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A zig-zag conjecture and local constancy for Galois

representations

By

Eknath Ghate∗

Abstract

We make a zig-zag conjecture describing the reductions of irreducible crystalline two-

dimensional representations of GQp of half-integral slopes and exceptional weights. Such

weights are two more than twice the slope mod (p − 1). We explain how zig-zag can be

deduced from known results for half-integral slopes at most 3
2
. We then explore the connection

between zig-zag and local constancy results in the weight. We show that known cases of zig-zag

force local constancy to fail for small weights, and explain how local constancy forces zig-zag

to fail for some small weights and half-integral slopes at least 2. However, we expect zig-zag to

be qualitatively true in general. We end with some compatibility results between zig-zag and

other results.

§ 1. Introduction

Let p be an odd prime. This paper is concerned with understanding the reduc-

tions of certain crystalline two-dimensional representations of the local Galois group

GQp . This problem is classical, and important in view of its applications to Galois

representations attached to modular forms.

Let Vk,ap
be the irreducible two-dimensional crystalline representation of GQp

de-

fined over a finite extension E of Qp, of Hodge-Tate weights (0, k − 1) with k ≥ 2, and

positive slope v(ap) > 0, for ap ∈ E, and v the p-adic valuation of Q̄p normalized so that

v(p) = 1. The (dual of the) representation Vk,ap can be described explicitly in terms of

Fontaine’s functor Dcris which sets up an equivalence of categories between crystalline
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representations of GQp
over E and weakly admissible filtered φ-modules over E. We

have Dcris(V
∗
k,ap

) = Dk,ap , where Dk,ap = Ee1 ⊕ Ee2 is the filtered φ-module given by

φ(e1) = pk−1e2 and φ(e2) = −e1 + ape2,

and

FiliDk,ap
=


Dk,ap if i ≤ 0,

Ee1 if 1 ≤ i ≤ k − 1,

0 if i ≥ k.

Let V̄k,ap be the semisimplification of the reduction of Vk,ap modulo the maximal

ideal of the ring of integers of E. It is a two-dimensional semisimple representation

of GQp defined over F̄p, and is independent of the choice of lattice used to define the

reduction. If f =
∑∞

n=1 anq
n is a primitive cusp form of weight k ≥ 2, level coprime to

p, and (for simplicity) trivial nebentypus character, then the local Galois representation

ρf |GQp
attached to f and p is isomorphic to Vk,ap

, at least if a2p 6= 4pk−1, so the reduction

ρ̄f |ssGQp
is isomorphic to V̄k,ap

. Thus the structure of the reductions V̄k,ap
has important

applications to the study of various objects attached to modular forms such as their

motives and Galois representations.

It is an outstanding problem to understand the shape of the reduction V̄k,ap . The

reduction V̄k,ap
was computed classically by Fontaine and Edixhoven [Edi92] for all

small weights 2 ≤ k ≤ p + 1. In a remarkable breakthrough using representation the-

oretic techniques (Langlands correspondences, as developed by Breuil, Berger, Colmez,

Paškūnas, Dospinescu [Bre03a], [Bre03b], [Ber10], [Col10], [Pas13], [CDP14], and oth-

ers), this range of weights was extended by Breuil [Bre03b] to all k ≤ 2p+ 1, at least if

p is odd. Using different techniques (the theory of (φ,Γ)-modules), Yamashita-Yasuda

[YY] have announced a further extension to weights up to p2+1
2 .

For simplicity, let us write v for the slope v(ap). Thus, v denotes both the p-adic

valuation and the slope, depending on the context. The reduction V̄k,ap is also known

for all large slopes v > bk−2
p−1 c by Berger-Li-Zhu [BLZ04]. There has been a spate of

recent work computing the reduction V̄k,ap for small slopes v. Buzzard-Gee [BG09],

[BG13] treated the case of slopes v in (0, 1). The case of slopes v in (1, 2) was treated in

[GG15], [BG15], under an assumption when v = 3
2 . The case of slope v = 1 was treated

in [BGR18].

The first goal of this paper is to fill a gap in the literature computing the reduction

for all slopes at most 2 by describing the complete recent treatment of the case of slope

v = 3
2 carried out in [GR19]. A more general second aim of this paper is as follows. Let

us say that a weight k is exceptional for a particular half-integral (and possibly integral)
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slope v ∈ 1
2Z with 0 < v ≤ p−1

2 if

k ≡ 2v + 2 mod (p− 1).

With hindsight, it has emerged that these weights are the hardest to treat. In this

paper, we make a general zig-zag conjecture which describes the reduction V̄k,ap
for

all exceptional weights for all half-integral slopes in a qualitative way. We also make

some refinements for small half-integral slopes that specify the reduction precisely. Our

refined conjecture specializes to known theorems when v = 1
2 [BG13], v = 1 [BGR18],

which is not surprising since it was modelled on these results, and is now known to be

true for v = 3
2 in view of our recent work [GR19].

As far as we are aware, the reduction problem for slope 2 is still open, though

partial results for small slopes larger than 2 have been announced by Arsovski [Ars18]

and Nagel-Pande [NP18]. In related parallel developments on the reduction problem,

we remark that certain crystabelian cases of weight 2 and slope at most 1 had been

treated earlier by Savitt [Sav05], and that similarly, semistable (non-crystalline) cases

of small even weights k ≤ p+1 had earlier been treated by Breuil-Mézard [BM02], and

more recently by Guerberoff-Park [GP19] for the remaining odd weights in this range,

using the theory of strongly divisible modules.

