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Survey on the theory of G-zips

By

Jean-Stefan Koskivirta∗

§ 1. Introduction

The theory of F-zips was first introduced by Moonen-Wedhorn in [2]. Roughly

speaking, this theory aims at classifying geometric objects in positive characteristic. For

example, let E be an elliptic curve over an algebraically closed field k of characteristic

p and consider the p-torsion part E(k)[p] of the group E(k). There are two cases:

• If E(k)[p] ' Z/pZ, we say that E is ordinary.

• If E(k)[p] = {0}, we say that E is supersingular.

Hence, the group E(k)[p] is a discrete invariant for elliptic curves over k, in the sense

that the number of possible cases is finite. The theory of F-zips is a similar attempt to

attach invariants to geometric objects.

If we consider a family of elliptic curves E → S over a base scheme S of charac-

teristic p, then the fibers Es for s ∈ S are usual elliptic curves over fields. Hence S is

naturally the (set-theoretic) disjoint union

(1.1) S = Sord t Sss

where Sord (resp. Sss) is the set of s ∈ S such that Es is ordinary (resp. supersingular).

It turns out that the ordinary locus Sord is always open. This is related to the fact that

an ordinary elliptic curve has a good deformation theory.

A concrete way of seeing that Sord is open, is to express it as the non-vanishing

locus of a section of a line bundle over S. Denote by ω the line bundle over S obtained
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by pulling back the sheaf Ω1
E/S along the unit section S → E of the S-group scheme E .

There exists a section Ha ∈ H0(S, ωp−1) called the Hasse invariant such that

(1.2) Sord = {s ∈ S | Ha(s) 6= 0}.

The theory of F-zips provides a geometric object (an algebraic stack), which carries

naturally the line bundle ω and the Hasse invariant Ha. Concretely, let B denote the

group of upper-triangular matrices in GL2, let B− be the lower-triangular ones, and

let T be the diagonal torus. Consider the set of pairs (x, y) ∈ B− × B such that the

diagonal coefficients of y are the p-th powers of the diagonal coefficients of x. In other

words, x, y have the form

(1.3) x =

(
a 0

c d

)
, y =

(
ap b

0 dp

)

for some a, d ∈ k× and b, c ∈ k. The set of such pairs forms a group E ⊂ B− ×B. Let

E act on GL2 by the rule (x, y) · g = xgy−1. Then one sees that there are exactly two

orbits for this action, an open orbit and a closed one. The open orbit is

(1.4) GLord
2 :=

{(
a b

c d

)
∈ GL2 | a 6= 0

}
.

The closed one is GLss
2 , defined by the condition a = 0.

The stack of F-zips in this context is the quotient stack X = [E\GL2], its underlying

topological space consists of two points. We will see in this survey that the datum of

an elliptic curve E over S induces a map S → X . The ordinary and supersingular

loci are the fibers of this map. This geometrization is very useful. The stack X has a

rich structure, and S inherits it by way of pulling back. For example, the section Ha

previously mentioned is actually pulled back from a section Ha ∈ H0(X , ωp−1) for a

certain line bundle ω on X .

In the papers [3] and [4], Pink-Wedhorn-Ziegler define the notion of G-zips. The

formalism of G-zips makes it possible to work with arbitrary reductive groups G, in place

of GL2 in the previous example. We will see that the Hasse invariant Ha possesses a

vast generalization as well.

§ 2. The category of F-zips

We start be recalling the definition of F-zips, as introduced by Moonen-Wedhorn

in [2]. Basically, an F-zip over a scheme S of characteristic p is a locally free module

endowed with two filtrations and Frobenius-linear isomorphisms between the graded

pieces. Specifically, let S be a scheme and let M be a locally free OS-module. By a
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descending filtration on M, we mean a sequence of locally free OS-submodules (Ci)i∈Z

such that

(i) For all i ∈ Z, Ci+1 ⊂ Ci is Zariski locally a direct factor of Ci.

(ii) One has Ci = 0 for i� 0 and Ci = M for i� 0.

We define gri(C•) := Ci/Ci+1, by assumption (i) it is a locally free OS-module. We say

that (Di)i∈Z is an ascending filtration if (D−i)i∈Z is a descending filtration. In this case,

we write gri(D•) := Di/Di−1. For an OS-module F , we denote by F (p) the pullback of

F under the absolute Frobenius map FrS : S → S.

Definition 2.1. An F-zip over S is a tuple M = (M, C•,D•, ι•), where

(1) M is a locally free OS-module of finite rank.

(2) C• = (Ci)i∈Z is a descending filtration on M.

(3) D• = (Di)i∈Z is an ascending filtration on M.

(4) For each i ∈ Z, ιi is an isomorphism gri(C•)(p) → gri(D•) of OS-modules.

Next we describe homomorphisms of F-zips. If M and N are F-zips, a homomor-

phism f : M → N is a morphism of OS-modules f : M → N such that f(CiM) ⊂ CiN
and f(DiM) ⊂ DiN for all i ∈ Z, and such that the following diagram commutes

(2.1) gri(C•M)(p)

gri(C•f)(p)

��

ιi // gri(D•M)

gri(D•f)

��

gri(C•N )(p)
ιi // gri(D•N ).

The category of F-zips is denoted by F-Zip(S), it is Fp-linear (but not OS-linear, due

to the presence of the Frobenius isogeny). We will see now that it is a tensor category.

