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The Characteristic Polynomials Of Abelian Varieties

Over Finite Fields
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Daiki Hayashida∗

Abstract

The characteristic polynomials of abelian varieties over finite fields have a lot of arith-

metic and geometric information. In this article, we consider the problem of exactly which

Weil polynomials of degree 2g occur as the characteristic polynomials of abelian varieties of

dimension g over finite fields and give a survey of the recent results on the problem.

§ 1. Introduction

An abelian variety over a field k is a complete group variety over k. It has various

extremely good properties. In particular, abelian varieties over finite fields can be

used to approach various practical issues, e.g. cryptography. Since the characteristic

polynomial has a lot of information on abelian varieties, it is important to investigate

the characteristic polynomials of abelian varieties in detail.

Let p be a prime, Fq a finite field with q = pn elements and X an abelian variety

of dimension g over Fq. Fix a prime l 6= p and let Tl(X) be the l-adic Tate module of

X. The q-th power Frobenius endomorphism πX : X → X induces a homomorphism as

Zl-modules

Tl(πX) : Tl(X) −→ Tl(X).

The characteristic polynomial fX(t) of πX is defined by

fX(t) = det(t− Tl(πX)),
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which is known to have coefficients in Z independent of l. In this article, we call fX(t)

the characteristic polynomial of X or the characteristic polynomial for short instead of

the characteristic polynomial of the Frobenius endomorphism of X. The characteristic

polynomial fX(t) is of the form

fX(t) = t2g + a1t
2g−1 + · · ·+ ag−1t

g−1 + agt
g + ag−1qt

g−1 + · · ·+ a1q
g−1t+ qg,

where a1, · · · , ag ∈ Z. The set of roots in C of fX(t) is in the form {w1, w1, · · · , wg, wg},
where wi is a Weil number for i = 1, · · · , g. A (q-)Weil number w is an algebraic integer

such that for any embedding σ : Q(w) ↪→ C, |σ(w)| = √
q. A monic polynomial with

integer coefficients whose roots are (q-)Weil numbers is called a (q-)Weil polynomial .

Thus the characteristic polynomial of the Frobenius endomorphism is a Weil polynomial,

but the converse is not necessarily true. Our main question is the following:

Under what conditions does a given Weil polynomial of degree 2g occur as the

characteristic polynomial of an abelian variety of dimension g over a finite field?

Let X,Y be abelian varieties defined over Fq and fX(t), fY (t) the characteristic poly-

nomials of X and Y respectively. Then, by Tate’s theorem, X is (Fq-)isogenous to Y if

and only if fX(t) = fY (t). It is known that any abelian variety X over Fq is isogenous

to

Xr1
1 × · · · ×Xrm

m ,

where Xi is a simple abelian variety over Fq, Xi is not isogenous to Xj for i 6= j and

ri ≥ 1 is an integer. If fXi
(t) is the characteristic polynomial of Xi, then

fX(t) = fX1(t)
r1 · · · fXm(t)rm .

Therefore to determine characteristic polynomials of abelian varieties of dimension g

over finite fields, it is sufficient to determine characteristic polynomials of simple abelian

varieties of dimension less than or equal to g. Moreover, if X is (Fq-)simple, then

fX(t) = mX(t)e, where mX(t) is an irreducible polynomial and e ≥ 1 is an integer,

which we call the multiplicity of X. From this equality, it is obvious that e divides

2dim(X).

To solve the above problem, we divide the problem into several steps. First problem

is the following:

Problem 1. Find a necessary and sufficient condition for a polynomial f(t) =

t2g + a1t
2g−1 + · · · + ag−1t

g+1 + agt
g + ag−1qt

g−1 + · · · + a1q
g−1t + qg with integer

coefficients to be a Weil polynomial.
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Problem 1 seems to be elementary, but the general solution or algorithm is not

known at present. The higher the degree is, the more complicated rapidly the answer

for this problem becomes. This problem has only been solved up to degree 10. Problem

1 on degree 4 is solved in [6, Lemma 3.1] and [5, Lemma 2.1], on degree 6 is solved in

[10, Theorem 1.1], on degree 8 is solved in [4, Theorem 1.1] and on degree 10 is solved

in [7].

Second problem is the following:

Problem 2. Determine all possible multiplicities e.

From the viewpoint of determining all characteristic polynomials, this problem is

the step to deal with Problem 3 efficiently. Lemma 3.5 plays an important role in dealing

with Problem 2. Theorem 3.8, which states that e divides n with a specific situation, is

also important as another approach to Problem 2.