§ 1.1. History

Before we state the zig-zag conjecture, and as motivation for it, let us describe

in more detail some recent history, which was also described in [GR19, §1.1], showing
how the exceptional congruences classes of weights have emerged as the most difficult

to treat. To this end, we recall some standard notation. Let ω and ω2 be the mod

p fundamental characters of levels 1 and 2. Let ind(ωc
2) be the (irreducible) mod p

representation of GQp
obtained by inducing the c-th power of ω2 from the index 2

subgroup GQp2
of GQp

to GQp
(for p+ 1 ∤ c), normalized so that det ind(ωc

2) = ωc. Let

µλ be the unramified character of GQp mapping a (geometric) Frobenius at p to λ ∈ F̄×
p .

Let r := k−2 and let b ∈ {1, 2, . . . , p−1} represent the congruence class of r mod (p−1).

Then b = 2v is a representative for the exceptional congruence class of weights r mod

(p − 1). In particular, b = 1, 2, 3, . . . , represents the exceptional congruence classes of

weights r mod (p− 1) for the half-integral slopes 1
2 , 1,

3
2 , . . . , respectively.

In [BG09], Buzzard-Gee showed that the reduction V̄k,ap
is always irreducible for

slopes v in (0, 1) (and isomorphic to ind(ωb+1
2 )), except possibly in the exceptional case

v = 1
2 and b = 1. This case was only treated completely in [BG13], where the authors

show that when a certain parameter, which we call τ , is larger than another parameter,

which we call t, a reducible possibility (namely ω ⊕ ω on inertia) occurs instead. More
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precisely, setting

τ = v

(
a2p − rp

pap

)
,

t= v(1− r),

it is shown in [BG13, Theorem A] that in the exceptional case v = 1
2 and b = 1, there

is a dichotomy:

V̄k,ap
∼

ind(ωb+1
2 ), if τ < t

µλ · ωb ⊕ µλ−1 · ω, if τ ≥ t,

for r > 1, where λ is a root of the quadratic equation

λ+
1

λ
=

1

1− r
·
a2p − rp

pap
.

Note that the representation µλ · ωb ⊕ µλ−1 · ω is independent of the choice of the root

λ since b = 1.

In [BGR18], the reduction V̄k,ap
was completely determined for p > 3 on the bound-

ary v = 1 of the Buzzard-Gee annulus (0, 1), and was shown to be generically reducible

instead. In the difficult exceptional case v = 1 and b = 2, the authors were able (after

some previous iterations of the paper on the arXiv) to establish, for r > 2, a trichotomy:

V̄k,ap
∼


ind(ωb+1

2 ), if τ < t

µλ · ωb ⊕ µλ−1 · ω, if τ = t

ind(ωb+p
2 ), if τ > t,

where

τ = v

(
a2p −

(
r
2

)
p2

pap

)
,

t= v(2− r),

and where λ is a constant given by

λ=
2

2− r
·
a2p −

(
r
2

)
p2

pap
.

§ 1.2. A conjecture

Based on these results for slopes 1
2 and 1, and some computations of Rozensz-

tajn [Roz18] for some small half-integral slopes, one might guess that in the general



A zig-zag conjecture and local constancy for Galois representations 253

exceptional case v ∈ 1
2Z and b = 2v, there are b + 1 possibilities for V̄k,ap

, with vari-

ous irreducible and reducible cases occurring alternately. More precisely, we make the

following qualitative conjecture.

Conjecture 1.1 (Zig-Zag Conjecture). Say that r = k−2 ≡ b = 2v mod (p−1)

is an exceptional congruence class of weights for a particular half-integral slope 0 < v ∈
1
2Z ≤ p−1

2 . Set t = v(r− b). Then, for all weights r > b, except possibly some r that are

p-adically close to some small weights, there is a rational parameter τ = v(c), for some

c = c(r, ap), such that as τ varies through the rational line, the (semisimplification of

the) reduction V̄k,ap
of the crystalline representation Vk,ap

satisfies a (b+1)-fold-chotomy

consisting of alternating irreducible and reducible cases:

V̄k,ap
∼



ind(ωb+1
2 ), if τ < t

µλ1
· ωb ⊕ µλ−1

1
· ω, if τ = t

ind(ωb+p
2 ), if t < τ < t+ 1

µλ2 · ωb−1 ⊕ µλ−1
2

· ω2, if τ = t+ 1

ind(ωb+2p−1
2 ), if t+ 1 < τ < t+ 2

µλ3 · ωb−2 ⊕ µλ−1
3

· ω3, if τ = t+ 2

...
...

µλn · ωn ⊕ µλ−1
n

· ωn, if τ ≥ t+ (n− 1), and b = 2n− 1 is odd,

or

µλn
· ωn+1 ⊕ µλ−1

n
· ωn,

ind(ω
b+1+n(p−1)
2 ),

if τ = t+ (n− 1)

if τ > t+ (n− 1),
and b = 2n is even,

where the λi for all 1 ≤ i ≤ n are constants given by

λi = ∗i ·
c

pi−1

for some ‘fudge factors’ ∗i, except if b = 2n − 1 is odd and i = n, in which case λn

satisfies

λn +
1

λn
= ∗n · c

pn−1
.