First, if M,N are locally free OS-modules endowed with descending filtrations C•M
and C•N respectively, then M⊗N has a descending filtration defined by:

(2.2) Ci(M⊗N ) :=
∑
j∈Z

CjM⊗Ci−jN .

There is of course a similar statement with ascending filtrations. Hence if M and N
are F-zips over S, the locally free OS-module M ⊗ N is endowed with a descending

filtration C•(M⊗N ) and an ascending filtration D•(M⊗N ). Furthermore, it is easy

to see that the isomorphisms ι• for M and N induces similar isomorphisms between

the graded pieces of these filtrations. We obtain an F-zip structure on M⊗N , which
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we call the tensor product of M and N and denote it by M ⊗ N . This shows that

F-Zip(S) is an Fp-linear tensor category.

There is a notion of type for an F-zip M = (M, C•,D•, ι•) over a base scheme S.

Let η : Z → Z≥0 be a function with finite support (i.e η(i) 6= 0 for finitely many i ∈ Z),

then we say that M has type η if the locally free sheaf gri(C•) has rank η(i) for all

i ∈ Z. Denote by F-Zipη(S) the full subcategory of F-zips of type η over S.

For an F-zip M, it is possible to shift the indexation of the filtrations by an index

r ∈ Z. The F-zip M[r] is defined by C•(M[r]) := C•+r(M) and D•(M[r]) := D•+r(M).

Denote by OS [r] the unique F-zip whose underlying sheaf is OS and whose type has

support {r}. Then M[r] is simply M⊗OS [r]. Hence if we denote by η[r] the function

i 7→ η(r + i), then the categories F-Zipη(S) and F-Zipη[r](S) are equivalent.

§ 3. F-zips and Dieudonne spaces

We say that a commutative group scheme G over k is n-torsion (for an integer

n ∈ Z≥1) if multiplication by n is the zero map of G(R) for any k-algebra R. Recall

the classification of finite, commutative, p-torsion group schemes over k by Dieudonne

theory.

Theorem 3.1 ([14, page 69]). There is a contravariant functor D : G 7→ D(G)

between the category of finite, commutative, p-torsion group schemes over k and the

category of triples (M,F, V ) where M is a finite-dimensional k-vector space, F : M →
M is a σ-linear map, V :M →M is a σ−1-linear map, satisfying the conditions FV = 0

and V F = 0. Furthermore, this functor is an equivalence of categories.

Furthermore, if a triple (M,F, V ) satisfies the extra conditions Im(F ) = Ker(V )

and Im(V ) = Ker(F ), then we call it a Dieudonne space over k. For example, if A is an

abelian variety over k, the p-torsion A[p] is a finite, commutative, p-torsion group scheme

over k and its associated object D(A[p]) is a Dieudonne space over k ([15, §3.3.8]). A

Dieudonne space (M,F, V ) over k gives rise to an F-zip over k as follows.

(i) The filtration C• of M is defined by C0 =M , C1 = Ker(F ), C2 = 0.

(ii) The filtration D• of M is defined by D−1 = 0, D0 = Ker(V ), D1 =M .

(iii) The isomorphism ι0 : (C1)(p) → M/D0 is the inverse of the map induced by V .

The isomorphism ι1 : (M/C1)(p) → D0 is the one induced by F .

Proposition 3.2. This construction gives an equivalence of categories between

the category of Dieudonne spaces over k to the full subcategory of F-Zip(k) of F-zips

whose type η : Z → Z≥0 has support in {0, 1}.
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In particular, if A is an abelian scheme over k, we can attach an F-zip to A by

applying Proposition 3.2 to the Dieudonne space D(A[p]).

§ 4. F-zips arising in geometry

It is not obvious at first glance why Definition 2.1 is relevant. We will see that

F-zips arise naturally in geometry via de Rham cohomology. To define it, first recall the

construction of hypercohomology. Let A and B be abelian categories, and suppose that

A has enough injective objects (i.e., any object has a monomorphism to an injective

object). Let T : A → B be a left exact functor. Let K• be a bounded below complex of

objects in A. Choose a quasi-isomorphism K• → I• to a complex of injective objects

(this is always possible). Then one defines the hypercohomology of K• as

(4.1) RiT (K•) := Hi(T (I•)).

This gives a well-defined object in B, that we call the hypercohomology of K•. It is

possible to construct several spectral sequences that converge to the hypercohomology,

by considering different filtrations on a complex K•. In this survey, the two spectral

sequences of importance are the following two:

′Ea,b
1 = RbT (Ka) =⇒ Ra+bT (K•).(4.2)

′′Ea,b
2 = RaT (Hb(K•)) =⇒ Ra+bT (K•).(4.3)

For example, let X be a scheme of finite-type over an arbitrary field k. The sheaves

Ωi
X/k are coherent OX -modules. However, since differentials are not OX -linear, the de

Rham complex Ω•
X/k is a complex in the category of sheaves of k-vector spaces on X.

Denote this abelian category by A. Let B be the category of k-vector spaces, and let

T : A → B be the functor F 7→ Γ(X,F). The formalism of hypercohomology yields a k-

vector space Hi
dR(X/k) := RiT (Ω•

X/k) and spectral sequences converging to H∗
dR(X/k):

HEa,b
1 := Hb(X,Ωa

X/k) =⇒ Ha+b
dR (X/k).(4.4)

conjEa,b
2 := Ha(X,H b(Ω•

X/k)) =⇒ Ha+b
dR (X/k).(4.5)

We call them respectively the Hodge and the conjugate spectral sequences. When k has

characteristic zero, things are particularly simple as both sequences degenerate immedi-

ately. Furthermore, if k = C, a standard fact in Hodge theory states that the conjugate

filtration is obtained from the Hodge filtration by applying complex conjugation.