Finally, for each e examined in Problem 2, we consider the following problem.

Problem 3. Find a necessary and sufficient condition for a Weil polynomial

f(t) = t2g + a1t
2g−1 + · · ·+ ag−1t

g+1 + agt
g + ag−1qt

g−1 + · · ·+ a1q
g−1t+ qg to be the

characteristic polynomial of a simple abelian variety of dimension g over Fq. Namely,

for a Weil polynomial f(t), find a condition on the coefficients of f(t) under which there

exists a simple abelian variety over Fq whose characteristic polynomial coincides with

f(t).

In section 2, we prepare for the study on the characteristic polynomials of abelian

varieties and explain that the behavior in endomorphisms of abelian varieties reduces it

in the characteristic polynomials. In section 3, we survey the recent results on Problem

1,3 for now.

XXXXXXXXXXXXProblem

Dimension
g = 1 g = 2 g = 3 g = 4 g = 5 g > 5

Problem 1 clear [6, 5] [2] [4] [7] Open

Problem 3 [8] [6, 5] [10, 2] [10, 4] [3]
[3] (e = g case)

Open (the others)

Table 1. Recent results

§ 2. Preliminaries

Now we briefly review the Honda-Tate theory (cf. [9]) which is a powerful classifi-

cation theory of (simple) abelian varieties over finite fields.
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We denote the set of q-Weil numbers by W (q) and define the following equivalence

relation on W (q): We say that π, π′ ∈ W (q) are conjugate (and write π ∼ π′) if π and

π′ have the same minimal polynomial over Q.

Theorem 2.1 (cf. [9, Theorem 9]). There is a bijection X 7−→ πX from the set

of Fq-isogeny classes of simple abelian varieties over Fq to the set of conjugacy classes

of W (q).

In other words, this theorem claims that there is a one-to-one correspondence be-

tween two seemingly unrelated objects — abelian varieties and algebraic integers.

Let X be a simple abelian variety over Fq and πX the q-th power Frobenius endo-

morphism of X. Let E := End0Fq
(X) = EndFq

(X) ⊗Z Q and F := Q[πX ] ⊆ E. Then

E is a division algebra whose center is F . The dimension of X in Theorem 2.1 satisfies

the following property.

Proposition 2.2 (cf. [9, Theorem 8]). With notation as above, the dimension

of the abelian variety X satisfies

2dim(X) =
√
[E : F ] · [F : Q].

Let v be a place of F , Fv the completion of F at v and Br(Fv) the Brauer group of

Fv. Then we have the following formula for the invariant invv(E) := invFv
(E ⊗F Fv) ∈

Br(Fv) ⊂ Q/Z.

Proposition 2.3 (cf. [9, Theorem 8]). We have

(1) invv(E) = 1/2 if v is a real place,

(2) invv(E) = 0 if v is a finite place not dividing p or v is a complex place,

(3) invv(E) =
vp(πX)

vp(q)
· [Fv : Qp] mod Z if v is a place dividing p.

The following lemma plays an important role in a specific situation.

Lemma 2.4. [5, Proposition 2.5] Let Fq be a finite field with q = pn elements.

Let X be a simple abelian variety over Fq with characteristic polynomial fX(t) = (t2 +

at+ q)dim(X), where a ∈ Z such that |a| < 2
√
q. Let m = vp(a) and d = a2 − 4q. Then

dim(X) =


n

(m,n) if m < n
2

2 if m ≥ n
2 and d ∈ Q×2

p

1 if m ≥ n
2 and d 6∈ Q×2

p .
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Next we state that the properties on endomorphisms of abelian varieties over finite

fields reduce them in the characteristic polynomials.

Lemma 2.5. The least common denominator of invv(E) for all places v of F is

equal to e, where e is the multiplicity of X.

We write lcd(a1, · · · , am) for the least common denominator of a1, · · · , am ∈ Q/Z
and d(a) for the denominator of a ∈ Q/Z.

This lemma follows from Proposition 2.2 and a theory of Brauer groups over global

fields. (cf. [1, 3] )

Note that if X is a simple abelian variety, then fX(t) = mX(t)e, where mX(t) is

an irreducible Weil polynomial. We have the following corollary on the irreducibility.

Corollary 2.6. An irreducible Weil polynomial f(t) of degree 2g is the charac-

teristic polynomial of a simple abelian variety of dimension g over Fq (i.e. e = 1) if

and only if f(t) has no real root and the following condition holds:
vp(fi(0))

n
∈ Z,

where fi(t) runs through all monic irreducible factors of f(t) in Qp[t].