Thus, on the inertia subgroup IQp , Conjecture 1.1 predicts the reduction is given by the

picture:

ind(ωb+1
2 )

ωb ⊕ ω

ind(ωb+p
2 )

ωb−1 ⊕ ω2 · · ·

· · ·

{
ωn ⊕ ωn, b = 2n − 1

ωn+1 ⊕ ωn, b = 2n ωn ⊕ ωn, b = 2n− 1

ind(ω
b+1+n(p−1)
2 ), b = 2nt t+ 1 t+ (n− 1)

τ
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The alternating occurrence of irreducible and reducible representations in Conjec-

ture 1.1 is connected to a zig-zag pattern among the irreducible factors of a certain

quotient of the symmetric power representation of GL2(Fp) and will be explained in

more details in Section 3.5. One might further refine the conjecture by giving a formula

for the explicit parameter c. One possibility for c that works for small half-integral

slopes is as follows:

c=
a2p −

(
r−v−
v+

)(
r−v+
v−

)
pb

pap
,(1.1)

where v− and v+ are the largest, respectively smallest, integers not equal to v ∈ 1
2Z

such that v lies in the interval (v−, v+). Moreover, we expect that the fudge factor ∗i
in the conjecture is a simple rational expression in r, though we have not been able to

guess a precise formula for it in general. However, we expect that ∗1 =
b

b− r
, and we

will soon give a formula for ∗2 when v = 3
2 . Finally, the caveat about possibly avoiding

some weights r that are p-adically close to some small weights r will be explained in

Section 2.4.

§ 1.3. Evidence

As mentioned earlier, the conjecture is true for v = 1
2 [BG13] and v = 1 [BGR18]

for all weights r > b, including the refinement involving the shape of c above and the

constants λi. As further evidence towards the refined form of the conjecture, we present

[GR19, Theorem 1.1]:

Theorem 1.2. If v = 3
2 , then the zig-zag conjecture is true. More precisely, if

p ≥ 5, v = 3
2 , r > b = 3, and

c=
a2p − (r − 2)

(
r−1
2

)
p3

pap
,

and we set

τ = v (c) ,

t= v(b− r),

then the reduction V̄k,ap
enjoys the following tetrachotomy:

V̄k,ap
∼


ind(ωb+1

2 ), if τ < t

µλ1
· ωb ⊕ µλ−1

1
· ω, if τ = t

ind(ωb+p
2 ), if t < τ < t+ 1

µλ2 · ωb−1 ⊕ µλ−1
2

· ω2, if τ ≥ t+ 1,
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where the λi are constants given by

λ1 =
b

b− r
· c,

λ2 +
1

λ2
=

b− 1

(b− 1− r)(b− r)
· c
p
.

Since V̄k,ap was completely determined in [BG15] for all other slopes v in (1, 2) not

equal to 3
2 , (even for p ≥ 3), and in [BGR18] for slope v = 1 (for p ≥ 5), we obtain the

following corollary.

Corollary 1.3. If p ≥ 5, then the reduction V̄k,ap is known for all slopes v =

v(ap) < 2.

§ 2. Local Constancy vs Zig-Zag

Let us now explain why we have included the caveat ‘except possibly some weights

r that are p-adically close to some small weights’ in the qualitative statement of the

zig-zag conjecture. As Theorem 1.2 above and the preceding historical discussion shows,

there is no such caveat for the first few half-integral slopes 1
2 , 1 and 3

2 . More precisely,

for these slopes, it suffices to take r > b.1 However, this caveat is required for slopes at

least 2.

In order to explain this, we recall the following local constancy result of Berger

[Ber12, Theorem B], whose proof uses the families of trianguline representations con-

structed in [Col08], [Che13].

Theorem 2.1 (Local constancy in the weight). Suppose ap 6= 0 and k > 3 · v +
α(k − 1) + 1, where α(n) =

∑
j≥1b

n
pj−1(p−1)c. Then there is2 a positive integer m =

m(k, ap) such that

V̄k′,ap
∼ V̄k,ap

,

for all k′ > k with k′ ≡ k mod pm−1(p− 1).

There is an interesting interplay between local constancy and the zig-zag conjecture.

In most cases both are compatible. However, sometimes they are not. As we shall see

below, in some cases zig-zag holds forcing local constancy to fail. And in others, local

1We exclude r = b in order to exclude the degenerate case t = ∞ and τ = v(c) = ∞ which
happens for a2p = pb when the explicit parameter c in equation (1.1) vanishes. In fact, we could
include r = b if we exclude ap = ±pv , since both zig-zag (now τ is finite so less than t = ∞) and

Fontaine-Edixhoven predict the same answer, namely ind(ωb+1
2 ).

2The theorem asserts the existence of m. For some bounds on its size for small weights, see Bhat-
tacharya [Bha20].
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constancy holds forcing zig-zag to fail. It is these last kinds of cases that we exclude

from the statement of the zig-zag conjecture, whence the caveat in the statement of the

conjecture. Let us elaborate.

§ 2.1. Fontaine-Edixhoven weights

First consider weights in the Fontaine-Edixhoven range, namely k ≤ p + 1 or r =

b ≤ p − 1. It is known that V̄k,ap
∼ ind(ωb+1

2 ) for such weights. The only exceptional

weight in this range satisfying the hypothesis of Theorem 2.1 is r = b = 1 for v = 1
2 ,

since

k = 2v + 2 6> 3 · v + α(b+ 1) + 1,

unless v < 1 and p ≥ 5. So assume r = 1 and v = 1
2 and p ≥ 5. By local constancy, if

r′ = k′ − 2 ≡ 1 mod pt
′
(p − 1), for t′ sufficiently large, we must have V̄k′,ap

∼ V̄k,ap
∼

ind(ω2
2). But if t

′ is larger than τ ′ = v
(

a2
p−r′p

pap

)
, then zig-zag (theorem of [BG13]) also

predicts V̄k′,ap ∼ ind(ω2
2), so there is no apparent incompatibility with local constancy

at r = 1.

However, as remarked above, the next exceptional weight, r = 2 for v = 1 does not

satisfy the bound in Theorem 2.1, since, for example, for p ≥ 5, we have

4 6> 3 · 1 + 0 + 1.(2.1)

In fact, we can use zig-zag to show that local constancy does not hold in this case!