When k has positive characteristic p, the degeneracy is no longer true, not even

when X is proper smooth over k. Hence, we make the following assumption:

Assumption 4.1. The Hodge spectral sequence of X degenerates at E1.
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Let FX : X → X(p) be the relative p-power Frobenius map and consider the complex

FX,∗(Ω
•
X/k). This is a complex of OX(p)-modules whose maps are OX(p)-linear (easy

computation). Hence the cohomology sheaves H a(FX,∗(Ω
•
X/k)) are OX(p) -modules.

The Cartier isomorphisms are natural isomorphisms

(4.6) Ωa
X(p)

∼−→ H a(FX,∗(Ω
•
X/k)).

for all a ≥ 0 (see [16, Theorem 7.2]). Taking the b-th cohomology group over X(p) on

each side, we obtain σ-linear isomorphisms for all a, b ≥ 0:

(4.7) HEa,b
1 ' conjEb,a

2

It also follows from this that the conjugate spectral sequence automatically degenerates

at the second page. We now give the construction of the F-zip M := (M,C•, D•, ι•)

over k attached to X.

(i) Take M = Hn
dR(X/k).

(ii) Denote by C• = (Ci)i∈Z the filtration obtained by the Hodge spectral sequence,

indexed such that C• is descending and gri(C•) = Hn−i(X,Ωi
X/k).

(iii) Denote byD• = (Di)i∈Z the filtration obtained by the conjugate spectral sequence,

indexed such that D• is ascending and gri(D•) = Hn−i(X,H i(Ω•
X/k)).

(iv) Let ιi : gri(C
•)(p) → gri(D•) be the linearized Cartier isomorphism.

We have just seen that if X is a proper smooth scheme over k satisfying Assumption

4.1, then Hn
dR(X/k) is naturally endowed with an F-zip structure. There are many such

schemes, for example abelian varieties, K3 surfaces, complete intersections in projective

bundles... Also a theorem of Deligne-Illusie states that a proper smooth scheme X over

k which lifts to W2(k) and of dimension dim(X) < p satisfies Assumption 4.1.

We now give the generalization of this construction to an arbitrary base scheme.

Let f : X → S be a proper, smooth morphism of Fp-schemes. Following the terminology

of [2], we say that f : X → S satisfies condition (D) if the following properties hold.

(1) The OS-modules Rbf∗(Ω
a
X/S) are locally free of finite rank for all a, b ≥ 0.

(2) The Hodge spectral sequence degenerates at E1.

Assume that f satisfies condition (D), then just as in the previous case, for any integer

n such that 0 ≤ n ≤ 2 dim(X/S) the locally free OS-module Hn
dR(X/S) is naturally

endowed with an F-zip structure over S. We write Hn
dR(X/S) for this F-zip. This

construction can be promoted to a contravariant functor

(4.8) Hn
dR :

(
Proper smooth X → S

satisfying condition (D)

)
−→ F-Zip(S).
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An important example is the case of abelian schemes A → S. If g denotes the relative

dimension of A/S, the F-zip H1
dR(A/S) has type η : Z → Z≥0 where η is defined by

(4.9) η(i) =

g i = 0, 1

0 otherwise

In the case S = Spec(k), recall that we attached an F-zip to a Dieudonne space over

k (Proposition 3.2). One can check that the F-zip H1
dR(A/k) coincides with the F-zip

attached to D(A[p]).

§ 5. Additional structure

From now on, k will denote an algebraic closure of Fp. It is natural to consider

F-zips endowed with additional structure. For example, let (A, λ) be a principally

polarized abelian variety over k of dimension g. Let H1
dR(A/k) = (M,C•, D•, ι•) be the

attached F-zip. In particular, we have σ-linear isomorphisms ι0 :M/C1 → D0 and ι1 :

C1 →M/D0. The polarization λ induces on M a perfect pairing 〈−,−〉 :M ×M → k

which satisfies the following conditions.

(i) C1 and D0 are totally isotropic.

(ii) One has 〈ι0x, ι1y〉 = σ〈x, y〉 for all x ∈M and all y ∈ C1 (note that the expression

〈ι0x, ι1y〉 is well-defined because D0 is totally isotropic).

More generally, we can define F-zips with G-structure for an arbitrary algebraic

group G over Fp. Denote by Rep(G) the category of algebraic representations of G over

Fp. Since we saw that the category of F-zips over a scheme S is a tensor category, we

may define the following notion.

Definition 5.1. A G-zip functor over an Fp-scheme S is an exact Fp-linear

tensor functor Rep(G) → F-Zip(S).

We denote by G-ZipFun(S) the category of G-zip functors over S. Our goal in this

section is to explain a more down-to-earth definition of F-zips with G-structure over S.

For this, we need to understand how to generalize the notion of type.

First of all, if G = GLn, the category G-ZipFun(S) is equivalent to the category

F-Zipn(S) of F-zips M = (M, C•,D•, ι•) where M is a locally free OS-module of rank

n. If such an F-zip M has type η, then it must satisfy

(5.1)
∑
i∈Z

η(i) = n.
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Giving such a function is the same as giving a conjugacy class of cocharacters of GLn.

The bijection is given as follows. If η is a function as above, the corresponding conjugacy

class of cocharacters is given by considering a decomposition

(5.2) Fn
p =

⊕
i∈Z

Vi

where Vi has dimension η(i) and letting z ∈ Gm act on Vi by z
i. Hence, it seems natural

that the generalization of the notion of type for G-zip functors is a conjugacy class of

cocharacters of G.