This corollary is the basic tool to deal with Problem 3 by investigating the coeffi-

cients of a given Weil polynomial.

§ 3. Recent results

§ 3.1. Problem 1

We enumerate the relevant results up to g = 5. (We omit the result [7] on g = 5,

since this article is too small to write down the result.)

Theorem 3.1. A polynomial t2 − at+ q ∈ Z[t] is a Weil polynomial if and only

if |a| ≤ 2
√
q.

Theorem 3.2. [6, Lemma 3.1][5, Lemma 2.1] Let f(t) = t4 + a1t
3 + a2t

2 +

a1qt+ q2 ∈ Z[t]. This polynomial f(t) is a Weil polynomial if and only if the following

conditions hold:

(1) |a1| ≤ 4
√
q,

(2) 2|a1|
√
q − 2q ≤ a2 ≤ a2

1

4 + 2q.
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Theorem 3.3. [2, Theorem 1.1] Let f(t) = t6 + a1t
5 + a2t

4 + a3t
3 + a2qt

2 +

a1q
2t + q3 ∈ Z[t]. This polynomial f(t) is a Weil polynomial if and only if either

f(t) = (t2 − q)(t2 + at + q), where a ∈ Z and |a| < 2
√
q, or the following conditions

hold:

(1) |a1| < 6
√
q,

(2) 4|a1|
√
q − 9q < a2 ≤ a2

1

3 + 3q,

(3) − 2a3
1

27 + a1a2

3 +qa1− 2
27 (a

2
1−3a2+9q)3/2 ≤ a3 ≤ − 2a3

1

27 + a1a2

3 +qa1+
2
27 (a

2
1−3a2+9q)3/2,

(4) −2qa1 − 2a2
√
q − 2q

√
q < a3 < −2qa1 + 2a2

√
q + 2q

√
q.

Theorem 3.4. [4, Theorem 1.1] Let f(t) = t8 + a1t
7 + a2t

6 + a3t
5 + a4t

4 +

a3qt
3 + a2q

2t2 + a1q
3t + q4 ∈ Z[t]. This polynomial f(t) is a Weil polynomial if and

only if either f(t) = (t2 ± √
q)2h(t), where h(t) is a Weil polynomial of degree 4 (See

Theorem 3.2), or the following conditions hold:

(1) |a1| < 8
√
q,

(2) 6|a1|
√
q − 20q < a2 ≤ 3a2

1

8 + 4q,

(3) −9qa1 − 4
√
qa2 − 16q

√
q < a3 < −9qa1 + 4

√
qa2 + 16q

√
q,

(4) −a3
1

8 + a1a2

2 +qa1−( 23 (
3a2

1

8 −a2+4q))3/2 ≤ a3 ≤ −a3
1

8 + a1a2

2 +qa1+( 23 (
3a2

1

8 −a2+4q))3/2,

(5) 2
√
q|qa1 + a3| − 2qa2 − 2q2 < a4,

(6)
9a4

1

256 −
3a2

1a2

16 + a1a3

4 +
a2
2

6 + 2qa2

3 + 2q2

3 +ω+ω ≤ a4 ≤ 9a4
1

256 −
3a2

1a2

16 + a1a3

4 +
a2
2

6 + 2qa2

3 +
2q2

3 + jω + j2ω,

where ω1/3 = |ω|1/3e
arg(ω)i

3 , j = e
2iπ
3 and ω = 1

24 (8(−
3a2

1

8 + a2 − 4q)6 +540(− 3a2
1

8 + a2 −
4q)3(

a3
1

8 −qa1− a1a2

2 +a3)
2−729(

a3
1

8 −qa1− a1a2

2 +a3)
4+ i9|a

3
1

8 −qa1− a1a2

2 +a3|(−(
a3
1

8 −
qa1 − a1a2

2 + a3)
2 − 8

27 (−
3a2

1

8 + a2 − 4q)3)3/2)1/3.

§ 3.2. Problem 3

In this section, we survey the recent results on our main problem, Problem 3. As

we stated in Section 1, it is efficient to deal with Problem 2 and solve Problem 3 on the

obtained e’s before solving Problem 3.

