 79 

autocorrelation structures. Markov chains of higher orders or with more states may better 80 

represent the persistence of drought. Martin-Vide and Gomez (1999) attempted to apply 81 

Markov chains of higher orders up to the tenth for distribution of DSL over Peninsular Spain 82 

under mostly semi-arid Mediterranean climate. However, explicitly estimating the transition 83 

probabilities in Markov chains of higher orders is not an easy task, as their number is equal to 84 

the states’ number to the power of the order (Gao et al. 2020). Al-Khayat and Al-Sulaiman 85 

(2013) proposed a method to predict the situation of rain in the next day based on the 86 

information actually available by today, using Markov chains with four states: lack of rain, 87 

light rain, moderate rain, and heavy rain. The method was applied to historical data recorded 88 

in the city Mosul, where this study focuses on, with two algorithms of determining transitions 89 

among the states. Another innovative approach is based on a stochastic differential equation 90 

model which takes the cumulative rainfall depth, not the time, as the principal independent 91 

variable, to comprehensively assess drought and flood risks (Unami et al. 2010). 92 

This study provides a more straightforward approach to drought risk assessment. Firstly, 93 

the set of DSL itself is taken as the space of states to constitute a first-order Markov chain. The 94 

DSL of zero represents a wet day. Astonishingly, DSL as such a state variable has been paid 95 

the least attention since Tatano et al. (1992), which might be attributed to the dissemination of 96 

the Poisson processes (Onof et al. 2000; Sirangelo et al. 2015; Sirangelo et al. 2017), including 97 

the fractional ones (Yang et al. 2020), applied to the arrivals of rainfall events without utilizing 98 

the benefit of filtration for decision making. Then, the probability distribution of positive 99 

rainfall depths, or rainfall depths on wet days, is considered. In application to historical data 100 

observed at Mosul during the period 1975-2018, a preliminary analysis showed better fitting 101 

to the gamma distribution when the data throughout the whole year is treated as a single 102 
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population, rather than monthly treatment (Fadhil 2018). The nonparametric Kolmogorov-103 

Smirnov (K-S) tests are used for comparing empirical time-homogeneous probability 104 

distributions of positive rainfall depths for distinct two sub-periods, as well as for comparing 105 

an empirical time-homogeneous probability distribution of positive rainfall depths for a sub-106 

period with a gamma distribution. Coupling a fitted gamma distribution of positive rainfall 107 

depths to the first-order Markov chain with the multiple states of DSL results in a multi-state 108 

Markov chain model, which can be applied to drought risk assessment. This multi-state Markov 109 

chain model is essentially different from any of the earlier models by the authors, including 110 

Sharifi et al. (2016), Unami and Mohawesh (2018), and Nop et al. (2021). Sharifi et al. (2016) 111 

used a time-continuous Markov process with the continuous states of soil moisture. Unami and 112 

Mohawesh (2018) developed a time-continuous Markov process with the continuous states of 113 

a water flow index. Nop et al. (2021) considered a multi-state Markov chain with the states of 114 

discretized rainfall depth ranges. The overwhelming advantages of this multi-state Markov 115 

chain model are the first-order Markovian properties and the ability to capture the memory 116 

effect of sequential dry days. The transition probabilities of the multi-state Markov chain are 117 

identified from observed rainfall data as functions of the time and the states. However, due to 118 

the scarcity of recorded wet days, spurious oscillations occur in the empirical transition 119 

probabilities. Jimoh and Webster (1999) applied the conventional Fourier fitting technique to 120 

smoothing the transition probabilities of Nigerian rainfall. Still, it does not work well for Iraqi 121 

cases where abrupt alternation between dry and wet seasons is intrinsic. Therefore, a novel 122 

regularization technique is introduced to avoid the spurious oscillations without spoiling true 123 

abrupt variations, inspired by the minimizing total variation flow (MTVF), which is called the 124 

ROF model (Rudin et al. 1992). The ROF model is applied initially to image denoising, which 125 

has the same requirement as the regularization of the transition probabilities here: avoiding 126 

spurious oscillations without spoiling true abrupt variations. The success of the ROF model is 127 

attributed to working in the space of functions of bounded total variation rather than the 128 
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disappointing space of square-integrable functions. The mathematical difficulty is that 129 

functions of the MTVF with bounded total variation may not be smooth, similarly to value 130 

functions appearing in optimal control problems (Unami and Mohawesh 2018; Unami et al. 131 

2019). There is a tremendous number of papers dealing with the MTVF applied to image 132 

denoising. However, the regularization technique developed here has an advantage over the 133 

conventional ones that a special degenerating coefficient skillfully distinguishes the spurious 134 

oscillations from true abrupt variations in controlling extreme values of 0 and 1 as transition 135 

probabilities. Then, it is shown that statistical moments of the DSL in the future and the total 136 

rainfall depth until a specified terminal day, which are termed hazard futures in this study, can 137 

be calculated with recursive formulae. Finally, the multi-state Markov chain model is applied 138 

to drought risk assessment in the Nineveh Plains of Northern Iraq in terms of the hazard futures 139 

defined for each of the states at each time. The rainfed farmers observing the DSL up to the 140 

current day can make decisions at stopping times in the context of the filtered probability space, 141 

as implicitly suggested in Ojara et al. (2020). The results of detailed drought risk assessment 142 

warn of failure in rainfed agriculture practiced in the Nineveh Plains, implying a regime shift 143 

of DSL and positive rainfall depth from the first sub-period to the second, and thus measures 144 

to avert the risks are explored. 145 

Mathematical preliminaries required in this study are as follows. The pair of a set of 146 

possible outcomes and a σ-algebra on it is called a measurable space. When a probability 147 

measure is defined on a measurable space, the triple consisting of the set, the σ-algebra, and 148 

the probability measure is called a probability space. A family of sub-σ-algebras ordered non-149 

decreasingly is called a filtration of the σ-algebra. A probability space equipped with a filtration 150 

is a filtered probability space. A random variable is a real-valued measurable function on the 151 

set. A stochastic process is a collection of random variables parameterized with time. A 152 

stopping time is a random variable with specific properties defined on a filtered probability 153 



7 

 

space. The first-order Markov chain with the multiple states of DSL in this study is a stochastic 154 

process defined on a filtered probability space. 155 

 156 

2. Overview of the study site 157 

 158 

The land of the Republic of Iraq lies within the subtropical and the temperate zones of the 159 

northern hemisphere, located in the western part of Asia. Average annual precipitation ranges 160 

from less than 100 mm in the arid deserts covering over 60 % of Iraq in the south up to 1,200 161 

mm in the north and north-eastern mountain regions of hot-summer Mediterranean climate (Al-162 