Indeed, if it did, then for r′ = k′ − 2 ≡ 2 mod pt
′
(p − 1), with t′ sufficiently large, we

would have V̄k′,ap
∼ V̄k,ap

∼ ind(ω3
2) is irreducible. But if we take ap = p ≥ 5 say, then

τ ′ = v

(
a2
p−(

r′
2 )p

2

pap

)
= t′, so by zig-zag (theorem of [BGR18]) we must have V̄k′,ap

is

reducible (∼ ω2 ⊕ ω on inertia), a contradiction.

Similarly, we can use the recent work [GR19] to show that local constancy fails when

r = 3 and say ap = p
3
2 for p ≥ 7 (so v = 3

2 and the bound on k in Theorem 2.1 is not

satisfied). If local constancy were to hold, then for r′ = k′ − 2 as above we would have

V̄k′,ap
∼ V̄k,ap

∼ ind(ω4
2). But by (1.1) we have, τ ′ =

(
a2
p−(

r′−1
2 )(r′−2)p3

pap

)
= t′ + 1

2 , so

by zig-zag (Theorem 1.2), it is now known that V̄k′,ap ∼ ind(ω3+p
2 ), the next irreducible

possibility, a contradiction!

Let us record these observations formally now, since they do seem to have been

noticed before.

Theorem 2.2. Local constancy in the weight for the reductions V̄k,ap may fail

for small weights when ap 6= 0, e.g., it fails for (k, ap) = (4, p) and (5, p
3
2 ).

It has been known for some time (see [Ber12]) that local constancy in the weight fails

when ap = 0, in view of the main result of [BLZ04]. Also, the above discussion answers
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the second question below [Bha20, Theorem 1.1] in the negative, namely one cannot

always improve the lower bound 3v + α(k − 1) + 1 in Theorem 2.1, since (2.1) shows

this lower bound is sharp when k = 4 and v = 1. However, this bound can be improved

for other small weights k and slopes v, see [Bha20, Thm. 1.2].

§ 2.2. Breuil weights

We now consider the next range of small weights, namely p ≤ r = k − 2 = b +

(p− 1) ≤ 2p− 2 which we refer to as Breuil weights, since the reductions V̄k,ap
at these

weights were investigated completely in [Bre03b] for p odd. Every exceptional Breuil

weight satisfies the hypothesis of Theorem 2.1, since

k = b+ p+ 1 = 2v + p+ 1 > 3v + 1 + 1

(or even 3v + 2 + 1, for p > 3). So if r′ = k′ − 2 ≡ b + (p − 1) mod pt
′
(p − 1) for t′

sufficiently large, we must have V̄k′,ap ∼ V̄k,ap . Now Breuil showed (see [Ber11, Theorem

5.2.1, parts 2 and 3]) that, for k = p + 2, p + 3 and p + 4 and slopes v = 1
2 , 1 and 3

2 ,

respectively, the reduction V̄k,ap is isomorphic to ind(ω2
2), or µλ · ω2 ⊕ µλ−1 · ω with

λ = 2 · ap

p , or ind(ωp+3
2 ), respectively. Now the parameter τ ′ = v(c), with c = c(r′, ap)

as in (1.1), is easily checked in these cases to be minimal, namely τ ′ = − 1
2 , 0 and 1

2 ,

respectively, whereas the other parameter in zig-zag namely v(b− r′) = 0 vanishes in all

three cases. An easy check using zig-zag (a theorem in all three cases, including slope
3
2 , by Theorem 1.2), shows that V̄k′,ap is exactly isomorphic to one of the above three

representations, respectively (even the formula for λ matches well). In other words,

local constancy at the Breuil weights is compatible with zig-zag for slopes v = 1
2 , 1 and

3
2 .

However, things begin to go wrong at the next exceptional Breuil weight k = p+5,

where b = 4 and v = 2. Breuil proves V̄k,ap
∼ ind(ωp+4

2 ) ([Ber11, Theorem 5.2.1, part 2])

and so is irreducible. However, with notation as above, one checks τ ′ = 1 which is one

more than v(b−r′) = 0, so zig-zag says V̄k′,ap
∼ ω3⊕ω2 (on inertia), which is reducible!

In fact the first ‘counterexamples’ found by Rozensztajn to the refined form of zig-zag

for v = 2 and r > b were of this kind - they arise as just explained from Breuil’s results

and local constancy. Subsequently, the author and Rai found other Breuil weights (for

v > 2) for which zig-zag doesn’t hold, so when v ≥ 2, we need to exclude such small

weights r = b + p − 1 (and large weights that are p-adically close to them) from the

zig-zag conjecture. This explains the caveat in the statement of zig-zag, at least for

Breuil weights.

§ 2.3. Higher small weights

Let us now turn to general small weights r = b +m(p − 1), for an integer m > 0.

When m ≥ 2, we have r ≥ 2p − 1 and we call such weights super-Breuil weights. As
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far as we are aware, the reductions V̄k,ap
have not been determined for super-Breuil

weights,3 except in the smallest case r = 2p − 1, where b = 1 and m = 2 (again by

Breuil, though the answer is only stated in [Ber11, Theorem 5.2.1, part 4]). Local

constancy (Theorem 2.1) holds for this weight since

k = 2p+ 1 > 3 · 1
2
+ (4 or 2) + 1,

for all p ≥ 3, so for r′ = k′−2 ≡ 2p−1 mod pt
′
(p−1), for t′ sufficiently large, we obtain

V̄k′,ap ∼ V̄k,ap ∼

ind(ω2
2) if v(a2p + p) < 3

2 ,

µλ · ω ⊕ µλ−1 · ω if v(a2p + p) ≥ 3
2 ,

(2.2)

for an explicit λ. On the other hand v(b− r′) = 0, and by (1.1) we have

τ ′ = v

(
a2p − (2p− 1)p

pap

)
which is

< 0 if v(a2p + p) < 3
2 ,

≥ 0 if v(a2p + p) ≥ 3
2 ,

so zig-zag (theorem of [BG13]) predicts exactly the same answers as in (2.2) (with the

same λ). Thus local constancy at the first super-Breuil weight r = 2p− 1 is compatible

with zig-zag for v = 1
2 .