Let X be a simple abelian variety. Since fX(t) = mX(t)e, we compare with the

degrees of the both sides and obtain that 2g = deg(mX)·e, hence e divides 2g. Moreover,

we can specialize the choices of e by using the following lemma. This useful lemma shows

that an abelian variety corresponding to a real Weil number must be of dimension less

than or equal to 2.
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Lemma 3.5. Let X be a simple abelian variety over Fq with q = pn elements

and fX(t) the characteristic polynomial. Suppose that fX(t) has a real root. Then we

have

(1) if n is even, then dim(X) = 1, or

(2) if n is odd, then dim(X) = 2.

Remark 3.6. It is known that an abelian variety corresponding to a real Weil

number is supersingular. See [1, 5.1] for details.

Example 3.7. We consider simple abelian varieties of odd prime dimension l

over Fq. Note that the prime number l is not necessarily different from p. In this case,

the multiplicity e of their abelian varieties satisfies that e divides 2l, so we have either

e = 1, 2, l or 2l. However, e = 2 or e = 2l contradicts that the dimension l is greater

than or equal to 3 since the characteristic polynomial has a real root.

Many studies so far of characteristic polynomials of a simple abelian variety X

over Fq are done with n fixed, where the possibility of e is examined only by using the

divisibility condition e | 2dim(X) unrelated to the value of n. On the other hand, the

following theorem gives rise to another direction of study depending on the value of n.

Theorem 3.8. [3, Theorem 1.1] Let X be a simple abelian variety over Fq with

q = pn elements, fX(t) the characteristic polynomial of X, and e the multiplicity of X.

Then e divides n except for the case where fX(t) has a real root.

Example 3.9. Assume q = p, then n = 1, hence e = 1 by Theorem 3.8. Thus

we conclude that the characteristic polynomial of a simple abelian variety over Fp must

be irreducible, unless it has a real root.

Remark 3.10. When fX(t) has a real root, the assertion of Theorem 3.8 does

not hold in general. Indeed, assume that n is odd and let X be a simple abelian variety

over Fq corresponding to the Weil number
√
q. As t2 − q is irreducible over Q, we may

write fX(t) = (t2 − q)e. Now, by Lemma 3.5, we have dim(X) = 2, hence e = 2. Thus,

e does not divide n.

3.2.1. Elliptic curves First, we explain the characteristic polynomials of elliptic

curves [8]. This is the most primitive case of abelian varieties.

Let X be an elliptic curve over the finite field Fq with q = pn elements. The

characteristic polynomial of X is of the form

fX(t) = t2 − at+ q

-
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and the coefficient a satisfies a = 1 + q − #X(Fq), where #X(Fq) is the number of

Fq-rational points of X.

As elliptic curves behave mathematically the simplest way among abelian varieties,

we do not need a special discussion that is necessary in general dimensions, and in fact,

there is no examination in [8, Theorem 4.1] corresponding to Problem 2. However, in

order to describe in a unified way, although it is obvious, we evaluate e.

Since elliptic curves are simple as abelian varieties, the characteristic polynomials of

elliptic curves are of the form fX(t) = mX(t)e, wheremX(t) is an irreducible polynomial

and e ≥ 1 is an integer. The degree of fX(t) is equal to 2, hence e is 1 or 2.

Theorem 3.11. [8, Theorem 4.1] Let f(t) = t2 − at + q be a Weil polynomial.

Then the polynomial f(t) is the characteristic polynomial of an elliptic curve over Fq if

and only if one of the following conditions holds:

(1) (a, p) = 1,

(2) n is even and a = ±2
√
q,

(3) n is even, p 6≡ 1 mod 3 and a = ±√
q,

(4) n is even, p 6≡ 1 mod 4 and a = 0,

(5) n is odd and a = 0,

(6) n is odd, p = 2, 3 and a = ±p
n+1
2 .

This (2) corresponds to the case of e = 2 and the others correspond to the case of

e = 1.

3.2.2. Abelian surfaces Let X be a simple abelian variety of dimension 2 over Fq.

Then the characteristic polynomial fX(t) is of the form

fX(t) = t4 + a1t
3 + a2t

2 + a1qt+ q2.

The multiplicity e of X is either 1, 2 or 4 since e divides 4. Suppose e = 4. We have

fX(t) = (t±√
q)4 and n is even. However, this contradicts dim(X) = 2 by Lemma 3.5.

The following proposition corresponds to the case of e = 2.