Ansari 2013), and precipitation in Iraq is generally seasonal and mostly occurs in the winter 163 

from November to April. It should be noticed that the record highest temperature in Iraq was 164 

renewed to 52.0 °C in 2010, which might be attributed to the global warming (Al-Ansari 2013), 165 

and to 53.6 °C in 2016 according to media reports. Kadim (2013) confirmed clear trends in air 166 

temperature and rainfall at three weather stations in Iraq: Mosul, Baghdad, and Basra, using 167 

the records for the longest possible periods. Basra showed the most increasing air temperature, 168 

followed by Mosul and then Baghdad. Baghdad showed the most decreasing rainfall, followed 169 

by Mosul and then Basra. Azooz and Talal (2015) applied nonlinear regression to compiled 170 

historical data of mean monthly temperature and precipitation for four main cities of Iraq, 171 

namely, Baghdad, Mosul, Basra, and Kirkuk with the observation periods of 1887-2013, 1900-172 

2013, 1923-2013, and 1935-2013, respectively. The results show a significant increase in 173 

temperature and a decrease in precipitation, which are considered as two manifestations of 174 

climate change. Their extrapolation to future predictions for temperature agreed well with 175 

conclusions of the Intergovernmental Panel for Climate Change 2007 (IPCC 2007) report on 176 

greenhouse effect warming. Robaa and AL-Barazanji (2013) also showed rising trends of 177 

annual mean surface air temperature in 11 Iraqi stations. Furthermore, the lengths of dry 178 

seasons in Iraq increased by two months in the late century (Evans 2009). A more 179 
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comprehensive statistical analysis by Salman et al. (2018b) suggested unidirectional trends in 180 

rainfall and rainfall-related extremes in Iraq. Agha and Şarlak (2016) analyzed climate 181 

variables observed at 28 Iraqi meteorological stations in the period of 1980-2011 and concluded 182 

that such climatic impacts were spatially uniform. However, Salman et al. (2018a) selected an 183 

ensemble of general circulation models to project higher increases in temperatures in the north 184 

and northeast of Iraq in the 21st century. 185 

In addition to the harsh climates, Iraq has geopolitical disadvantages in water resources as 186 

a downstream country. Owing to the Tigris and Euphrates Rivers, Iraq was lavish in its water 187 

resources compared to other countries. However, dams constructed on those rivers and their 188 

tributaries outside the border of Iraq are negatively affecting the flow regimes. Paradoxically, 189 

reliance on those major rivers is making Iraq more vulnerable to both flood and drought risks. 190 

The Nineveh Plains refers to the region extending over Tel Kaif, Al-Hamdaniya, and 191 

Shekhan Districts of Nineveh Governorate, bordered by the Tigris River flowing through the 192 

city Mosul to the southwest, the Great Zab River to the southeast, and fold mountains 193 

continuing to Dohuk Governorate to the north. It is under a semi-arid environment, which is 194 

transitional from the arid deserts to the mountain regions. The topography of the Nineveh Plains 195 

and the vicinities is shown in Figure 1, depicted with the SRTM digital elevation data (Farr et 196 

al. 2007). There are four main meteorological stations in the vicinities of the Nineveh Plains, 197 

namely, Mosul, Sinjar, Telafer, and Rabea, whose positions are shown in Figure 1 as well. 198 

Mustafa (2012) calculated basic statistics of monthly rainfall depths observed at those four 199 

stations during the period 1974-2002, suggesting similar declining trends at all the stations. 200 

Taha (2014) showed that annual rainfall depths in Mosul and Sinjar obey to respective normal 201 

distributions. In the Nineveh Plains, July and August are the hottest months of the summer 202 

season, where the mean maximum temperatures are 39–43 ℃ and often reach nearly 50 ℃ 203 

though the night temperatures may drop down to 20 ℃, while the mean maximum temperatures 204 

are 7–16 °C and the mean minimum temperatures are 2–7 °C with a possibility of frost during 205 
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the coldest months (Awchi and Kalyana 2017). Zakaria et al. (2013) analyzed historical records 206 

of temperature and rainfall in Mosul for the period 1900-2009, showing significant fluctuations 207 

in their average monthly values during the sub-periods 1900-1930, 1930-1960, 1960-1990, and 208 

1990-2009. An impression at a glance is that the extremes in temperature amplified after 1990, 209 

involving delays in the onset of wet seasons. The Nineveh Plains is more prone to drought than 210 

the other parts of Iraq, as rainfed agriculture for winter grain crops is widely practiced. 211 

 212 

Figure 1: The topography of the Nineveh Plains and the vicinities with the locations of the 213 

four main meteorological stations. 214 

 215 

Under the above-mentioned peculiar circumstances, drought risk assessment attracts more 216 

attention to sustain rainfed agriculture in the Nineveh Plains. It is generally known that the 217 

erratic occurrence of rainfall with the uneven spatio-temporal distribution of rainfall amounts 218 

leads to unsuccessful agricultural production. Variability of rainfall in the growing seasons, 219 

rather than the total annual precipitation, can severely affect productivity (Barron et al. 2003; 220 

Rockström et al. 2010).  In this context, Al-Najafee and Rashad (2012) conducted a sensitivity 221 

analysis of rainfall distribution impacting on wheat productivity in the Nineveh Plains. Rasheed 222 

(2010) revealed that 56% of the years 1941-2002 were drought years in terms of SPI at nine 223 

metrological stations in the northern part of Iraq. Furthermore, as a follow-up study of Kalyan 224 

and Awchi (2015) using the deciles method, Awchi and Kalyana (2017) employed SPI at 225 

different time scales of 3, 6, 12, and 24 months to analyze the meteorological drought in the 226 

northern part of Iraq, based on monthly rainfall data during the period 1937–2010. Results 227 

showed that severe drought events occurred every decade, but the severest ones clustered 228 

during the years 1997–2001 and 2006–2010. 229 

This study examines time series data of daily rainfall observed at the meteorological station 230 

in Mosul during the period from January 1st, 1975 through December 31st, 2018, as the 231 
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observation periods at the other three meteorological stations in the vicinity of the Nineveh 232 

Plains are much shorter. Figure 2 shows the temporal accumulation of rainfall depths observed 233 

in each Gregorian year without missing data, visualizing the alternation of dry and wet seasons 234 

as well as the variability of the annual rainfall depths. 235 

 236 

Figure 2: Accumulated rainfall depths observed at the meteorological station in Mosul in each 237 