Since, as far as we are aware, there are no general theorems yet giving V̄k,ap
for

other super-Breuil weights (for all slopes), it is not possible to directly compare local

constancy at these points with zig-zag. However, recently the author and Rai found

some further numerical ‘counterexamples’ to the refined version of zig-zag at super-

Breuil points, showing that for slopes v ≥ 2, such weights (and large weights p-adically

close to them) need also to be excluded.

§ 2.4. A bound

The question now arises as to which small weights one needs to exclude from the zig-

zag pattern. To this end we recall that the main result of [BLZ04] specifies the reduction

V̄k,ap
for slopes that are large compared to the weight. This result immediately gives us

an explicit bound on which small weights (and large weights that are p-adically close to

them) one must exclude from zig-zag. We describe this now.

The main theorem of [BLZ04] says that if v > bk−2
p−1 c, then V̄k,ap ∼ ind(ωk−1

2 ). For

r = b+m(p− 1), where we take b 6= p− 1 for simplicity, this translates to saying that

if v > m, then V̄k,ap
∼ ind(ω

b+1+m(p−1)
2 ). Let us compare this result with the refined

form of zig-zag which uses the explicit form of c in (1.1). Take v = m+ 1
2 , which is the

3for all slopes, though the reductions have been determined in [Bha20] for m = 2 and 3 and some
small slopes.
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smallest half-integral slope larger than m. Then v− = m and v+ = m+1, and p divides

the binomial coefficient
(
r−(m+1)

m

)
, so τ = (2m+ 1)− (m+ 3

2 ) = m− 1
2 and we obtain

that m − 1 < τ < m. Since t = 0 (we are taking m small, so prime to p), zig-zag also

predicts V̄k,ap ∼ ind(ω
b+1+m(p−1)
2 ), so there is no inconsistency between [BLZ04] and

zig-zag for r = b+m(p− 1) and v = m+ 1
2 .

However, if we take v = m + 1, then v− = m, v+ = m + 2, and again p divides(
r−(m+2)

m

)
, so τ = (2m + 2) − (m + 2) = m = t + m, since t = 0, so τ is integral and

zig-zag predicts a reducible answer. Thus we see that the refined form of zig-zag is not

compatible with the main result of [BLZ04] if v ≥ bk−2
p−1 c + 1. For a fixed v, this says

that zig-zag may not hold for small weights r = b +m(p − 1) with 0 < m ≤ v − 1 (or

possibly only for 0 < m < v−1, for b = p−1), and by local constancy, for large weights

which are p-adically close to these small weights.

Thus the caveat ‘except possibly some weights r that are p-adically close to some

small weights’ in the qualitative statement of zig-zag should be taken to mean that

zig-zag should hold for all exceptional weights k, for all k − 2 > b, except possibly for

some k lying in small p-adic disks around Breuil and super-Breuil weights of the form

r = b +m(p − 1) with 0 < m ≤ v − 1. Since we are excluding the case m = 0, this is

only a caveat for slopes v ≥ 2!

§ 3. Proof of Theorem 1.2 and beyond

The proof of Theorem 1.2 uses the compatibility between the p-adic and mod

p Local Langlands Correspondences first introduced in [Bre03b], with respect to the

process of reduction [Ber10]. This compatibility allows one to reduce the reduction

problem to a representation theoretic one, namely, to computing the reduction of a

GL2(Qp)-stable lattice in a certain unitary GL2(Qp)-Banach space. We recall the key

ingredients of the argument here for slope v = 3
2 (see also [GR19, §2.1-2.3]) and discuss

how the details of the argument should generalize to larger half-integral slopes v. In

doing this, we will see how the zig-zag conjecture acquired its name.

§ 3.1. Hecke operator

Let G = GL2(Qp), K = GL2(Zp) be the standard maximal compact subgroup of

G and Z = Q×
p be the center of G. Let R be a Zp-algebra and let V = SymrR2⊗Ds be

the usual symmetric power representation of KZ twisted by a power of the determinant

character D, modeled on homogeneous polynomials of degree r in the variables X and

Y over R. We denote compact induction by indGKZ . Thus ind
G
KZV consists of functions

f : G → V such that f(hg) = h · f(g), for all h ∈ KZ and g ∈ G, and f is compactly

supported mod KZ. For g ∈ G, v ∈ V , let [g, v] ∈ indGKZV be the function with support
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in KZg−1 given by

g′ 7→

g′g · v, if g′ ∈ KZg−1

0, otherwise.

Any function in indGKZV is a finite linear combination of functions of the form [g, v], for

g ∈ G and v ∈ V . The Hecke operator T is defined by its action on these elementary

functions via

(3.1) T ([g, v(X,Y )]) =
∑
λ∈Fp

[
g
(
p [λ]
0 1

)
, v (X,−[λ]X + pY )

]
+
[
g
(
1 0
0 p

)
, v(pX, Y )

]
,

where [λ] denotes the Teichmüller representative of λ ∈ Fp.