Proposition 3.12. [5, Theorem 2.9] Let f(t) = (t2 + at + b)2 be a Weil poly-

nomial, where a, b ∈ Z. Then the polynomial f(t) is the characteristic polynomial of

a simple abelian variety of dimension 2 over Fq if and only if one of the following

conditions holds:
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(1) n is even, p ≡ 1 mod 3 and (a, b) = (±√
q, q),

(2) n is even, p ≡ 1 mod 4 and (a, b) = (0, q),

(3) n is odd and (a, b) = (0,−q).

The following proposition corresponds to the case of e = 1.

Proposition 3.13. [6, Theorem 1.1][5, Theorem 2.9] Let f(t) = t4 + a1t
3 +

a2t
2 + a1qt + q2 be an irreducible Weil polynomial. Then the polynomial f(t) is the

characteristic polynomial of a simple abelian variety of dimension 2 over Fq if and only

if one of the following conditions holds:

(1) vp(a1) = 0, vp(a2) ≥ n/2 and (a2 + 2q)2 − 4qa21 is not a square in Zp,

(2) vp(a2) = 0,

(3) vp(a1) ≥ n/2, vp(a2) ≥ n and f(t) has no root in Zp.

3.2.3. Abelian varieties of dimension 3 Next, we describe the characteristic

polynomials of simple abelian varieties of dimension 3 over Fq. Let X be a simple

abelian variety of dimension 3 over Fq. Then the characteristic polynomial fX(t) is of

the form

fX(t) = t6 + a1t
5 + a2t

4 + a3t
3 + a2qt

2 + a1q
2t+ q3.

Now we compute e in Problem 2. From fX(t) = mX(t)e, e divides 6, i.e. e = 1, 2, 3

or 6. Suppose e = 6. Then fX(t) has a real root, so the dimension of the abelian variety

X must be 1 or 2 by Lemma 3.5, which contradicts the assumption that dim(X) = 3.

Suppose e = 2. Then since deg(mX(t)) is odd, mX(t) has at least one real root, so

dim(X) must be 1 or 2 as well. Hence we obtain that e is 1 or 3. First, we consider

e = 3.

Proposition 3.14. [10, Proposition 2] Let f(t) = (t2 + at + q)3 ∈ Z[t], where
a ∈ Z and |a| < 2

√
q. Then the polynomial f(t) is the characteristic polynomial of a

simple abelian variety of dimension 3 over Fq if and only if 3 divides n and a = kq1/3,

where k is an integer and (k, p) = 1.

This proposition (e = g case) can be generalized to arbitrary dimension. See

Theorem 3.19 (later).

The following proposition corresponds to the case of e = 1.

Proposition 3.15. [2, Theorem 1.4] Let f(t) = t6+a1t
5+a2t

4+a3t
3+a2qt

2+

a1q
2t + q3 be an irreducible Weil polynomial. Then the polynomial f(t) is the charac-

teristic polynomial of a simple abelian variety of dimension 3 over Fq if and only if one

of the following conditions holds:
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(1) vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n and f(t) has no root of valuation n/2 in Qp,

(2) vp(a2) = 0, vp(a3) ≥ n/2 and f(t) has no root of valuation n/2 in Qp,

(3) vp(a3) = 0,

(4) vp(a1) ≥ n/3, vp(a2) ≥ 2n/3, vp(a3) = n and f(t) has no root in Qp,

(5) vp(a1) ≥ n/2, vp(a2) ≥ n, vp(a3) ≥ 3n/2 and f(t) has no root nor factor of degree

3 in Qp.

3.2.4. Abelian varieties of dimension 4 Next, we describe the characteristic

polynomials of simple abelian varieties of dimension 4 over Fq. Let X be a simple

abelian variety of dimension 4 over Fq. Then the characteristic polynomial fX(t) is of

the form

fX(t) = t8 + a1t
7 + a2t

6 + a3t
5 + a4t

4 + a3qt
3 + a2q

2t2 + a1q
3t+ q4.

Now we compute e in Problem 2. From fX(t) = mX(t)e, e divides 8, i.e. e = 1, 2, 4

or 8. Suppose e = 8. Then fX(t) has a real root, so dim(X) must be 1 or 2 by Lemma

3.5, which contradicts the assumption that dim(X) = 4. Hence we obtain that e is 1,

2, or 4.

The case of e = 4 is included in Theorem 3.19 (later). The following proposition

corresponds to the case of e = 2.