Gregorian year without missing data. 238 

 239 

3. Methodology 240 

 241 

Figure 3 presents a flowchart of the methodology developed in this study. The time series 242 

data of daily rainfall mostly shown in Figure 2 and the multi-state Markov chain to be defined 243 

in Equation (9) are the two sources of the multi-state Markov chain model. The procedures 244 

involving positive rainfall depths and transition probabilities for DSL are described in 245 

subsection 3.1 and subsection 3.2, respectively. The resulting multi-state Markov chain model 246 

is applied to drought risk assessment with the hazard futures calculated by the methods in 247 

subsection 3.3. Measures of risk aversion are discussed in subsection 4.3 of the next section. 248 

 249 

Figure 3: Flowchart of the methodology. 250 

 251 

3.1 Probability distributions of positive rainfall depths 252 

 253 

Considering the severe decline in rainfall during that 44 years period, identification and 254 

operation of the multi-state Markov chain model are based on the data for distinct two sub-255 

periods. The statistical methods described below, which can be found in standard textbooks of 256 

hydrology such as Loucks and van Beek (2005), are employed to extract sub-periods having 257 
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time-homogeneous rainfall regimes. The well-known K-S tests are firstly applied to comparing 258 

empirical probability distribution of positive rainfall depths for distinct two sub-periods. The 259 

empirical cumulative distribution function (ECDF) 
EF  for data set E of observed positive 260 

rainfall depths 
ir  sorted in ascending order is given by 261 

 ( )   ( ),
0

1 Ei n

E ir
iE

F r I r
n



−
=

=    (1) 262 

where 
En  is the number of observations in the data set E, and 

  ( ), ir
I r
−

 is the indicator 263 

function, which is equal to 1 if 
ir r  and equal to 0 otherwise. The Kolmogorov-Smirnov 264 

statistic for the ECDFs of two data sets 
AE  and 

BE  is calculated as 265 

 ( ) ( ), sup
A B A BE E E E

r

D F r F r= −   (2) 266 

which must satisfy the inequality 267 
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to reject, at a significance level 
L , the null hypothesis that the observed positive rainfall 269 

depths in the two data sets are drawn from the same distribution. After extracting data sets 270 

obeying to single distributions, the K-S test is applied to examining whether each of them fits 271 

to a gamma distribution or not. The probability density function (PDF) 
gam ( )f r  of the gamma 272 

distribution is given by 273 
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( )

r r
f r

  



− −
=


  (4) 274 

 with the two parameters   and   having the properties 275 
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where E and Var represent the mean and the variance, respectively. The Kolmogorov-Smirnov 277 

statistic for the ECDF of a data sets E  and a given cumulative distribution function (CDF) F 278 

is calculated as 279 

 ( ) ( )supE E
r

D F r F r= −   (6) 280 

which must satisfy the inequality 281 

 E En D K   (7) 282 

for a criterion K , to reject, at a significance level 
L , the null hypothesis that the observed 283 

positive rainfall depths in the data set are drawn from the given distribution. The criterion K  284 

solves the equation 285 
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2 2
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exp 1
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



=

 −
− = − 
 
 

 .  (8) 286 

 287 

3.2 Multi-state Markov chain model 288 

 289 

Let  denote the set of non-negative integers (0, 1, 2, …), which is countably infinite. Let 290 

kR  represent the rainfall depth on the day k . The DSL up to the day k is chosen as the 291 

state variable 
kX , which is rigorously defined as 292 

 
 

( )
,

inf
l

k
l r R l k

X k



  

= −   (9) 293 

where l , and r  is the threshold of rainfall depth such that the day l is regarded as a dry 294 

day if .lR r  Then, the space of the state variables is . Regarding the state variables 
kX  as 295 

random variables, the series of 
kX  parameterized by the day k becomes a first-order Markov 296 

chain defined on a filtered probability space  ( ), , , :t P t  , where   is the set of all 297 

possible outcomes, t
t

=   is the σ-algebra with the sub-σ-algebras 
t
 generated by 

kX  298 
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where 0 k t  ,  t  is the filtration, and P  is the probability measure on  . The probability 299 

measure P  is fully determined if transition probabilities 300 
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  (10) 301 

are given for each i , achieving the Markovian property ( ) ( )t s t sP X U P X U X =   302 

for any Borel set U  on  if 0 s t  . We assume that 
0iP  for each i  is a year-periodic 303 

function of the time t , which is compatible with the day of the Gregorian year as 304 
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t D
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= ,  (11) 305 

where 
year 365.25D = , and 

0iP  at the time t  is denoted by ( ),u t i . With a specified time range 306 

t , an empirical estimate ( )ˆ ,u t i  for ( ),u t i  from historical data is given by 307 
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where 
0
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iN  is the number of days k  such that t k t−   and 
kX i=  and 
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1

t

iN  is 309 

the number of days k such that t k t−   and 
kX i=  and 

1kR r+  . An unconditional 310 

expectation of the dry day is estimated as 311 

 ( )
0

0 1

ˆ ,

t

i

i

t t

i i

i i

N

u t
N N

 =
+
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 313 

3.3 Regularization of transition probabilities 314 

 315 

The number of data available for empirical estimation of a transition probability is inversely 316 

proportional to the time range t , implying the tradeoff between resolution and accuracy. 317 

Here, we propose a novel regularization technique, which reduces the total variation in the 318 
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function ( ),u t i  defined on the set )year0, D  . Firstly, the function ( ),u t i  is embedded into 319 

( ),u u t x=  defined on the set )  )year0, 0,D   , using the piecewise linear interpolation in the 320 

x-direction. Then, a novel singular diffusion equation with a degenerating coefficient is 321 

introduced as 322 

 ( )1
u u

u u
u

  
= −     

  (14) 323 

where   is a virtual time, and   is the del operator in the t-x-plane. The scope of (14) is 324 

outlined in Appendix 1, explaining how singular diffusion equations are derived in the context 325 

of the variational calculus and how the degenerating coefficient operates. The MTVF is the 326 

solution to the initial value problem of (14) with 327 

 ( ) ( )ˆ, ,  at 0u u t x u t x = = =   (15) 328 

where ( )ˆ ,u t x  for x i=   is set as ( )ˆ ,u t i  in (12) if the denominator is large enough and as 329 

( )ˆ ,u t   in (13) otherwise, and the piecewise linear interpolation is applied to ( )ˆ ,u t x  for 330 