Definition 5.2. Let µ : Gm,k → Gk be a cocharacter. We say that a G-zip

functor z : Rep(G) → F-Zip(S) has type µ if for all representations (V, ρ) ∈ Rep(G),

the F-zip z(V, ρ) has type ρ ◦µ. Denote by G-ZipFunµ(S) the full subcategory of G-zip

functors of type µ.

Now, we explain an equivalent definition of G-zips. Fix a cocharacter µ : Gm,k →
Gk. One obtains naturally a pair of opposite parabolic subgroups (P−, P+) in Gk and

a common Levi subgroup L := P− ∩ P+ = Cent(µ). The group P+(k) consists of those

elements g ∈ G(k) such that the limit

(5.3) lim
t→0

µ(t)gµ(t)−1

exists, i.e. such that the map Gm,k → Gk, t 7→ µ(t)gµ(t)−1 extends to a morphism of

varieties A1
k → Gk. The Lie algebra of the parabolic P+ (resp. P−) is given by

(5.4) Lie(P+) =
⊕
n≥0

Lie(G)n (resp. Lie(P−) =
⊕
n≤0

Lie(G)n)

where Lie(G)n is the subspace where z ∈ Gm acts by zn via the cocharacter µ. We set

P := P−, Q := (P+)
(p)

and M := L(p), so that M is a Levi subgroup of Q. We denote

by U and V the unipotent radicals of P and Q, respectively. For a k-scheme S, one

defines:

Definition 5.3. A G-zip of type µ over S is a tuple I = (I, IP , IQ, ι) where

(i) I is a G-torsor over S,

(ii) IP ⊂ I is a P -torsor over S,

(iii) IQ ⊂ I is a Q-torsor over S,

(iv) ι : (IP /U)(p) → IQ/V is an isomorphism of M -torsors.

-
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In the case G = GLn, one recovers the usual notion of F-zip. Denote by G-Zipµ(S)

the category of G-zips of type µ. By a result of Pink-Wedhorn-Ziegler ([4, §1.4]), there
is an equivalence of categories

(5.5) G-ZipFunµ(S) ' G-Zipµ(S).

§ 6. The stack of G-zips

It is convenient to use the language of stacks to study F-zips and G-zips. Roughly

speaking, a stack is an object that generalizes the notion of scheme by allowing auto-

morphisms of points. First, recall that a groupoid is a category in which every map

is an isomorphism. A category fibred in groupoids over the category of k-schemes is a

family of groupoids X (S) for each k-scheme S, such that if φ : S → T is a map of k-

schemes, there is a functor φ∗ : X (T ) → X (S). This is called a base change functor and

is denoted by (−)S . Furthermore, if φ : S → T and ψ : T → U are maps of k-schemes,

there is an isomorphism of functors (ψ ◦ φ)∗ ' φ∗ ◦ ψ∗ (and these isomorphisms satisfy

a cocycle relation). A stack over k is a particular kind of category fibred in groupoids

over the category of k-schemes.

Specifically, one requires two conditions to hold:

(1) For all k-schemes S and all x, y ∈ X (S), the functor from S-schemes to sets which

takes T to HomX (T )(xT , yT ) is a sheaf for the etale topology.

(2) All descent data are effective.

Roughly speaking, the second condition means that if (Ti → S)i∈I is an etale covering,

we may glue objects xi ∈ X (Ti) to obtain an object x ∈ X (S). Specifically, write

Vij := Vi ×S Vj . Then if fij : (xi)Vij
→ (xj)Vij

are isomorphisms satisfying the usual

cocycle relation, then there exists an object x ∈ X (S) such that xi = xVi .

For example, a k-scheme X may be viewed as a stack over k. The groupoid X(S) is

simply the set Homk(S,X), viewed as a category where the only maps are the identities

of objects.

For each k-scheme S, consider the category F-Zip(S) whose objects are F-zips

over S and whose morphisms are isomorphisms of F-zips. Clearly, this is a groupoid.

If f : T → S is a map of k-schemes, then there is a base change functor f∗ :

F-Zip(S) → F-Zip(T ). Indeed, let M = (M, C•,D•, ι•) be an F-zip over S. Then

f∗M = (f∗M, f∗C•, f∗D•, f
∗ι•) is its pull-back to T .

Definition 6.1. The above construction gives rise to a stack over k. We denote

it by F-Zip and call it the stack of F-zips. Similarly, if η : Z → Z≥0 is a function with

finite support, then the categories F-Zipη(S) give rise to a stack over k, that we denote
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by F-Zipη. More generally, if G is a connected Fp-reductive group and µ : Gm,k → Gk

is a cocharacter, the categories G-Zipµ(S) give rise to a stack G-Zipµ over k.

This turns out to be an algebraic stack. In our case, this means that there is a

smooth surjective morphism from a scheme to this stack. For an algebraic stack X , it

is possible to define an underlying topological space by taking the equivalence classes

of pairs (K,x) where k ⊂ K is a field extension and x ∈ X (K). Two pairs (K,x) and

(K ′, x′) are equivalent if there exists a common field extension L of K and K ′ such that

xL ' x′L. The set of equivalence classes is denoted by |X |. This set is endowed with a

topology, as follows. Say that a map of stacks Y → X is an open immersion if the map

Y×X X → X is an open immersion of schemes for any scheme X mapping to X . In this

case, |Y| is naturally a subset of |X |. Subsets of this kind form a topology, called the

Zariski topology of |X |. Similarly, one can define a closed substack Y → X as a map

of stacks that becomes a closed immersion (of schemes) after base change to a scheme

X → X .

