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Absolute zeta functions and multiple sine functions:

logarithmic derivatives

By

Nobushige Kurokawa∗ and Hidekazu Tanaka∗∗

Abstract

In this paper we investigate logarithmic derivatives of absolute zeta functions and multiple

sine functions.

§ 1. Introduction

First we recall from [6] that a function f(x) on R>0 is an absolute automorphic

form when it satisfies the absolute automorphy

f(
1

x
) = Cx−Df(x)

for constants C and D. From an absolute automorphic form f(x) we define the absolute

zeta function ζf (s) and the absolute ε-function εf (s) by

ζf (s) := exp

(
∂

∂w
Zf (w, s)

∣∣∣∣
w=0

)
and

εf (s) :=
ζf∗(−s)

ζf (s)

respectively, where

Zf (w, s) :=
1

Γ(w)

∫ ∞

1

f(x)x−s−1(log x)w−1dx
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and

f∗(x) := f(
1

x
).

We refer to Kurokawa–Tanaka [6] and Kurokawa–Tanaka [7] for a general theory of

ζf (s) and εf (s) (see also Kurokawa–Ochiai [4] and Kurokawa–Tanaka [8]). From the

viewpoint of absolute zeta functions the theory of multiple sine functions is considered

as the ε–function theory: see Kurokawa–Tanaka [9].

In this paper we study logarithmic derivatives

γf (s) :=
d

ds
log ζf (s)

=
ζ ′f (s)

ζf (s)

for absolute automorphic forms f(x). The following theorem is our first result.

Theorem 1. Let f(x) =
∑

k a(k)x
k ∈ Z[x], ζf (s) =

∏
k(s−k)−a(k) and γf (s) =

−
∑

k
a(k)
s−k . Then the following conditions (1), (2) and (3) are equivalent:

(1)

f(
1

x
) = Cx−Df(x).

(2)

ζf (D − s)C = (−1)f(1)ζf (s).

Here we remark that εf (s) = (−1)f(1).

(3)

Cγf (D − s) = −γf (s).

Hereafter, we look at the zeros and the poles of γf (s) for various f(x). For a scheme

X we define

ζX/F1
(s) = ζf (s),

γX/F1
(s) = γf (s),

when there exists f(x) satisfying |X(Fq)| = f(q) for all prime powers q.

Theorem 2. Let f(x) = xn + xn−1 + · · ·+ 1. Then we have

γf (s) = γPn/F1
(s) = −(

1

s
+

1

s− 1
+ · · ·+ 1

s− n
)

and{
zeros of γf (s): n-distinct zeros each in (0, 1), (1, 2), · · · , (n− 1, n) (all real),

poles of γf (s): 0, 1, ..., n (all real).
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Next result shows the existence of imaginary zeros for a simple γf (s), which is a

particular case of γΦ2l
(s) for the 2l-th cyclotomic polynomial with a prime l ≡ 3 mod

4.

Theorem 3. Let f(x) = Φ6(x) = x2−x+1, where Φ6(x) is the 6-th cyclotomic

polynomial. Then

γf (s) = − (s− 1)2 + 1

s(s− 1)(s− 2)

and {
zeros of γf (s): 1 ±

√
−1 (imaginary),

poles of γf (s): 0, 1, 2.

Theorem 4. Let f(x) = (xa − 1)(xb + 1), where a and b are integers with

0 < a < b. Then

γf (s) = −
2a

(
(s− a+b

2 )2 + b2−a2

4

)
s(s− a)(s− b)(s− (a+ b))

and {
zeros of γf (s):

a+b±
√
a2−b2

2 (imaginary),

poles of γf (s) : 0,a,b,a+b.

To explain our next result, let f(x) = (x− 1)n. We remark that the absolute zeta

function ζGn
m/F1

(s) of Gn
m = GL(1)n (n ≥ 1) is defined as

ζGn
m/F1

(s) := ζf (s)

= lim
p→1

ζGn
m/Fp

(s),

where the last zeta function is the congruence zeta function; see Soulé [11], Connes–

Consani [2] and Kurokawa–Taguchi–Tanaka [5]. We recall that ζGn
m/Fp

(s) is defined

by

ζGn
m/Fp

(s) := exp

( ∞∑
m=1

|Gn
m(Fpm)|
m

p−ms

)

= exp

( ∞∑
m=1

f(pm)

m
p−ms

)
.

This construction gives

ζGn
m/F1

(s) = ζf (s)

=
n∏

k=0

(s− k)
(−1)n+1−k

(
n

k

)
.
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Theorem 5. Let f(x) = (x− 1)n. Then we have

γf (s) = γGn
m/F1

(s) =
ζ ′Gn

m/F1
(s)

ζGn
m/F1

(s)
.

Then

γf (s) = − n!

s(s− 1) · · · (s− n)
.

and {
zeros of γf (s): None,

poles of γf (s): 0,1,...,n.

Here we remark that

ζGn
m/F1

(s) = −n!ζPn/F1
(s).