.x  A numerical method is developed here to approximately solve (14), considering the 331 
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  + =  

  (16) 336 
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where the periodic boundary condition ( ) ( ), 0,tu n t i u i =  and the Neumann boundary 337 

condition ( ) ( ), , 1x xu m t n u m t n =  −  are imposed. This Neumann boundary condition stems 338 

from an assumption that the occurrence probability of rain is indifferent whether the conditional 339 

DSL is 1xn −  or 
xn  if 

xn  is large enough. The coefficient ( )1u u− , which degenerates when u 340 

approaches to 0 or 1, is estimated as ( )max min1u u−  using 341 

 ( )( )max max , , aveu u m t i u=    (17) 342 

and 343 

 ( )( )min min , , aveu u m t i u=    (18) 344 

where 345 

 
( )( ) ( )( ) ( ) ( )1 , 1 , , 1 , 1

4
ave

u m t i u m t i u m t i u m t i
u

+  + −  +  + +  −
= .  (19) 346 

Then, (14) is finally discretized as a system of the ordinary differential equations 347 

 ( ) ( )
, 1, , , 1

max min

d
, 1

d

m i m i m i m i

t t x xu m t i u u
t x

   



− − − −
 = − + 

  
,  (20) 348 

imposing a boundary condition , 1 ,0m m

x x − =  on 0i =  for each m. The standard Runge-Kutta 349 

method is employed for the integration of (20) in the  -direction. A critical issue with the 350 

dynamical system of (20) is that it does not necessarily converge to a steady state because of 351 

its singular diffusivity. Osher et al. (2005) proposed a reasonable stopping criterion for the ROF 352 

model using a discrepancy principle. However, an ad hoc value of   is selected to stop the 353 

numerical integration so that acceptable regularization results are obtained.  354 

 355 

3.4 Hazard futures 356 

 357 

The multi-state Markov chain model constructed above is now applicable to the real-time 358 

assessment of drought risks based on the information of the state 
tX , the DSL up to the current 359 
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day t. This implies that the state 
tX  of the multi-state Markov chain is utilized as the index for 360 

decision making. Classic weather indexes such as SPI are not suitable for that purpose because 361 

they are not Markovian. Two critical quantities are considered here: the DSL in the future; and 362 

the total rainfall depth until a specified terminal day N. The last day the dry spell continuing 363 

from the current day t is denoted by T. The first and the second statistical moments of the DSL 364 

in the future, which is T t−  and represented by L , satisfy 365 

 ( )1 1E 1 E 1 1t i tT t X i P T t X i+ − =  = +  − + = +       (21) 366 

and 367 

 ( ) ( ) ( )( )( )22

1 1 1E 1 2E 1 1 E 1 1t i t tT t X i P T t X i T t X i+ +
  − = = +  − + = +  + − + = +    

,  (22) 368 

respectively, with the Neumann boundary conditions 369 

 E 1 Et x t xT t X n T t X n − = −  =  − =       (23) 370 

and 371 

 ( ) ( )
2 2

E 1 Et x t xT t X n T t X n   − = − = − =
   

.  (24) 372 

While, the first and the second statistical moments of the total rainfall depth until a specified 373 

terminal day N, which is 1

k N

k

k t

r


+

=

  and represented by S , satisfy 374 

 1 0 1 1 1 1 1

1 1

E E 0 E 1
k N k N k N

k t i k t i k t

k t k t k t

r X i P r X P r X i




  

+ + + + +

= = + = +

      
= = + = + = +      

      
     (25) 375 

and 376 

 
( )

2

1

0 0 1 12
1

2 2

0 1 1 1 1 1

1 1

E

1 2
E 0

E 0 E 1

k N

k t

k t

k N

i i k t

k t

k N k N

i k t i k t

k t k t

r X i

P P r X

P r X P r X i

  

 



+

=



+ +

= +

 

+ + + +

= + = +

  
 = 
   

+  
= + = 

 

      
   + = + = +   
         





 

,  (26) 377 
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respectively. Proofs of (21), (22), (25), and (26) are provided in Appendix 2. As those (21), 378 

(22), (25), and (26) are recursive formulae, all the statistical moments  E L ,  SD L ,  E S , 379 

and  SD S  distributed on the grids over the set )  )year0, 0,D    can be routinely computed 380 

and serve as the hazard futures. Indeed, those hazard futures can be utilized to prescribe a 381 

critical level 
t  of the state 

tX  to take measures to avert the risks for each day t , and the day 382 

  firstly attaining X =  is a hitting time in the mathematical context of the filtered 383 

probability space. 384 

 385 

4. Results and discussions 386 

 387 

4.1 Extraction of sub-periods having time-homogeneous rainfall regimes 388 

 389 

In order to establish the multi-state Markov chain model whose dynamics in terms of 390 

positive rainfall depths is invariant, sub-periods are extracted from the whole period of 44 391 

years. A water year is defined as the period of one year from August 1st through July 31st of the 392 

next year so that the wet season should not be split. Durations of 10 and 15 water years are 393 

examined as potential sub-periods of statistical homogeneity. Figure 4 shows the results of the 394 

K-S tests in terms of the significance levels 
L , indicating that the empirical distributions of 395 

positive rainfall depths well fit to the gamma distributions in the sub-periods including the 396 

1980s and the 2010s and that there is a statistically significant difference between those two 397 

eras; the significance level 
L  = 0.00367 in comparison of the two sub-periods 1984-1994 and 398 

2002-2012 is the minimum among the cases of 10 water years, and the significance level 
L  399 

= 0.0123 in comparison of the two sub-periods 1982-1997 and 2003-2018 is the minimum 400 

among the cases of 15 water years. While, the null hypothesis that the observed positive rainfall 401 

depths in the data set of the sub-period 1977-1992 is drawn from the gamma distribution with 402 
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parameters of (5) is scarcely rejected because of the significance level 
L  = 0.999 (marked 403 

with a yellow frame in Figure 4). The significance level 
L  = 0.951 in comparison of the sub-404 

period 2004-2019 with the corresponding gamma distribution is the maximum among the cases 405 

of 15 water years (marked with an orange frame in Figure 4). The null hypothesis that the 406 

observed positive rainfall depths in the two data sets of those subperiods 1977-1992 and 2004-407 

2019 are drawn from the same distribution is possibly rejected at the significance level  
L = 408 