For a function η : Z → Z≥0 with finite support, the substack F-Zipη ⊂ F-Zip is

both open and closed. The stack F-Zip decomposes as a disjoint union

(6.1) F-Zip =
⊔
η

F-Zipη

and the substacks F-Zipη are the connected components of F-Zip. In particular, this

implies that an F-zip over a connected scheme S has a type, because the corresponding

map S → F-Zip must factor through a certain component F-Zipη.

§ 7. Representation as a quotient stack

A nice property of stacks is the existence of quotients. If H is a smooth k-algebraic

group acting on the left on a k-scheme X, then the quotient stack X := [H\X] is

defined as follows. For any k-scheme S, the groupoid X (S) is the category of pairs

(T, α) where T is an H-torsor on S and α : T → X ×k S is an H ×k S-equivariant map.

It is clear that X (S) is a groupoid, and one can check that X is a stack over k. For

example, when X = Spec(k) is endowed with the trivial action of H, the quotient stack

B(H) = [H\Spec(k)] is the classifying stack of H. For a k-scheme S, a morphism of

stacks S → B(H) is essentially the same as an H-torsor over S.

Fix a connected reductive Fp-group G and a cocharacter µ : Gm,k → Gk. We will

see that the k-stack G-Zipµ can be written as a quotient stack. Let P,Q,L,M,U, V be

the attached groups, as defined in §5. The Frobenius restricts to a map φ : L → M .

The isomorphisms L ' P/U and M ' Q/V yield natural maps P → L and Q → M

which we both denote by x 7→ x. Define the zip group E as:

(7.1) E := {(a, b) ∈ P ×Q | φ(a) = b}.
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The group E acts on G by the rule (a, b) · g := agb−1.

Theorem 7.1 ([4, Th. 1.5] ). There is an isomorphism G-Zipµ ' [E\G].

In particular, the underlying topological space |G-Zipµ | coincides with the set of

E-orbits in G. Each such orbit is locally closed for the Zariski topology of G. We now

give a parametrization of these E-orbits. Fix a Borel pair (B, T ) satisfying B ⊂ P and

suppose for simplicity that (B, T ) are defined over Fp. After possibly changing µ to a

conjugate cocharacter, it is always possible to find such a Borel pair. Denote by Φ the

set of T -roots and ∆ the set of simple roots. Recall that there is a bijection between

subsets of ∆ and conjugacy classes of parabolic subgroups of Gk. We normalize this

bijection such that Borel subgroups correspond to the empty set. Let I, J ⊂ ∆ be the

types of P,Q respectively. Since B ⊂ P , the set I consists of the simple roots of L.

Write W = N(T )/T for the Weyl group of T , it is a Coxeter group. There is a length

function ℓ : W → Z≥0. Write w0 for the longest element in W . For a subset K ⊂ ∆,

let w0,K be the longest element of the subgroup WK ⊂ W generated by {sα | α ∈ K}.
Also define WK as the set of elements w ∈W which are of minimal length in the coset

wWK .

For w ∈ W , choose a representative ẇ ∈ NG(T ), such that (w1w2)
· = ẇ1ẇ2

whenever ℓ(w1w2) = ℓ(w1)+ ℓ(w2) (this is possible by choosing a Chevalley system, see

[13], Exp. XXIII, §6). Define z := w0w0,J .

For w ∈ W , define Gw as the E-orbit of ẇż−1. The E-orbits in G form a stratifi-

cation of G by locally closed subsets.

Theorem 7.2 ([3, Th. 11.3]). The map w 7→ Gw induces a bijection from W J

onto the set of E-orbits in G. Furthermore, for w ∈W J , one has

(7.2) dim(Gw) = ℓ(w) + dim(P ).

Endow Gw with the reduced subscheme structure. Then the quotient stack Xw =

[E\Gw] is a locally closed substack of X = G-Zipµ. We call Xw a zip stratum. This

gives a stratification of X . Note that the underlying topological space of Xw is a single

point.

§ 8. Vector bundles on G-Zipµ

It is possible to define a notion of vector bundles for algebraic stacks. If X is an

algebraic stack, one could define a vector bundle over X as a family of vector bundles

V = (VS)S for each scheme S and each morphism of stacks S → X . Furthermore, this

family should be compatible in an obvious sense. The space of global sections of V over

X is then defined as an inverse limit of the spaces H0(S,VS).
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Let G be a smooth algebraic group over k acting on a k-variety X. Let X be the

quotient stack [G\X]. Then there is a natural way to attach a vector bundle on X to

an algebraic representation ρ : G → GL(V ). Specifically, if S → X is a map from a

scheme S, then by definition of the quotient stack, we have a natural G-torsor on S.

Applying the representation ρ, we obtain a GL(V )-torsor on S, hence a vector bundle

of rank dim(V ). This construction is functorial in S, so we obtain a vector bundle V (ρ)

on the stack X . Explicitly, the space of global sections H0(X ,V (ρ)) is identified with

(8.1) H0(X ,V (ρ)) = {f : X → V, f(g · x) = ρ(g)f(x), ∀g ∈ G, ∀x ∈ X} .