Our third result concerns the regularized multiple sine function constructed in

Shintani [10] (r = 2) and Kurokawa [3] (general r):

Sr(s, (ω1, ..., ωr)) := Γr(s, (ω1, ..., ωr))
−1Γr(ω1 + · · ·+ ωr − s, (ω1, ..., ωr))

(−1)r ,

where Γr(s, (ω1, ..., ωr)) is the regularized version of the multiple gamma function intro-

duced by Barnes [1]. Here we explain the construction when Re(ω1), ..., Re(ωr) > 0 and

we put ω = (ω1, ..., ωr) for simplicity. The multiple Hurwitz zeta function ζr(w, s,ω) is

defined as

ζr(w, s,ω) =
∑

n1,...,nr≥0

(s+ n1ω1 + · · ·+ nrωr)
−w

for Re(w) > r. It has an analytic continuation to all w ∈ C and it is holomorphic at

w = 0. Then we obtain the regularized multiple gamma function

Γr(s,ω) = exp

(
∂

∂w
ζr(w, s,ω)

∣∣∣∣
w=0

)
.

It is a meromorphic function in s ∈ C.
A defect of this construction is the difficulty to treat the general case ω ∈ (C−{0})r.

For example

ζ2(w, s, (1,−1)) =
∑

n1,n2≥0

(s+ n1 − n2)
−w

is meaningless, so we do not have Γ2(s, (1,−1)) nor S2(s, (1,−1)) in this way.

Now, we construct the absolute multiple sine function from the absolute automor-

phic form

fω(x) :=
r∏

k=1

(1− x−ωk)−1
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satisfying

fω(
1

x
) = (−1)rx−|ω|fω(x),

where ω := (ω1, ..., ωr), |ω| = ω1 + · · · + ωr and x > 0. For ω = (ω1, ..., ωr) ∈
(C−

√
−1R)r we define the absolute multiple gamma function

≨r(s,ω) := ζfω (s)

and the absolute multiple sine function

Sr(s,ω) := εfω (s).

Then we have the following results (see Kurokawa–Tanaka [9]).

Fact 1. For ω ∈ (C−
√
−1R)r, ≨r(s,ω) and Sr(s,ω) are meromorphic functions

in s ∈ C.

Fact 2. When Re(ωk) > 0 (k = 1, ..., r), we have

≨r(s,ω) = Γr(s,ω)

and

Sr(s,ω) = Sr(s,ω).

Fact 3. Let

S2n(s,±) = S2n(s, (
n︷ ︸︸ ︷

1, ..., 1,

n︷ ︸︸ ︷
−1, ...,−1)).

Then

S2n(s,±) = exp

(
(−1)n−1

(2n− 1)!

∫ s

0

n−1∏
k=1

(u2 − k2)πu cot(πu)du

)
.

Fact 4. Let

S2n+1(s,±) =
S2n+1(s, (

n︷ ︸︸ ︷
1, ..., 1,

n+1︷ ︸︸ ︷
−1, ...,−1))

S2n+1(s, (1, ..., 1︸ ︷︷ ︸
n+1

,−1, ...,−1︸ ︷︷ ︸
n

))
.

Then

S2n+1(s,±) = Cn exp

(
(−1)n−12

(2n)!

∫ s

0

n−1∏
k=0

(u2 − k2)π cot(πu)du

)
,

where

Cn =
(−1)n4

(2n)!

n∑
m=1

c(n,m)ζ ′(−2m)
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and c(m,n) is defined by

n−1∏
k=0

(X − k2) =
n∑

m=1

c(n,m)Xm ∈ Z[X] :

c(n, n) = 1 and c(n, 1) = (−1)n−1((n− 1)!)2.

Theorem 6. For n ≥ 1, let

fn(x) =

{
1

(1−x)m(1−x−1)m if n = 2m,
1

(1−x)m+1(1−x−1)m − 1
(1−x)m(1−x−1)m+1 if n = 2m+ 1

and

Cotn(s,±) =
S′n(s,±)

Sn(s,±)
.

Then we have

γfn(s) + (−1)nγfn(−s) =−Cotn(s,±)

=

{
(−1)m

(2m−1)!

∏m−1
k=1 (s2 − k2)πs cot(πs) if n = 2m,

(−1)m2
(2m)!

∏m−1
k=0 (s2 − k2)π cot(πs) if n = 2m+ 1

and

zeros of γfn(s) + (−1)nγfn(−s): Z+ 1
2 if n = 2m,

zeros of γfn(s) + (−1)nγfn(−s): Z+ 1
2 if n = 1,

zeros of γfn(s) + (−1)nγfn(−s):

(
Z+ 1

2

)
∪{0} if n = 2m+ 1 (m ≥ 1),

poles of γfn(s) + (−1)nγfn(−s): Z− {0,±1, ...,±(m− 1)} if n = 2m,

poles of γfn(s) + (−1)nγfn(−s): Z if n = 1,

poles of γfn(s) + (−1)nγfn(−s): Z− {0,±1, ...,±(m− 1)} if n = 2m+ 1.

§ 2. Proof of Theorem 1

Consider the following condition (0) on the coefficients a(k) of the polynomial f(x):

(0)

a(D − k) = Ca(k) (k ∈ Z).
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Then

(1)⇔
∑
k

a(k)x−k = Cx−D
∑
k

a(k)xk.