0.207 (marked with a red frame in Figure 4). Hereinafter, we focus on those two sub-periods 409 

of 15 water years 1977-1992 and 2004-2019. Figure 5 shows the empirical and the gamma 410 

distributions for the two sub-periods in terms of CDFs, implying a shift from the statistically 411 

homogeneous rainfall regime of 1977-1992 to the other of 2004-2019, which is much drier. 412 

Other basic statics of the data sets are summarized in Table 1. Occurrence of wet days is 413 

steadily decreasing, while the trend of positive rainfall depths is not definite. 414 

 415 

Figure 4: Results of Kolmogorov-Smirnov tests in terms of the significance levels 
L  to 416 

extract the sub-periods 1977-1992 and 2004-2019 of time-homogeneous rainfall 417 

regimes. 418 

Figure 5: CFDs of empirical and gamma distributions for the sub-periods 1977-1992 and 419 

2004-2019. 420 

Table 1: Basic statistics of the data sets for the whole period and for the disjoint sub-periods 421 

including the selected ones. 422 

 423 

4.2 The multi-state Markov chain model with regularized transition probabilities 424 

 425 

The multi-state Markov chain model is constructed for each of the sub-periods 1977-1992 426 

and 2004-2019, determining the transition probabilities. The time range t  is preferred to be 427 

small to achieve better resolution; however, it must be large enough to make (12) valid. By the 428 
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trial-and-error method, t  = 5 days is chosen for all cases. To consider statistical moments of 429 

the DSL in the future and the total rainfall depth until a specified terminal day in the next 430 

subsection, two thresholds 5r =  mm, which is a typical threshold of effective rainfall, and 431 

0r =  mm, which must coincide with the threshold of rainfall depths obeying to the gamma 432 

distributions, are respectively prescribed. The empirical transition probabilities are regularized 433 

according to the procedure described in the subsection 3.3. The computational grids are defined 434 

with 365tn =  and 200xn = . Strictly speaking, systematic errors occur in all the computed 435 

quantities below, associated with the difference between 
year 365.25D =  and 365tn = . 436 

However, for the sake of simplicity, we would be indifferent to those errors at the order of 437 

( )365.25 365 100 365−   = 0.068 %. The step in the  -direction is set as small as 410−  for 438 

stable implementation of the Runge-Kutta method. Significant effects of regularization can be 439 

seen in the computed MTVF at 20 = . Figure 6 and Figure 7 compare the empirical and the 440 

regularized transition probabilities with the threshold 5r =  mm for the sub-periods 1977-441 

1992. Figure 8 depicts the regularized transition probabilities with the threshold 5r =  mm for 442 

the sub-period 2004-2019 to compare with Figure 7 for the sub-period 1977-1992. In those 443 

figures, the value of ( ),u t x  at each grid is plotted with the monotone colors on the t - x  plane, 444 

where the state x  refers to the DSL up to t . Due to the scarcity of recorded wet days, extreme 445 

values of 0 and 1, which are represented by white and black grids in the figures, respectively, 446 

often occur for empirical transition probabilities in adjacent states. Those spurious oscillations 447 

are successfully regularized in the MTVF without spoiling true extreme values of 0 and 1 448 

identified from enough number of data. A significant difference between Figure 7 and Figure 449 

8 can be seen in the distributions of white grids, representing the transition to the dry day almost 450 

surely. This indicates that the substantial onset of the dry seasons shifted from mid-April in the 451 

sub-period 1977-1992 to mid-March in the sub-period 2004-2019. The local people well 452 

perceive such a regime shift of DSL. Analogous comparisons between the empirical and the 453 
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regularized transition probabilities with the threshold 5r =  mm for the sub-periods 2004-454 

2019 and among the cases of the threshold 0r =  mm lead to similar observations. 455 

 456 

Figure 6: Empirical transition probabilities 
0iP  with the range 5t =  days and the threshold 457 

5r =  mm for the sub-period 1977-1992.  458 

Figure 7: Regularized transition probabilities 
0iP  with the range 5t =  days and the 459 

threshold 5r =  mm for the sub-period 1977-1992.  460 

Figure 8: Regularized transition probabilities 
0iP  with the range 5t =  days and the 461 

threshold 5r =  mm for the sub-period 2004-2019.  462 

 463 

The most significant technical novelty in constructing the multi-state Markov chain model 464 

from historical data is the introduction of the MTVF to regularize the distribution of the 465 

transition probability ( ),u u t x=  as a function of the time and the state. Although fundamental 466 

properties of (14) are not well explored in the context of singular diffusion equations with 467 

mathematical rigor, it has successfully regularized the spurious oscillations indeed. 468 

 469 

4.3 Application to real-time drought risk assessment 470 

 471 

The multi-state Markov chain model is applied to real-time drought risk assessment, 472 

quantifying the different statistical moments as the hazard futures based on the information of 473 

the DSL up to t . The regularized transition probabilities are used for evaluation of statistical 474 

moments of L , the DSL in the future, and S , the total rainfall depth until the terminal day N. 475 

All the variable at 
tt n=  are regarded as identical with those at 0t =  during the temporally 476 

backward computation of the recursive formulae (21), (22), (25), and (26). The fitted gamma 477 

distributions are assumed for positive rainfall depths. Dependence of those statistical moments 478 
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of L  and S  on the states representing the information of the DSL up to t  enables the farmers 479 

or their agricultural cooperative associations rationally assessing drought risks and thus tight 480 

decision making on crop management. Major annual rainfed crops in Nineveh Governorate, 481 

including the Nineveh Plains, are wheat, barley, clover, and flax (Hajim et al. 1996). Those 482 

crops are sown during the autumn months of October and November and harvested in May of 483 

the next Gregorian year. Therefore, the terminal day N is specified as 130 (May 10th). Provided 484 

that supplementary irrigation is feasible, the standard irrigation water requirements of those 485 

crops and few other annual crops in a water year are summarized in Table 2, which has been 486 

adapted from Hajim et al. (1996). Water requirements under the rainfed condition can be 487 

inferred from Table 2 as well. Soil moisture ahead of sowing is needed for leaching and land 488 

preparation.  489 

 490 

Table 2: The depths and numbers of irrigation (Depth (mm) : Number (times)) in a water 491 

year for major annual crops in Nineveh Governorate, adapted from Hajim et al. 492 

(1996). 493 

 494 

For the DSL in the future, the recursive formulae (21) and (22) with (23) and (24) are 495 

computed until achieving steady year-periodic states to obtain the expectation  E L  and the 496 

standard deviation  SD L . The results are depicted in Figures 9 and 10 for the sub-period 497 