§ 3.2. The mod p Local Langlands Correspondence

For 0 ≤ r ≤ p− 1, λ ∈ F̄p and η : Q×
p → F̄×

p a smooth character, let

π(r, λ, η) :=
indGKZ SymrF̄2

p

T − λ
⊗ (η ◦ det)

be the smooth admissible representation of G, known to be irreducible unless (r, λ) =

(0,±1) or (p − 1,±1), by the classification of irreducible representations of G in char-

acteristic p in [BL94, BL95, Bre03a]. For (r, λ) = (0,±1), we have exact sequences

0 → St → π(0, 1, 1) → F̄p → 0,

0 → St⊗ µ−1 → π(0,−1, 1) → F̄p(µ−1) → 0,

where the last surjective maps are induced by ‘total sum’, respectively ‘alternating

sum’, of the values of a compactly supported function on the tree, and the (irreducible)

Steinberg representation St can be taken to be defined by the first sequence. Similar

exact sequences exist for (r, λ) = (p − 1,±1). With this notation, Breuil’s semisimple

mod p Local Langlands Correspondence (mod p LLC) is given by [Bre03b, Def. 1.1]:

• λ = 0: ind(ωr+1
2 )⊗ η

LL7−→ π(r, 0, η),

• λ 6= 0:
(
µλ · ωr+1 ⊕ µλ−1

)
⊗ η

LL7−→ π(r, λ, η)ss ⊕ π([p− 3− r], λ−1, ηωr+1)ss,

where {0, 1, . . . , p− 2} 3 [p− 3− r] ≡ p− 3− r mod (p− 1).

§ 3.3. Standard lattice

Recall that G = GL2(Qp). Let B(Vk,ap
) be the unitary G-Banach space associated

to Vk,ap by the p-adic Local Langlands Correspondence. The reduction B(Vk,ap
)
ss

of a
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lattice in this space coincides with the image of V̄k,ap
under the (semisimple) mod p LLC

defined above. Since the mod p LLC is by definition injective, it suffices to compute the

reduction B(Vk,ap
)
ss
.

Recall K = GL2(Zp) and Z = Q×
p . Let X = KZ\G be the (vertices of the) Bruhat-

Tits tree attached to G. The module SymrQ̄2
p, for r = k− 2, carries a natural action of

KZ, and the projection

KZ\(G× Symk−2Q̄2
p) → KZ\G = X

defines a local system on X. The space

indGKZ Symk−2Q̄2
p

consisting of all sections f : G → Symk−2Q̄2
p of this local system which are compactly

supported mod KZ is a representation for G, equipped with a G-equivariant Hecke

operator T . Let Πk,ap be the locally algebraic representation of G defined by taking the

cokernel of T − ap acting on the above space of sections.4 Let Θk,ap
be the image of the

integral sections indGKZ Symk−2Z̄2
p in Πk,ap . Then B(Vk,ap) is the completion Π̂k,ap of

Πk,ap
with respect to the lattice Θk,ap

. The completion Θ̂k,ap
, and sometimes by abuse

of notation Θk,ap
itself, is called the standard lattice in B(Vk,ap

). We have B(Vk,ap
)
ss ∼=

¯̂
Θss

k,ap

∼= Θ̄ss
k,ap

. Thus, to compute V̄k,ap
, it suffices to compute the reduction Θ̄ss

k,ap
of

the standard lattice Θk,ap
.

§ 3.4. A filtration

We introduce some further notation. Let Vr = Symr F̄2
p (this is just V from §3.1

with R = F̄p and s = 0) denote the (r+1)-dimensional F̄p-vector space of homogeneous

polynomials P (X,Y ) in two variables X and Y of degree r over F̄p. The group Γ =

GL2(Fp) acts on Vr by the formula
(
a b
c d

)
· P (X,Y ) = P (aX + cY, bX + dY ), and KZ

acts on Vr via projection to Γ (with
( p 0
0 p

)
∈ Z acting trivially). By definition of the

lattice Θk,ap
, there is a surjection indGKZ Symk−2Z̄2

p ↠ Θk,ap
, which induces a surjective

map

indGKZVr ↠ Θ̄k,ap .(3.2)

Thus, in order to compute Θ̄k,ap , it suffices to investigate the kernel of the map (3.2).

Let θ(X,Y ) = XpY −XY p. The action of Γ on θ is via the determinant D : Γ → F×
p .

For each i ≥ 0, consider the Γ- hence KZ-submodule V
(i)
r = {P (X,Y ) ∈ Vr : θi|P} of

4Πk,ap is the tensor product of a smooth representation and an algebraic representation of G and
is generically irreducible; in a more general setting, D. Prasad [Pra01] has shown that irreducible
locally algebraic representations always have this form.
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Vr consisting of all polynomials divisible by the i-th power of the θ-polynomial. Clearly

V
(0)
r = Vr and V

(1)
r = V ∗

r is the largest singular5 submodule of Vr and

V (i)
r ∼

0, if r < i(p+ 1)

Vr−i(p+1) ⊗Di, if r ≥ i(p+ 1),

for i ≥ 0. The submodules V
(i)
r are important in computing the kernel of (3.2) because

of the following useful fact [BG09, Rem. 4.4]: if the slope v = v(ap) < i and r ≥ i(p+1),

then indGKZV
(i)
r lies in the kernel of (3.2), i.e., the surjection (3.2) factors through the

map

indGKZ

Vr

V
(i)
r

↠ Θ̄k,ap
.

In the setting of the zig-zag conjecture, the smallest i we can choose is as follows. Recall

b = 2v and b = 2n−1 is odd or b = 2n is even, with n ≥ 1. In the former case, v = n− 1
2 ,

so we can take i = n, whereas in the latter case, we have v = n, and so we can take

i = n+ 1.