Proposition 3.16. [10, Proposition 4] Let m(t) = t4 + b1t
3 + b2t

2 + b1qt + q2

be an irreducible Weil polynomial. Then the polynomial m(t)2 is the characteristic

polynomial of a simple abelian variety of dimension 4 over finite fields if and only if one

of the following conditions holds:

(1) vp(b1) = 0, vp(b2) > 0 and (b2 + 2q)2 − 4qb21 is a square in Zp,

(2) vp(b1) ≥ n/4, vp(b2) = n/2 and m(t) has no root in Zp,

(3) vp(b1) ≥ n/2, vp(b2) ≥ n and m(t) has at least one root in Zp.

Finally we describe the case of e = 1.

Proposition 3.17. [4, Theorem 1.2] Let f(t) = t8 + a1t
7 + a2t

6 + a3t
5 + a4t

4 +

a3qt
3+a2q

2t2+a1q
3t+ q4 be an irreducible Weil polynomial. Then the polynomial f(t)

is the characteristic polynomial of a simple abelian variety of dimension 4 over Fq if

and only if one of the following conditions holds:

(1) vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n, vp(a4) ≥ 3n/2 and f(t) has no root of

valuation n/2 nor factor of degree 3 in Qp,
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(2) vp(a1) = 0, vp(a2) ≥ n/3, vp(a3) ≥ 2n/3, vp(a4) = n and f(t) has no root of

valuation n/3 and 2n/3 in Qp,

(3) vp(a2) = 0, vp(a3) ≥ n/2, vp(a4) ≥ n and f(t) has no root of valuation n/2 in Qp,

(4) vp(a3) = 0, vp(a4) ≥ n/2 and f(t) has no root of valuation n/2 in Qp,

(5) vp(a1) ≥ n/3, vp(a2) ≥ 2n/3, vp(a3) = n, vp(a4) ≥ 3n/2 and f(t) has no root in

Qp,

(6) vp(a4) = 0,

(7) vp(a1) ≥ n/4, vp(a2) ≥ n/2, vp(a3) ≥ 3n/4, vp(a4) = n and f(t) has no root nor

factor of degree 2 and 3 in Qp,

(8) vp(a1) ≥ n/2, vp(a2) ≥ n, vp(a3) ≥ 3n/2, vp(a4) ≥ 2n and f(t) has no root nor

factor of degree 3 in Qp.

3.2.5. Abelian varieties of dimension 5 We describe the characteristic polyno-

mials of simple abelian varieties of dimension 5 over Fq. Let X be a simple abelian

variety of dimension 5 over Fq. Then the characteristic polynomial fX(t) is of the form

fX(t) = t10 + a1t
9 + a2t

8 + a3t
7 + a4t

6 + a5t
5 + a4qt

4 + a3q
2t3 + a2q

3t2 + a1q
4t+ q5.

Now we compute e in Problem 2. From fX(t) = mX(t)e, e divides 10, i.e. e = 1, 2, 5

or 10. Suppose e = 2 or e = 10. Then fX(t) has a real root, so dim(X) must be 1 or

2 by Lemma 3.5, which contradicts the assumption that dim(X) = 5. Hence we obtain

that e is 1 or 5.

The case of e = 5 is included in Theorem 3.19 (later). The following proposition

corresponds to the case of e = 1.

Theorem 3.18. [3, Theorem 1.3] Let f(t) = t10 + a1t
9 + a2t

8 + a3t
7 + a4t

6 +

a5t
5+a4qt

4+a3q
2t3+a2q

3t2+a1q
4t+ q5 be an irreducible Weil polynomial. Then f(t)

is the characteristic polynomial of a simple abelian variety of dimension 5 over Fq if

and only if one of the following conditions holds:

(1) vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n, vp(a4) ≥ 3n/2, vp(a5) ≥ 2n and f(t) has no

root of valuation n/2 nor a factor of degree 3 in Qp,

(2) vp(a1) = 0, vp(a2) ≥ n/3, vp(a3) ≥ 2n/3, vp(a4) = n, vp(a5) ≥ 3n/2 and f(t) has

no root of valuation n/3, n/2 or 2n/3 in Qp,

(3) vp(a1) = 0, vp(a2) ≥ n/4, vp(a3) ≥ n/2, vp(a4) ≥ 3n/4, vp(a5) = n and f(t) has

no root of valuation n/4 or 3n/4 nor an irreducible factor of degree 2 in Qp,
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(4) vp(a2) = 0, vp(a3) ≥ n/2, vp(a4) ≥ n, vp(a5) ≥ 3n/2 and f(t) has no root of

valuation n/2 nor an irreducible factor of degree 3 in Qp,

(5) vp(a2) = 0, vp(a3) ≥ n/3, vp(a4) ≥ 2n/3, vp(a5) = n and f(t) has no root of

valuation n/3 or 2n/3 in Qp,

(6) vp(a3) = 0, vp(a4) ≥ n/2, vp(a5) ≥ n and f(t) has no root of valuation n/2 in Qp,