1977-1992 and in Figures 11 and 12 for the sub-period 2004-2019. Those figures present  E L  498 

and  SD L , which are also the functions of  t  and x , in the same way as Figures 6-8 but using 499 

the different colors indicated in the legend. In general, the variations of  E L  and  SD L  over 500 

the t - x  plane are more intense in the sub-period 2004-2019 than in the sub-period 1977-1992.  501 

The maximum  E L  in the sub-period 1977-1992 is 230 days on the condition that DSL up to 502 

96t =  (April 6th) is 11 days, while that in the sub-period 2004-2019 is 269 days on the 503 
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condition that DSL up to 79t =  (March 20th) is 11 days. As a validation of the computed values 504 

of  E L  and  SD L , statistical analysis is made for each dry season, assuming the Gumbel 505 

distribution for its length L defined as the maximum DSL in each Gregorian year. The Gumbel 506 

distribution, whose CDF 
Gum( )F L  is given by 507 

 ( )( )Gum Gum Gum( ) exp expF L L  = − −   (27) 508 

with the two parameters 
Gum  and 

Gum , is commonly used for statistically modeling extreme 509 

values such as the annual maximum DSL (Vicente-Serrano and Beguería-Portugués 2003). It 510 

is also an advantage of using the Gumbel distribution in this case that the two parameters 
Gum  511 

and 
Gum  are uniquely estimated from  E L  and  SD L  as  Gum 6 SD L =  and 512 

 Gum GumE L  = − , where   is the Euler-Mascheroni constant, approximately equal to 513 

0.577216. The mode of the Gumbel distribution is equal to the value of the parameter 
Gum . 514 

Table 3 and Table 4 present different parameter values for each year in the sub-period 1977-515 

1992 and in the sub-period 2004-2019, respectively, including the day of the onset of the dry 516 

season,  E L  and  SD L  on that day with the state 1x = , the values of the parameters of the 517 

Gumbel distribution, the observed length L of the dry season,  the CDF of the Gumbel 518 

distribution at that observed L, the return period ( ( )1 1 CDF= − ) (year), and the significance 519 

level of the K-S test with 1En =  at which the null hypothesis that the observed L is drawn from 520 

the Gumbel distribution. The onsets of the dry seasons fall on the spring months from March 521 

to May, except for the year 1989, where variations in  E L  and  SD L  are the most intense, 522 

implying that this validation examines the most sensitive cases of the multi-state Markov chain. 523 

For the sub-period 1977-1992, the averages of the mode 
Gum  and the observed L are 153.923 524 

days and 185.667 days, respectively. For the sub-period 1977-1992, the averages of the mode 525 

Gum  and the observed L are 172.748 days and 194.500 days, respectively. The null hypothesis 526 

cannot be rejected in all the years during the two sub-periods at a significance level not less 527 
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than 0.27. The return periods are quite normal in the sub-period 1977-1992, while anomalous 528 

91.735 years in the year 2007 and 1.000 year in the year 2018 can be seen in the sub-period 529 

2004-2019. This is comparable with the analysis of Awchi and Kalyana (2017) based on SPI, 530 

as mentioned in Section 2. The local people have perceived these anomalies as well. From the 531 

statistical analysis above, we consider that the computed values of  E L  and  SD L  532 

comprehensively represent the statistical behavior of the lengths of the dry seasons including 533 

the anomalies. A significant change from the sub-period 1977-1992 to the sub-period 2004-534 

2019 is that occurrence of a long dry spell (  E L   50 days as white patches surrounded by 535 

blue zones in Figure 11,  SD L  decreasing with increasing DSL up to t  as colored changing 536 

from dodger blue to white and then to blue in Figure 12) has become evident on the condition 537 

of a prolonged (5-10 days) DSL up to t  in December or January but is not tangible at the time 538 

of sowing. It is another serious concern emerged in the sub-period 2004-2019 that the onset of 539 

the dry season (  E L   100 days as colored light blue in Figure 11,  SD L   120 days as 540 

colored green yellow in Figure 12) has become very likely on the condition of a prolonged (5-541 

10 days) DSL up to t  in early-March. However, there is not much difference between the two 542 

sub-periods in the values of  E L  and  SD L  if a long dry spell of 50 days is actually observed 543 

on April 1st. To summarize the assessment above, it can be said that the occurrence of a long 544 

dry spell in the middle of the growing season, as well as the early onset of the dry season, have 545 

become common drought risks in recent decades. Introducing supplementary irrigation, if 546 

feasible, is an effective measure to avert such risks. More illustratively, an example of the 547 

critical level 
t  for each day t , such that supplementary irrigation should be performed at a 548 

hitting time, is prescribed as 549 

 ( ) Gum=inf ,  for t x t x x   +       (28) 550 
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where , x  , ( )Gum ,t x  is the parameter 
Gum  of the Gumbel distribution estimated from 551 

 E L  and  SD L  on the condition that DSL up to t  is x  days, and   is a specified critical 552 

length of the mode of the total dry spell (= ( )Gum ,x t x+ ). The hitting time of X  to 
t  is a 553 

stopping time relative to the filtration  t  such that   tt =   for any t . Figure 13 shows 554 

the critical levels 
t  for the two sub-periods with   = 50 days, clearly verifying the assessment 555 

about the risk in the middle of the growing season with the most noticeable difference between 556 

the two sub-periods seen in the month of January. According to Hajim et al. (1996) based on 557 

the survey before 1996, supplementary irrigation was supposed to be unnecessary in January 558 

as being consistent with the large critical levels 
t  in January for the sub-period 1977-1992. 559 

However, the critical levels 
t  in January for the sub-period 2004-2019 are as small as 11 days 560 

and very likely achieved. 561 

 562 

Figure 9: Expected DSL in the future based on the regularized model for the sub-period 1977-563 

1992.  564 

Figure 10: Standard deviation of DSL in the future based on the regularized model for the sub-565 

period 1977-1992.  566 

Figure 11: Expected DSL in the future based on the regularized model for the sub-period 2004-567 

2019.  568 

Figure 12: Standard deviation of DSL in the future based on the regularized model for the sub-569 

period 2004-2019.  570 

Table 3:  Statistical analysis of each dry season during the sub-period 1977-1992, assuming 571 

the Gumbel distribution for the length L. 572 

Table 4: Statistical analysis of each dry season during the sub-period 2004-2019, assuming 573 

the Gumbel distribution for the length L. 574 
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Figure 13: Critical levels 
t  for the two sub-periods 1977-1992 and 2004-2019 to alert the 575 

occurrence of a long dry spell persisting over   = 50 days.  576 

 577 

The total rainfall depth until a specified terminal day is another main concern in rainfed 578 

agriculture. The recursive formulae (25) and (26) are computed from the trivial terminal 579 

condition E 0 0NX i =  =   for one year to obtain the expectation  E S  and the standard 580 

deviation  SD S  of the total rainfall depth until May 10th. The results are depicted in Figures 581 