Recall that the stack of G-zips of type µ is isomorphic to a quotient stack [E\G],
as explained earlier. Hence, the previous construction attaches to each algebraic repre-

sentation ρ : E → GL(V ) a vector bundle V (ρ) on G-Zipµ. Furthermore, V (ρ) is a line

bundle if and only if ρ is a character of E.

For the time being, we consider only line bundles. There are natural identifications

between characters of E, P and L via the first projection E → P and the Levi projection

P → L. Indeed, all these groups coincide up to a unipotent group, which has no

nontrivial characters. Hence, we parametrize line bundles on G-Zipµ by characters of L

: If λ ∈ X∗(L), we denote by V (λ) the line bundle attached to the character E → Gm,

(a, b) 7→ λ(a).

§ 9. Hasse invariants

One interesting feature of the stack of G-zips is the existence (in many cases, but

not always) of Hasse invariants for zip strata. Let us start with a definition of what

we mean by a Hasse invariant. Let X be an algebraic stack. We may thus consider

its underlying topological space |X |. Let Y ⊂ X be a locally closed subset, and denote

by Y its Zariski closure. Endow both Y and Y with the reduced substack structure.

Finally, let L be a line bundle over X .

Definition 9.1. A Hasse invariant for Y with respect to L is a section h ∈
H0(Y,L n) (some n ≥ 1) such that the non-vanishing locus of h is exactly Y.

Recall that any character λ ∈ X∗(L) gives rise to a line bundle V (λ) on the stack

X = G-Zipµ. Taking Y to be a single zip stratum Xw ⊂ X (for some w ∈ W J) in

Definition 9.1, we have the notion of Hasse invariants for Xw with respect to L (λ). It

is possible to give a combinatorial criterion for the existence of such Hasse invariants.

For an element w ∈ W , we write Ew for the set of positive roots α satisfying wsα < w

and ℓ(wsα) = ℓ(w) − 1. Write σ for the action of Frobenius on W and X∗(T ). For

w ∈ W and an integer n ≥ 1, let w(n) be the product σn(w)σn−1(w) . . . σ(w) and set
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by convention w(0) = 1. It is easy to see that there exists r ≥ 1 such that w(r) = 1.

Furthermore, the set of integers r ≥ 1 such that w(r) = 1 is stable under addition.

Hence we can find r ≥ 1 such that w(r) = 1 for all w ∈W . We fix such an integer r ≥ 1.

We also fix an integer m ≥ 1 such that T is split over Fpm .

Proposition 9.2 ([6, Prop. 3.2.1]). Let w ∈W J and λ ∈ X∗(L). The following

assertions are equivalent:

(i) There is a Hasse invariant for Xw with respect to L (λ).

(ii) For all α ∈ Ew, one has:

(9.1)
rm−1∑
i=0

〈(zw−1)(i)σi(λ), wα∨〉pi > 0.

First, we want to mention negative results. The above proposition can provide a

counter-example for the principal purity of the stratification (Xw)w. Principal purity

means that every stratum admits a Hasse invariant (for some λ ∈ X∗(L)). The easiest

counter-example that we could find is in the case of G = Sp(6) for a cocharacter µ that

corresponds to the middle point of the Dynkin diagram. For the prime number p = 2,

there exists a stratum Xw which does not admit Hasse invariants (for any λ ∈ X∗(L)).

To obtain a positive results for the existence of Hasse invariants, it is of course

very cumbersome to check that condition (ii) is satisfied in general. Hence we want to

mention a result which has a much easier statement.

Theorem 9.3. Assume that λ ∈ X∗(L) satisfies the following conditions:

(i) One has 〈λ, α∨〉 < 0 for all α ∈ ∆ \ I.

(ii) For all α ∈ Φ such that 〈λ, α∨〉 6= 0, for all w ∈W and all j ∈ Z we have

(9.2)

∣∣∣∣ 〈λ,wσj(α)∨〉
〈λ, α∨〉

∣∣∣∣ ≤ p− 1.

Then L (λ) admits Hasse invariants on all zip strata.

Theorem 9.3 is an elementary consequence of Proposition 9.2. One checks that the

expression (9.1) is positive as follows: View this expression as a polynomial in p. The

leading coefficient is

〈(zw−1)(rm−1)σrm−1(λ), wα∨〉 = 〈wz−1σ−1(λ), wα∨〉 = 〈λ, σ(zα)∨〉.

We claim that this leading coefficient is positive. First, since w ∈ W J and α ∈ Ew, we

have α /∈ J . Since z = w0w0,J , we deduce easily that zα is a negative root not contained
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in M . It follows that σ(zα) is a negative root, not contained in L. Hence one can write

−σ(zα)∨ =
∑

j α
∨
j for αj ∈ ∆, with at least one αj in ∆ \ I. It follows from Condition

(i) that 〈λ, σ(zα)∨〉 > 0, hence the claim.

Divide the expression (9.1) by this leading coefficient. Then Condition (ii) implies

that the coefficients of this monic polynomial are ≤ p− 1. The result then follows from

the inequality

(9.3) (p− 1)
r−2∑
i=0

pi = pr−1 − 1 < pr−1.

§ 10. Ekedahl-Oort strata

Consider an abelian variety A of dimension g ≥ 1 over k. The p-torsion A[p] is a

finite commutative p-torsion group scheme over k. Not all finite commutative p-torsion

group scheme over k appear in this way. Those which do are exactly those whose

Dieudonne module D(A[p]) satisfies Im(F ) = Ker(V ) and Im(V ) = Ker(F ) (we say

that A[p] is a BT1).