(7) vp(a1) ≥ n/3, vp(a2) ≥ 2n/3, vp(a3) = n, vp(a4) ≥ 3n/2, vp(a5) ≥ 2n and f(t) has

no root of valuation n/3, n/2 or 2n/3 in Qp,

(8) vp(a4) = 0, vp(a5) ≥ n/2 and f(t) has no root of valuation n/2 in Qp,

(9) vp(a1) ≥ n/4, vp(a2) ≥ n/2, vp(a3) ≥ 3n/4, vp(a4) = n, vp(a5) ≥ 3n/2 and f(t)

has no root of valuation n/4, n/2 or 3n/4 and has two irreducible factors of degree

4 in Qp,

(10) vp(a5) = 0,

(11) vp(a1) ≥ n/5, vp(a2) ≥ 2n/5, vp(a3) ≥ 3n/5, vp(a4) ≥ 4n/5, vp(a5) = n and f(t)

has two irreducible factors of degree 5 in Qp,

(12) vp(a1) ≥ 2n/5, vp(a2) ≥ 4n/5, vp(a3) ≥ 6n/5, vp(a4) ≥ 8n/5, vp(a5) = 2n and f(t)

has two irreducible factors of degree 5 in Qp,

(13) vp(a1) ≥ n/2, vp(a2) ≥ n, vp(a3) ≥ 3n/2, vp(a4) ≥ 2n, vp(a5) ≥ 5n/2 and f(t) has

no root of valuation n/2 nor a factor of degree 3 or 5 in Qp.

Proof Sketch. Since f(t) is an irreducible Weil polynomial, we can apply Corollary

2.6 to f(t). We need to analyze the irreducible factors of f(t) over Qp, therefore we use

the Newton polygon of f(t).

Let NP(f) denote the Newton polygon of f(t). Then NP(f) has 10 possible ver-

tices (0, 5n), (1, 4n+ vp(a1)), (2, 3n+ vp(a2)), (3, 2n+ vp(a3)), (4, n+ vp(a4)), (5, vp(a5)),

(6, vp(a4)), (7, vp(a3)), (8, vp(a2)), (9, vp(a1)) and (10, 0). Note that if some of these

points is a vertex, then the point must be a lattice point belonging to Z × nZ. (cf.

[4, p.64].) By symmetry of NP(f), it is sufficient to classify cases according to whether

either (1, 4n+ vp(a1)), (2, 3n+ vp(a2)), (3, 2n+ vp(a3)), (4, n+ vp(a4)) or (5, vp(a5)) is a

vertex or not.

Case 1. (1, 4n + vp(a1)) is a sole vertex:

In this case, NP(f) is as in Figure 1. This occurs if and only if vp(a1) = 0, vp(a2) ≥
n/2, vp(a3) ≥ n, vp(a4) ≥ 3n/2 and vp(a5) ≥ 2n. Then we can decompose f(t) as
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O 1 2 3 4 5 6 7 8 9 10

n

2n

3n

4n

5n

Figure 1. (1, 4n+ vp(a1)) is a vertex.

∏10
i=1(t− αi) in Qp[t] so that

t− α1, t− α10,
9∏

i=2

(t− αi) ∈ Qp[t],

vp(α1) = n, vp(α10) = 0, vp(αi) = n/2 for i = 2, · · · , 9.

Corollary 2.6 holds if and only if f(t) has no root of valuation n/2 nor a factor of degree

3 in Qp. We omit the other cases.

3.2.6. Higher dimensional abelian varieties Little is known for the studies on the

characteristic polynomials of abelian varieties of arbitrary dimension. In this section,

we introduce the study on abelian varieties with a specific characteristic polynomial.

If X is a simple abelian variety of dimension g, then the multiplicity e of X divides

2g. For example, as we saw Example 3.7, we consider simple abelian varieties of odd

prime dimension l. We can specialize the multiplicity e to either 1 or l, however one

can easily predict that both Problem 1 and Problem 3 will be very complicated in the

case of e = 1. On the other hand, the case of e = g is generally solved.