14 and 15 for the sub-period 1977-1992 and in Figures 16 and 17 for the sub-period 2004-2019. 582 

Those figures have the same structure as Figures 9-13. The values of  E S  on the day 583 

1 131N + =  (May 11th) range from 374.8 mm to 375.3 mm for the sub-period 1977-1992 and 584 

from 312.8 mm to 314.3 mm for the sub-period 2004-2019, while the observed average annual 585 

rainfall depths were 364.3 mm and 314.7 mm for those two respective sub-periods. Taking the 586 

seasonally biased missing data due to the Iran-Iraq War (1980-1988) and the Iraqi Civil War 587 

(2014-2017) into account, those comparable values are well proving the consistency of the 588 

regularization technique. In general,  E S  and  SD S  are less dependent on the DSL up to t, 589 

but exceptions can been seen during the months of October and November; there are 590 

depressions in  E S  for both sub-periods if the DSL up to t  lasts for several weeks. The 591 

severity of those depressions in  E S  is higher in the sub-period 2004-2019, especially in 592 

conjunction with the evident occurrence of dry spells during the growing months of December 593 

and January. Nevertheless, observing the DSL up to t  in those sowing months of October and 594 

November, the farmers or their agricultural cooperative associations who assess the drought 595 

risks in terms of  E S  and  SD S  still can make decisions on species and varieties of the 596 

annual rainfed crops to cultivate. Such a time t  of decision making is also a stopping time 597 

relative to the filtration  t . For instance, if clover is sown in early October with the provision 598 
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of soil moisture brought by exceptionally early rain in September, and if a dry spell lasts for 599 

several weeks in October, then it is recommendable to abandon the clover and to substitute the 600 

other crops which can be sown after the dry spell ends in early November with less water 601 

requirement in total. This measure of risk aversion may be more feasible than supplementary 602 

irrigation in the Nineveh Plains.  603 

 604 

Figure 14: Expected total rainfall depth until May 10th based on the regularized model for the 605 

sub-period 1977-1992.  606 

Figure 15: Standard deviation of total rainfall depth until May 10th based on the regularized 607 

model for the sub-period 1977-1992.  608 

Figure 16: Expected total rainfall depth until May 10th based on the regularized model for the 609 

sub-period 2004-2019.  610 

Figure 17: Standard deviation of total rainfall depth until May 10th based on the regularized 611 

model for the sub-period 2004-2019.  612 

 613 

5. Conclusions 614 

 615 

The multi-state Markov chain model constructed in this study is more straightforward than 616 

conventional weather generation models and drought indices in the sense that the set of DSL 617 

itself is taken as the space of states. The transition probability from one state to another is year-618 

periodically varying, while the probability law for positive rainfall depths is time-619 

homogeneous. That sophisticated structure of the multi-state Markov chain model enables 620 

different types of real-time drought risk assessment. 621 

Mathematical insight shall be given to that regularization technique in future studies, as this 622 

study merely provides a formal derivation of the technique for environmental scientists and 623 

engineers. The MTVF can be considered in a generalized framework of negative Sobolev 624 
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spaces (Giga et al. 2019) to discuss more advanced approaches to the regularization of 625 

transition probabilities. 626 

The K-S tests on the probability distribution of positive rainfall depths provided more 627 

quantitative and detailed information than conventional trend analyses did. The results revealed 628 

the clear regime shift from the 1980s to the 2010s, though the statistical analysis conducted 629 

here cannot scientifically attribute it to any causal linkage from the climate change. Then, the 630 

multi-state Markov chain model with regularized transition probabilities was constructed for 631 

each of the sub-periods having time-homogeneous rainfall regimes, to be applied to real-time 632 

drought risk assessment evaluating the statistical moments of L  and S . The computed  E L  633 

and  SD L  implied drought risks which cannot be anticipated in the sowing months; the 634 

occurrence of a long dry spell in the middle of the growing season became more frequent, and 635 

the onset of substantial dry seasons shifted significantly earlier, which might negatively affect 636 

the annual rainfed crops at the late growth stages. The illustrative example suggested the 637 

validity of supplementary irrigation, which is unfortunately not feasible due to the lack of 638 

infrastructure and security as of 2020. The computed  E S  and  SD S  quantified the 639 

information on the total rainfall depth which the annual rainfed crops could receive until their 640 

harvest time. The values of computed  E S  were used for verifying the regularization 641 

technique developed in this study as well. Crop management in terms of choosing species and 642 

varieties may be the only feasible measure of risk aversion in the current situation of the 643 

Nineveh Plains. Other indices involving DSL and rainfall depth can be defined to assess 644 

different aspects of drought risks. Statistical moments of higher order can be calculated as well. 645 
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 660 

Appendix 1: Scope of the singular diffusion equation with the degenerating coefficient 661 

 662 

The purpose of regularization in general is to remove spurious oscillations appearing in a 663 

function. Let ( ),u u t x=  be such a function defined in a domain   included in the t-x-plane. 664 

The magnitude of oscillations in u  is evaluated with the functional 665 

 dJ u


=     (29) 666 

which is referred to as the total variation of u . The Euler-Lagrange equation in the context of 667 

the variational calculus to minimize the functional J  in (29) formally becomes 668 

 0
u

u

 
 =   

.  (30) 669 

The flux u u   in the left hand side of  (30) is a unit vector if 0u   and is not well defined 670 

if 0u = , resulting in the singularity of (30). The proposed approximation of the flux with 671 

(16) is a basic method to overcome such singularity. On the other hand, the practical difficulty 672 
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encountered in the application to the transition probabilities is that there are true abrupt 673 

variations in the neighborhoods of the points achieving extreme values of 0 and 1. The idea 674 

employed here is to multiply the degenerating coefficient ( )1u u−  to both sides of (30) as 675 

 ( )1 0
u

u u
u

 
−  =   

  (31) 676 

where the removal of oscillations is inactivated if u  is equal to 0 or 1. Using the estimate 677 

( )max min1u u−   defined with (17), (18) , and (19) is to detect the appropriate points of 678 

inactivation. However, the singularity of (30) still remains in (31), and its direct solution is 679 

difficult to implement. Inspired by the celebrated ROF model, the unsteady term u    is 680 

added to (31) in order to obtain the singular diffusion equation (14), from which the desired 681 

MTVF is successfully computed. 682 

 683 

Appendix 2: Proofs 684 

 685 

Proofs of recursive formulae of (21), (22), (25), and (26) are provided as below. The 686 

relations given in (5) should be referred to as well. 687 

 688 

Proof of (21): 689 
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  (32) 690 

Proof of (22): 691 
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  (33) 692 

Proof of (25): 693 
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  (34) 694 

with 695 
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Proof of (26): 697 
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Table 1: Basic statistics of the data sets for the whole period and for the disjoint sub-periods including the selected ones. 