If A → S is an abelian scheme over a base scheme of characteristic p, then S is

naturally decomposed as a (set-theoretic) disjoint union

(10.1) S =
⊔
γ

Sγ

where γ varies in the set of isomorphism classes of BT1’s. The subset Sγ is the set of

points s ∈ S such that As[p] is in γ. By a theorem of Oort, this decomposition is locally

closed. However, in general it may not be a stratification of S in the sense that the

closure of Sγ may not be a union of Sγ′ for certain γ′.

As we explained, we may attach to A → S an F-zip M = (M, C•,D•, ι•) over S

whose type η has support in {0, 1} and satisfies η(0) = η(1) = g. This gives rise to a

morphism of stacks

(10.2) ζ : S −→ F-Zipη .

The strata Sγ of S coincide with the fibers of this morphism. The stack F-Zipη coincides

with the stack G-Zipµ for the group G = GL2g and the cocharacter

(10.3) µ : z 7→

(
z Idg

Idg

)
.

In particular, the Levi subgroup L ⊂ G attached to µ is the set of matrices of the form

(10.4)

(
A 0

0 D

)
, where A,D ∈ GLg.

--
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Thus X∗(L) is a free Z-module of rank 2. Consider the character λω ∈ X∗(L) given by

mapping the matrix (10.4) to det(A)−1. We have an associated line bundle V (λω) over

X = F-Zipη.

The Hodge vector bundle Ω of the abelian scheme A → S is defined as the pullback

along the unit section S → A of the sheaf of relative differentials Ω1
A /S . It is a rank g

vector bundle on S. Denote by ω = ∧gΩ its determinant. Then one has the following

equation.

(10.5) ζ∗V (λω) = ω.

It is easy to check that the character λω satisfies the conditions (i) and (ii) of Theorem

9.3 (for any value of the prime p). The first one is immediate, and for the second one,

note that λω is minuscule, hence for all α ∈ Φ such that 〈λω, α∨〉 6= 0, the quotient

(10.6)

∣∣∣∣ 〈λω, wα∨〉
〈λω, α∨〉

∣∣∣∣
only takes the value 0 or 1 for any w ∈ W , hence is always ≤ p − 1, even for p = 2.

Thus we may apply the theorem to the line bundle V (λω). By pulling back to S, we

deduce:

Proposition 10.1. For each isomorphism class γ of BT1’s over k, there exists

n ≥ 1 and a section Haγ ∈ H0(Sγ , ω
n) over the Zariski closure Sγ which satisfies

(10.7) {s ∈ Sγ | Haγ(s) 6= 0} = Sγ .

§ 11. Sketch of proof

We sketch the proof of Proposition 9.2. It relies heavily on the stack of G-zip flags.

It is a stack Y with a natural projection map π : Y → X . It carries a stratification

(Yw)w∈W indexed by the whole Weyl group. Specifically, we give the following definition.

Definition 11.1. A G-zip flag of type µ over a k-scheme S is a pair Î = (I, J)

where I = (I, IP , IQ, ι) is a G-zip of type µ over S, and J ⊂ IP is a B-torsor.

We denote by G-ZipFlagµ(S) the category of G-zip flags over S. By similar argu-

ments as for G-zips, we obtain a stack Y := G-ZipFlagµ over k, which we call the stack

of G-zip flags of type µ. There is a natural projection π : Y → X given by forgetting

the B-torsor. To stratify Y, we need the following result. Define a subgroup E′ ⊂ E by

E′ := E ∩ (B×G). By adapting the proof of Theorem 7.1, one can prove the following.
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Theorem 11.2. There is a commutative diagram, where the vertical maps are

isomorphisms and the lower horizontal map is the natural projection:

Y π //

≃
��

X

≃
��

[E′\G] π // [E\G] .

We explain now how Y admits a natural stratification. It is based on the observation

that the group E′ is contained in the product B × zB, where zB := zBz−1 (this is an

easy verification). In particular, there is a natural projection map

(11.1) ψ : Y → [B\G/zB] ' [B\G/B]

By the Bruhat decomposition of G, the latter stack has a stratification (Bw)w∈W

parametrized by the Weyl group W . The strata (Yw)w∈W of Y are defined as the

fibers of the map ψ. Now we give the main steps of the proof of Proposition 9.2.

(1) First, one shows that for any λ ∈ X∗(L), there exists n ≥ 1 such that V (λ)n admits

a nonzero section hλ,w on the strata Xw of X for all w ∈ W J . Furthermore, these

sections are unique up to nonzero scalar. To prove Proposition 9.2, we need to

understand for which λ the section hλ,w extends to a Hasse invariant of Xw.

(2) In general, for w ∈ W , the image of Yw by π is a union of several strata Xw′ .

However, when w ∈W J , one has π(Yw) = Xw. Furthermore, the map π : Yw → Xw

is finite etale.

(3) One shows that hλ,w extends to a Hasse invariant if and only if π∗hλ,w extends to a

Hasse invariant for Yw. One implication is clear. The other is the following lemma:

Lemma 11.3. Let f : X → Y a proper surjective morphism of integral schemes

of finite-type over k. Let L be a line bundle on Y . Let U ⊂ Y be a normal open

subset and h ∈ L (U) a non-vanishing section over U . Assume that the section

f∗(h) ∈ H0(f−1(U), f∗L ) extends to X with non-vanishing locus f−1(U). Then

there exists d ≥ 1 such that hd extends to Y , with non-vanishing locus U .