In general, the submodules V
(i)
r for i ≥ 0 define a filtration on Vr

Vr ⊃ V (1)
r ⊃ · · · ⊃ V (i)

r ⊃ V (i+1)
r ⊃ · · · ,

with each subquotient V
(i)
r /V

(i+1)
r containing two explicit Jordan-Hölder (JH) factors

J2i and J2i+1 fitting into the exact sequence

0 → J2i → V (i)
r /V (i+1)

r → J2i+1 → 0.(3.3)

In the setting of the zig-zag conjecture, these JH factors can be described explicitly as

follows:

J2i = Vb−2i ⊗Di and J2i+1 = Vp−1−b+2i ⊗Db−i,

for 0 ≤ i ≤ n− 1 if b = 2n− 1 is odd, and 0 ≤ i ≤ n if b = 2n is even. We remark that

when b = 2n is even, the last JH-factor J2n+1 = Vp−1 ⊗Dn is projective and the exact

sequence (3.3) for i = n splits, so we can flip the places of J2n+1 and J2n in the exact

sequence (3.3) above.

5Submodules of Vr are called singular if one can extend the action of matrices in Γ to those in
the multiplicative semigroup M = M2(Fp), and the singular matrices in M \ Γ annihilate the
submodule.
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Thus the associated graded of the relevant part of the filtration above fits into the

following picture:

J0

��

J2

��

J4

��

J2n−2

��

J2n or J2n+1

��
Vr

V
(1)
r

��

V
(1)
r

V
(2)
r

��

V
(2)
r

V
(3)
r

��

· · · · · · V
(n−1)
r

V
(n)
r

��

V
(n)
r

V
(n+1)
r

,

��
J1

��

d

FF

J3

��

d

FF

J5

��

d

GG

��

d

FF

J2n−1

��

d

CC

d

XX J2n+1 or J2n

A zig-zag pattern among the JH factors

where the picture is taken to end at the column for V
(n−1)
r /V

(n)
r for b = 2n − 1 odd,

and at the column for V
(n)
r /V

(n+1)
r for b = 2n even.

§ 3.5. Proof

Recall that the mod p LLC essentially says that irreducible Galois representations

V̄k,ap
correspond to supersingular representations of the form

indG
KZ J
T , for some irre-

ducible Γ-modules J , whereas reducible V̄k,ap
correspond (generically) to a sum of two

principal series representations of the form
indG

KZ J
T−λ and

indG
KZ J′

T−λ−1 , for some ‘dual’ irre-

ducible (possibly equal) Γ-modules J , J ′, the sum of whose dimensions is p − 1 mod

(p− 1), and some λ ∈ F̄×
p . Thus, in the picture above, exactly one, or possibly exactly

two, of the above JH factors contribute to Θ̄k,ap
. Moreover:

• the sum of the dimensions of J2i and J2i+1 in each vertical column above is p+ 1,

and by the mod p LLC each of J2i and J2i+1, if it occurs as the sole contributing

factor to Θ̄k,ap , gives the same irreducible Galois representation for V̄k,ap .

• the sum of the dimensions in each adjacent diagonal pair (J2i+1, J2i+2) is p− 1 and

a potential ‘duality’ occurs (indicated by a ‘d’ on the diagonal dotted arrows), since

these two JH factors may contribute together to Θ̄k,ap
, giving a reducible Galois

representation V̄k,ap
.

• when b = 2n− 1 is odd, the last JH factor J2n−1 = Vp−2 ⊗Dn is potentially ‘self-

dual’ (indicated by a ‘d’ on the looped dotted arrow), since twice its dimension is 0

mod (p− 1).

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 

I I 
I 

I 
I 

I 
I 
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• when b = 2n is even, the JH factor J2n−1 = Vp−3 ⊗ Dn+1 has two options with

which to set up a ‘duality’, namely with J2n = V0⊗Dn or with J2n+1 = Vp−1⊗Dn,

and in practice it does indeed ‘break rank’ and pair with J2n+1 sometimes (which

is why we have allowed either JH factor in the last column to be the target of the

last dotted diagonal arrow ‘d’).

We are now ready to make the key observation of this section. We claim that as

τ varies through the rational line, the JH factors that contribute to Θ̄k,ap
actually oc-

cur in a zig-zag fashion in the picture above, first down starting from J1 (it is known

that J0 never contributes), then diagonally up and across to J2 (where both J1 and

J2 contribute together), then only J2 contributes, then down again to J3 where it only

contributes, then diagonally across and up to J4 (where both J3 and J4 contribute),

then J4 only contributes, then down again to J5 where it only contributes, and so on

and so forth, as displayed by the zig-zag pattern in the diagram above. Moreover, we

claim that the diagonal jumps occur exactly when τ takes on integer values between

t and t + (n − 1) inclusive. This claim is rather remarkable considering that a priori

there is no reason to expect that there should be any patterns in the way Θ̄k,ap
‘selects’

JH factors in the picture above. It also explains why the zig-zag conjecture (Conjec-

ture 1.1) has been christened as such. Finally, it explains why the conjecture predicts

that the reduction V̄k,ap
alternates between irreducible and reducible possibilities, with

the reducible possibilities occurring exactly at the aforementioned integer points (and

for τ ≥ n− 1, when b = 2n− 1 is odd).