Theorem 3.19. [3, Theorem 1.2] Let a, b ∈ Z and 2 < g ∈ Z. Set f(t) =

(t2 + at + b)g ∈ Z[t]. Then the polynomial f(t) is the characteristic polynomial of a

simple abelian variety of dimension g over Fq with q = pn elements if and only if g

-------- 1---- I ----1 -------- I ____ I---- -------- I 

...., I I I I I I I I 
__ ::: ,.i, ___ l_ ____ L ____ I ____ _J ____ l_ _ _ _ _ _ ___ I ____ _J 

- - - "'.:::..,.....,- - - -1- - - - -I - - - - + - - - - - - - -1- - - - -I 

□ 
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divides n, b = q, |a| < 2
√
q and a = kqs/g, where k, s are integers satisfying (k, p) = 1,

(s, g) = 1 and 1 ≤ s < g/2.

Proof. Assume first that g divides n, b = q, |a| < 2
√
q and a = kqs/g, where k, s

are integers satisfying (k, p) = 1, (s, g) = 1 and 1 ≤ s < g/2. Since f(t) is a Weil

polynomial, there exists a simple abelian variety X corresponding to a root of f(t) in

Theorem 2.1. Then we have fX(t) = (t2 + at+ q)dim(X). Since

m := vp(a) = vp(kq
s/g)

= vp(p
ns/g) since (k, p) = 1,

= ns/g < n/2,

we obtain dim(X) = g from Lemma 2.4.

Conversely, we assume that the polynomial f(t) = (t2+at+b)g is the characteristic

polynomial of a simple abelian variety X of dimension g over Fq. Since f(t) is a Weil

polynomial, we get |a| ≤ 2
√
q and |b| = q.

First, suppose b = −q < 0. This implies that f(t) has a real root, which contradicts

g > 2 from Lemma 3.5.

Second, suppose b = q and |a| = 2
√
q. Then f(t) has a real root again. Similarly,

this contradicts g > 2. Hence we obtain b = q and |a| < 2
√
q. Moreover, g divides n by

Theorem 3.8. We note that the least common denominator of all invariants of End0(X)

is g. We consider the Newton polygon for t2 + at + q. This has 3 possible vertices

(0, n), (1, vp(a)) and (2, 0).

Suppose the Newton polygon is a line, i.e. vp(a) ≥ n/2 or a = 0 (See Figure 2).

Then we can decompose t2+at+q as (t−α1)(t−α2) in Qp[t] so that vp(α1) = vp(α2) =

n/2. We have

lcd

(
vp(α1)

n
[Qp(α1) : Qp],

vp(α2)

n
[Qp(α2) : Qp]

)
= lcd

(
1

2
[Qp(α1) : Qp],

1

2
[Qp(α2) : Qp]

)
,

which is 1 or 2 since [Qp(αi) : Qp] = 1 or 2. This contradicts Lemma 2.5 since g > 2.

Hence the point (1, vp(a)) must be a vertex of the Newton polygon. In other words,

we have vp(a) < n/2 and a 6= 0 (See Figure 2). Then we can decompose t2 + at+ q as

(t− α1)(t− α2) so that t− α1, t− α2 ∈ Qp[t], vp(α1) = n− vp(a) and vp(α2) = vp(a).
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We have

lcd

(
vp(α1)

n
[Qp(α1) : Qp],

vp(α2)

n
[Qp(α2) : Qp]

)
= lcd

(
1− vp(a)

n
,
vp(a)

n

)
= d

(
vp(a)

n

)
= g

if and only if vp(a) = ns/g with an integer s satisfying (s, g) = 1. Further, since

vp(a) < n/2, we have s < g/2. This implies that (g divides n and) a = kqs/g, where

k, s are integers satisfying (k, p) = 1, (s, g) = 1 and 1 ≤ s < g/2.

O 1 2

n

Figure 2. a line

O 1 2

n

Figure 3. (1, vp(a)) is a vertex

We can count the isogeny classes of a specific abelian variety from Tate’s theorem

by determining the characteristic polynomials explicitly.

Example 3.20. Consider the abelian varieties of dimension g = 5 over F210 with

characteristic polynomial (t2 + at+ b)5. By Theorem 3.19, we get that b = 210 and s =

1, 2. Thus a = k ·(210)s/5 = k ·22s = 4k or 16k, where |a| < 2·25 = 64 and k is an integer

such that (k, 2) = 1. By simple calculation, a = ±4,±12,±16,±20,±28,±36,±44,±48,±52

or ±60. Hence, the number of the isogeny class of simple abelian varieties of dimension

5 over F210 with characteristic polynomial (t2 + at+ 210)5 is 20.
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