(4) One shows that the pull-back π∗hλ,w coincides with ψ∗fλ,w for a certain function

fλ,w on the stratum Bw of [B\G/B] parametrized by w. Similarly, ψ∗fλ,w = π∗hλ,w

extends to a Hasse invariant for Yw if and only if fλ,w extends to a Hasse invariant

for Bw.

(5) Finally, the last part is just a computation. It is based on Chevalley’s formula,

which makes it possible to compute the divisor of the section fλ,w. The result is
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that it extends to a Hasse invariant if and only if Condition (ii) of Proposition

9.2 is satisfied, because the expressions that appear (for α varying in Ew) are the

multiplicities of the divisor of fλ,w. This terminates the proof.

§ 12. Global sections of vector bundles

Recall that any algebraic representation ρ : E → GL(V ) gives rise to a vector

bundle V (ρ) over X = G-Zipµ. If ρ : L→ GL(V ) is a representation of L, we may view

it as a representation of E via the map E → L defined as the composition of the first

projection E → P and the Levi projection P → L.

So far, we have only considered characters of L, which is the rank 1 case, and

constructed Hasse invariants for those vector bundles. In what follows, we want to study

higher rank vector bundles. Of particular interest are the vector bundles attached to

L-dominant characters by induction. For a character λ ∈ X∗(T ), view λ as a character

B → Gm and consider the induced representation

(12.1) V (λ) = IndPB(λ).

It is a representation of P where the unipotent radical of P acts trivially, so we may

view it as a representation of L. Note that if λ is not an L-dominant character, we

have V (λ) = 0. We denote by V (λ) the vector bundle over X attached to V (λ).

This provides an interesting family of vector bundles (V (λ))λ on X indexed by the

L-dominant characters λ ∈ X∗(T ).

We end this survey with a result that determines the space of global sections of

V (λ) over X . To simplify, we assume that µ is defined over Fp. We choose again a

Borel pair (B, T ) defined over Fp and we assume also that T is split over Fp. For a

character λ ∈ X∗(T ), our goal is to determine the space H0(X ,V (λ)).

Denote by U ⊂ X the unique open zip stratum. The first step is to determine the

space H0(U ,V (λ)). This is elementary, and can be done for an arbitrary representation

ρ : L→ GL(V ). Specifically, one has the following result.

Lemma 12.1. For any representation ρ : L→ GL(V ), there is an isomorphism

(12.2) H0(U ,V (ρ)) ' V L(Fp).

This is almost a tautology, given that the stack U can be seen to be isomorphic

to [1/L(Fp)]. In particular, this shows that H0(X ,V (ρ)) is a subspace of the L(Fp)-

invariants of V . To determine exactly which subspace demands some work.

First, we introduce some notation. For any representation ρ : L→ GL(V ), we may

decompose V with respect to T -eigenspaces.

(12.3) V =
⊕

χ∈X∗(T )

Vχ.
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Define a subspace V≤0 ⊂ V as follows. It is the direct sum of the T -eigenspaces Vχ for

the characters χ ∈ X∗(T ) which satisfy the condition

(12.4) 〈χ, α∨〉 ≤ 0 for all α ∈ ∆ \ I.

Note that V≤0 is stable under the action of T , but it is not a sub-L-representation of

V . From now on we consider the L-representation V (λ) defined previously, attached to

a character λ ∈ X∗(T ). One has the following.

Theorem 12.2. There is a commutative diagram where the vertical maps are

the natural inclusions, and the horizontal maps are isomorphisms:

(12.5) H0(U ,V (λ))
≃ // V (λ)L(Fp)

H0(X ,V (λ))
≃ //

?�

OO

V (λ)≤0 ∩ V (λ)L(Fp)

?�

OO

In a recent paper [17], we show that the above theorem also holds for an arbitrary L-

representation (V, ρ) (not necessarily of the form V (λ)). Furthermore, we also determine

in loc. cit. the space H0(X ,V (ρ)) for an arbitrary P -representation (V, ρ), and without

assuming that L is defined over Fp. It is a difficult problem in representation theory to

determine for which λ ∈ X∗(T ), the intersection V (λ)≤0 ∩ V (λ)L(Fp) is non-zero. The

set

(12.6) Czip :=
{
λ ∈ X∗(T ) | V (λ)≤0 ∩ V (λ)L(Fp) 6= 0

}
is an additive submonoid (i.e. a cone) of X∗(T ). The paper [9] contains some partial

results on this set, but it remains quite mysterious.

Let us mention an even more difficult problem. Instead of considering one λ at a

time, it is interesting to put them all together by forming the direct sum

(12.7) Rzip :=
⊕

λ∈X∗(T )

H0(X ,V (λ)).

This group inherits a natural structure of graded k-algebra, and one can ask what the

isomorphism class of Rzip is. The set Czip is then simply the grading monoid of this

graded algebra, so the question of determining Rzip is a refinement of the determination

of Czip. It is not even clear whether Rzip is a finite-type k-algebra. Here are some

partial results:

Proposition 12.3. One has the following:
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(i) The algebra Rzip is isomorphic to a subalgebra of k[G]. In particular, it is integral.

(ii) The field of fractions of Rzip is isomorphic to the function field of Ru(B ∩ L). In

particular, the scheme Spec(Rzip) is birational to an affine space.

(iii) If Pic(G) = 0, then Rzip is a UFD.
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Notes in Mathematics, 930, (1982).

[16] Katz, N., Nilpotent connections and the monodromy theorem: applications of a result of

Turrittin, Publ. Math. IHÉS, pp 175–232, 39, (1970).
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