Water years 
Total number of 

days in data set 

Number of 

observation days 

Number of wet 

days 

Number of dry 

days 

Mean of positive 

rainfall depths 

(mm) 

Unbiassed 

sample variance 

of positive 

rainfall depths 

(mm2) 

1974-2019 

(The whole period) 
16071 15191 2988 (19.7 %) 12203 (80.3 %) 4.809 66.03 

1974-1977 943 943 221 (23.4 %) 722 (76.6 %) 4.335 45.41 

1977-1992 

(The Selected sub-period) 
5479 4901 974 (19.9 %) 3927 (80.1 %) 5.018 68.08 

1992-2004 4383 4234 827 (19.5 %) 3407 (80.5 %) 4.980 70.73 

2004-2019 

(The Selected sub-period) 
5266 5113 966 (18.9 %) 4147 (81.1 %) 4.560 64.67 
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Table 2: The depths and numbers of irrigation (Depth (mm) : Number (times)) in a water year for major annual crops in Nineveh Governorate, adapted 

from Hajim et al. (1996). 

Crop 
Date of 

planting 

Date of 

harvesting 
AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL Total 

Wheat Early NOV Mid-MAY - - 60 : 1 40 : 2 0 : 0 0 : 0 0 : 0 0 : 0 20 : 1 40 : 1 - - 200 

Barley Early NOV Early MAY - - 60 : 1 40 : 2 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 - - 140 

Clover Early OCT Late MAY - 40 : 1 40 : 3 20 : 1 0 : 0 0 : 0 0 : 0 0 : 0 20 : 1 40 : 3 - - 340 

Flax Early NOV Late MAY - - 60 : 1 60 : 1 0 : 0 0 : 0 0 : 0 0 : 0 30 : 1 60 : 1 - - 210 

Sugar beet Mid-OCT Mid-JUN - 60 : 1 40 : 2 20 : 1 0 : 0 0 : 0 0 : 0 0 : 0 40 : 1 60 : 3 60 : 2 - 500 

Potato Mid-AUG Mid-DEC 30 : 5 30 : 5 30 : 4 30 : 2 0 : 0 - - - - - - - 480 

Onion SEP MAY - 20 : 2 20 : 2 20 : 1 0 : 0 0 : 0 0 : 0 0 : 0 20 : 2 20 : 3 - - 200 

Cabbage SEP MAY 25 : 1 25 : 6 25 : 3 25 : 1 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 - - 275 
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Table 3: Statistical analysis of each dry season during the sub-period 1977-1992, assuming the Gumbel distribution for the length L. 

Year Onset E[L] SD[L] βGum 
μGum = 

Mode 
Observed L CDF 

Return 

period 

Significance 

level 

1978 March 15th 150.027 123.183 96.045 94.588 262 0.839 6.229 0.481 

1979 March 25th 163.262 114.272 89.098 111.834 217 0.736 3.781 0.652 

1980 April 29th 193.766 55.999 43.663 168.563 193 0.565 2.297 0.907 

1981 April 29th 193.766 55.999 43.663 168.563 165 0.338 1.510 0.773 

1982 May 7th 186.542 53.645 41.827 162.399 146 0.228 1.295 0.590 

1983 May 15th 191.327 12.614 9.835 185.650 182 0.235 1.307 0.602 

1984 May 10th 183.770 52.874 41.226 159.974 160 0.368 1.583 0.819 

1985 April 25th 196.654 58.331 45.480 170.402 200 0.594 2.460 0.873 

1986 May 1st 191.918 55.481 43.258 166.949 153 0.251 1.336 0.630 

1987 March 28th 171.751 108.753 84.794 122.806 205 0.684 3.168 0.737 

1989 July 2nd 139.314 13.514 10.537 133.232 131 0.291 1.410 0.695 

1990 April 12th 199.231 73.914 57.630 165.966 211 0.633 2.723 0.818 

1991 April 11th 201.770 74.269 57.907 168.345 207 0.599 2.492 0.866 

1992 May 11th 182.847 52.616 41.025 159.167 179 0.540 2.173 0.933 

 No data was available to determine the dry season in the year 1988 due to the Iran-Iraq War  
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Table 4: Statistical analysis of each dry season during the sub-period 2004-2019, assuming the Gumbel distribution for the length L. 

Year Onset E[L] SD[L] βGum 
μGum = 

Mode 
Observed L CDF 

Return 

period 

Significance 

level 

2004 April 20th 202.671 86.211 67.219 163.872 198 0.548 2.211 0.925 

2005 May 3rd 192.300 80.997 63.153 155.847 202 0.618 2.617 0.840 

2006 April 27th 196.861 83.616 65.195 159.229 181 0.489 1.956 0.956 

2007 May 16th 212.723 14.753 11.503 206.083 258 0.989 91.735 0.282 

2008 March 14th 225.342 106.851 83.311 177.253 224 0.565 2.300 0.907 

2009 April 18th 204.357 86.930 67.779 165.233 194 0.520 2.083 0.950 

2010 May 4th 198.859 72.803 56.764 166.094 221 0.684 3.162 0.738 

2011 April 23rd 200.190 85.092 66.346 161.894 207 0.602 2.516 0.861 

2012 March 29th 221.844 93.526 72.922 179.752 207 0.502 2.010 0.962 

2013 May 28th 178.835 15.172 11.830 172.007 164 0.140 1.163 0.450 

2014 April 18th 204.357 86.930 67.779 165.233 181 0.453 1.827 0.926 

2015 May 11th 198.239 63.570 49.565 169.630 118 0.059 1.062 0.338 

2017 April 15th 206.877 88.014 68.624 167.266 207 0.571 2.331 0.900 

2018 May 13th 215.723 14.752 11.502 209.084 161 0.000 1.000 0.270 

 No data was available to determine the dry season in the year 2016 due to the Iraqi Civil War  
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