All of this is best summarized with another picture. Let Fi for i ≥ 0 be the sub-

quotient of Θ̄k,ap
occurring as the image of indGKZ Ji for i ≥ 0. Then we expect that all

Fi = 0 vanish in Θ̄k,ap , except for the following Fi, occurring exactly when τ is in the

following regions (b′ = b or b+ 1 if b = 2n):

F1 (F1, F2) F2 or F3 (F3, F4) · · ·

· · ·

{
(Fb, Fb), b = 2n − 1

(Fb−1, F
b′ ), b = 2n

{
(Fb, Fb), b = 2n − 1

F
b′ , b = 2n

t t+ 1 t+ (n− 1)

τ

In particular, when v = 3
2 and b = 3, zig-zag predicts that the Fi, for i = 1, 2, 3, of

Θ̄k,ap occur in the above order. Indeed, one might even expect the following (slightly

more refined) picture holds:

F1 (F1, F2) F2 F3 (F3, F3) (F3, F3)

t t+ 1
2 t+ 1

τ

This is proved in [GR19]. More precisely, using delicate computations with the Hecke

operator T , the following nine symmetric statements are established in [GR19, Propo-



A zig-zag conjecture and local constancy for Galois representations 265

sition 1.3]:

1. Around t:

• τ > t =⇒ F1 = 0

• τ = t =⇒ F1 ↞ ind J1

T − λ−1
1

and F2 ↞ ind J2
T − λ1

, with λ1 =
b

b− r
· c

• τ < t =⇒ F2 = 0,

2. Around t+ 1
2 :

• τ > t+ 1
2 =⇒ F2 = 0

• τ = t+ 1
2 =⇒ F2 ↞ ind J2

T
and F3 ↞ ind J3

T

• τ < t+ 1
2 =⇒ F3 = 0,6

3. Around t+ 1:

• τ > t+ 1 =⇒ F3 ↞ ind J3
T 2 + 1

• τ = t+ 1 =⇒ F3 ↞ ind J3
T 2 − dT + 1

, with d =
b− 1

(b− 1− r)(b− r)
· c
p
.

• τ < t+ 1 =⇒ F3 ↞ ind J3
T

,

where we have written ‘ind’ for ‘indGKZ ’ for simplicity. Theorem 1.2 now follows imme-

diately from these nine statements and the mod p LLC, proving zig-zag holds for all

r > b when the slope v = 3
2 .

While higher cases of the zig-zag conjecture (Conjecture 1.1) have yet to be at-

tempted (it required a long paper just to write up all the details of the proof of the case

of slope 3
2 ), we expect that the selection of the JH factors that go into the proof will

follow the general zig-zag pattern outlined above.

§ 4. Compatibility

We check the compatibility of the zig-zag conjecture with other conjectures and

recent results.

§ 4.1. Irreducibility conjecture

There is a general conjecture, attributed to Buzzard, Breuil and Emerton [BG16,

Conjecture 4.1.1], which says that V̄k,ap is irreducible if k is even and v = v(ap) is frac-

tional, i.e., non-integral. All computations of V̄k,ap
so far support this conjecture. We

6In fact, we only prove this for τ ≤ t, but this suffices.
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remark that the zig-zag conjecture is also (vacuously!) consistent with this conjecture,

since the weight k is even exactly when the residue class b = 2v is even, and this happens

only if v is integral.

§ 4.2. Theta operator

The author has suspected for some time (e.g., see the slides of his talk in the Fields

symposium in 2016 in honor of Bhargava) that some of the reductions V̄k,ap
in slope v+1

should be related to the reductions in slope v > 0 by twisting by ω. Some evidence for

this would be provided if for a given normalized cuspidal eigenform f of level N coprime

to p and slope v, the twisted (global) representation ρ̄f ⊗ω is isomorphic to ρ̄g for some

normalized cuspidal eigenform g of level N coprime to p and slope v′ = v + 1. That

this is indeed true (under some assumptions) was recently proved7 using the θ-operator

acting on overconvergent p-adic modular forms and the theory of Hida-Coleman families

in [GK19, Corollary 1.2]. Let us compare this result with the refined version of zig-zag.

Generically for f , we have t = 0. Assume that τ takes its minimal value which by (1.1)

is 2v − (v + 1) = v − 1. So by zig-zag (cf. Conjecture 1.1), we have, for n ≥ 1,

ρ̄f |IQp
'

ind(ω
b+1+(n−1)(p−1)
2 ), if v = n− 1

2

ωb−n+1 ⊕ ωn, if v = n,
(4.1)

depending on whether v > 0 is half-integral or integral. It turns out that the weight l

of g satisfies l ≡ k+2 mod (p− 1), so l is an exceptional weight for g since l ≡ 2v′ +2

mod (p − 1) if and only if k ≡ 2v + 2 mod (p − 1). Let b′ = b + 2 ∈ {1, 2, . . . , p − 1}
be the residue class of l mod (p − 1). We apply zig-zag to g. Generically, one of the

parameters in zig-zag, namely v(b′ − (l − 2)) = 0 vanishes. Assume that the other

parameter τ ′ = v′ − 1 = v is minimal again. By Conjecture 1.1, we have

ρ̄g|IQp
'

ind(ω
b′+1+n(p−1)
2 ), if v′ = n+ 1

2

ωb′−n ⊕ ωn+1, if v′ = n+ 1,
(4.2)

again depending on whether the slope v′ of g is half-integral or integral. But as the

reader may easily check, the expressions (4.1) and (4.2) for ρ̄f |IQp
and ρ̄g|IQp

are exactly

compatible with the fact that the local representation ρ̄g|IQp
is isomorphic to ρ̄f |IQp

twisted by ω. There is a similar compatibility with the zig-zag conjecture if τ and τ ′

take values other than their minimal values, which we leave to the reader to check.

7That a cusp form g of some slope exists follows from the seminal work of Khare-Wintenberger
[KW09] and Kisin [Kis09] on Serre’s modularity conjecture. However, the forms g of minimal Serre
weight arising in Serre’s conjecture do not necessarily have slope v + 1.
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