⇔
∑
k

a(D − k)xk−D =
∑
k

Ca(k)xk−D.

⇔ a(D − k) = Ca(k) (k ∈ Z).

⇔ (0).

(2)⇔
∏
k

(D − s− k)−Ca(k) = (−1)f(1)
∏
k

(s− k)−a(k).

⇔
∏
k

(
(D − k)− s

)−Ca(k)

=
∏
k

(k − s)−a(k).

⇔
∏
k

(
(D − k)− s

)−Ca(k)

=
∏
k

(
(D − k)− s

)−a(D−k)

.

⇔Ca(k) = a(D − k) (k ∈ Z).

⇔ (0).

(3)⇔−
∑
k

Ca(k)

D − s− k
=
∑
k

a(k)

s− k
.

⇔−
∑
k

Ca(k)

(D − k)− s
= −

∑
k

a(D − k)

(D − k)− s
.

⇔Ca(k) = a(D − k) (k ∈ Z).

⇔ (0).

Q.E.D.

§ 3. Proof of Theorem 2

From f(x) = xn + xn−1 + · · ·+ 1 we have

ζf (s) =
1

s(s− 1) · · · (s− n)
.

This gives

γf (s) =−(
1

s
+

1

s− 1
+ · · ·+ 1

s− n
)

=− Pn(s)

s(s− 1) · · · (s− n)

for a polynomial Pn(s) = (n+ 1)sn + · · ·+ (−1)nn!. Note that

γ′
f (s) =

1

s2
+

1

(s− 1)2
+ · · ·+ 1

(s− n)2
> 0
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for s ∈ (k − 1, k), where k = 1, ..., n. Hence we see that γf (s) takes values from −∞
to +∞ on each (k − 1, k). Thus we have distinct n real zeros. The complex zeros are

exhausted by these zeros. Q.E.D.

§ 4. Proof of Theorem 3

Since f(x) = x2 − x+ 1, we have

ζf (s) =
s− 1

s(s− 2)
,

γf (s) =− 1

s− 2
+

1

s− 1
− 1

s

=− (s− 1)2 + 1

s(s− 1)(s− 2)
.

Thus, we obtain Theorem 3. Q.E.D.

§ 5. Proof of Theorem 4

From f(x) = xa+b − xb + xa − 1 we have

ζf (s) =
s(s− b)

(s− a)(s− (a+ b))

and

γf (s) =− 1

s− (a+ b)
+

1

s− b
− 1

s− a
+

1

s

=−
2a

(
(s− a+b

2 )2 + b2−a2

4

)
s(s− a)(s− b)(s− (a+ b))

.

This gives Theorem 4. Q.E.D.

§ 6. Proof of Theorem 5

We have

ζGn
m/F1

(s) = ζf (s)

=
n∏

k=0

(s− k)
(−1)n+1−k

(
n

k

)
.



Absolute zeta functions and multiple sine functions: logarithmic derivatives 277

We have

γGn
m/F1

(s) =

(
log ζGn

m/F1
(s)

)′

=

( n∑
k=0

(−1)n+1−k

(
n

k

)
log(s− k)

)′

=

n∑
k=0

(−1)n+1−k

(
n

k

)
s− k

.

Hence, it remains to show that

n∑
k=0

(−1)n+1−k

(
n

k

)
s− k

= − n!

s(s− 1) · · · (s− n)
.

Let
1

s(s− 1) · · · (s− n)
=

n∑
k=0

a(k)

s− k
.

Since

a(k) = lim
s→k

1

s(s− 1) · · · (s− k + 1)(s− k − 1) · · · (s− n)

=
1

k(k − 1) · · · 1 · (−1) · · · (−(n− k))

=
(−1)n−k

k!(n− k)!

=

(−1)n−k

(
n

k

)
n!

,

we obtain

n∑
k=0

(−1)n+1−k

(
n

k

)
s− k

= − n!

s(s− 1) · · · (s− n)
.

This gives

γGn
m/F1

(s) = − n!

s(s− 1) · · · (s− n)
.

Lastly we notice that our calculation implies the following results:

ζ ′Gn
m/F1

(s) =−n!
n∏

k=0

(s− k)
(−1)n+1−k

(
n

k

)
−1

=−n!
ζGn

m/F1
(s)

s(s− 1) · · · (s− n)
.
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Q.E.D.

§ 7. Proof of Theorem 6

As noted in [9, §6] we have

S2m+1(s,±) = ζfn(s)
−1ζfn(−s)(−1)n−1

.

Hence we obtain

γfn(s) + (−1)nγfn(−s) = −Cotn(s,±)

by the logarithmic differentiation. From Fact 3 and Fact 4, we have

log S2m(s,±) =
(−1)m−1

(2m− 1)!

∫ s

0

m−1∏
k=1

(u2 − k2)πu cot(πu)du

and

log S2m+1(s,±) = logCm +
(−1)m−12

(2m)!

∫ s

0

m−1∏
k=0

(u2 − k2)π cot(πu)du

respectively. Hence the logarithmic differentiation gives Theorem 6. Q.E.D.
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