Absolute zeta functions and multiple sine functions: logarithmic derivatives

By
Nobushige Kurokawa* and Hidekazu Tanaka**

Abstract

In this paper we investigate logarithmic derivatives of absolute zeta functions and multiple sine functions.

\S 1. Introduction

First we recall from [6] that a function $f(x)$ on $\mathbb{R}_{>0}$ is an absolute automorphic form when it satisfies the absolute automorphy

$$
f\left(\frac{1}{x}\right)=C x^{-D} f(x)
$$

for constants C and D. From an absolute automorphic form $f(x)$ we define the absolute zeta function $\zeta_{f}(s)$ and the absolute ε-function $\varepsilon_{f}(s)$ by

$$
\zeta_{f}(s):=\exp \left(\left.\frac{\partial}{\partial w} Z_{f}(w, s)\right|_{w=0}\right)
$$

and

$$
\varepsilon_{f}(s):=\frac{\zeta_{f^{*}}(-s)}{\zeta_{f}(s)}
$$

respectively, where

$$
Z_{f}(w, s):=\frac{1}{\Gamma(w)} \int_{1}^{\infty} f(x) x^{-s-1}(\log x)^{w-1} d x
$$

Received March 23, 2019. Revised September 17, 2019.
2020 Mathematics Subject Classification(s): Primary 14G10
Key Words: absolute zeta function, absolute multiple sine function, logarithmic derivative, absolute multiple cotangent function
*Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan. e-mail: kurokawa@math.titech.ac.jp
${ }^{* *}$ Department of Mathematics, Shibaura Institute of Technology, Saitama 337-8570, Japan. e-mail: htanaka@sic.shibaura-it.ac.jp
and

$$
f^{*}(x):=f\left(\frac{1}{x}\right) .
$$

We refer to Kurokawa-Tanaka [6] and Kurokawa-Tanaka [7] for a general theory of $\zeta_{f}(s)$ and $\varepsilon_{f}(s)$ (see also Kurokawa-Ochiai [4] and Kurokawa-Tanaka [8]). From the viewpoint of absolute zeta functions the theory of multiple sine functions is considered as the ε-function theory: see Kurokawa-Tanaka [9].

In this paper we study logarithmic derivatives

$$
\begin{aligned}
\gamma_{f}(s) & :=\frac{d}{d s} \log \zeta_{f}(s) \\
& =\frac{\zeta_{f}^{\prime}(s)}{\zeta_{f}(s)}
\end{aligned}
$$

for absolute automorphic forms $f(x)$. The following theorem is our first result.
Theorem 1. Let $f(x)=\sum_{k} a(k) x^{k} \in \mathbb{Z}[x], \zeta_{f}(s)=\prod_{k}(s-k)^{-a(k)}$ and $\gamma_{f}(s)=$ $-\sum_{k} \frac{a(k)}{s-k}$. Then the following conditions (1), (2) and (3) are equivalent:
(1)

$$
f\left(\frac{1}{x}\right)=C x^{-D} f(x)
$$

(2)

$$
\zeta_{f}(D-s)^{C}=(-1)^{f(1)} \zeta_{f}(s)
$$

Here we remark that $\varepsilon_{f}(s)=(-1)^{f(1)}$.
(3)

$$
C \gamma_{f}(D-s)=-\gamma_{f}(s)
$$

Hereafter, we look at the zeros and the poles of $\gamma_{f}(s)$ for various $f(x)$. For a scheme X we define

$$
\begin{aligned}
& \zeta_{X / \mathbb{F}_{1}}(s)=\zeta_{f}(s), \\
& \gamma_{X / \mathbb{F}_{1}}(s)=\gamma_{f}(s),
\end{aligned}
$$

when there exists $f(x)$ satisfying $\left|X\left(\mathbb{F}_{q}\right)\right|=f(q)$ for all prime powers q.
Theorem 2. Let $f(x)=x^{n}+x^{n-1}+\cdots+1$. Then we have

$$
\gamma_{f}(s)=\gamma_{\mathbb{P}^{n} / \mathbb{F}_{1}}(s)=-\left(\frac{1}{s}+\frac{1}{s-1}+\cdots+\frac{1}{s-n}\right)
$$

and
$\begin{cases}\text { zeros of } \gamma_{f}(s): n \text {-distinct zeros each in }(0,1),(1,2), \cdots,(n-1, n) \text { (all real), } \\ \text { poles of } \gamma_{f}(s): & 0,1, \ldots, n(\text { all real }) .\end{cases}$

Next result shows the existence of imaginary zeros for a simple $\gamma_{f}(s)$, which is a particular case of $\gamma_{\Phi_{2 l}}(s)$ for the $2 l$-th cyclotomic polynomial with a prime $l \equiv 3 \bmod$ 4.

Theorem 3. Let $f(x)=\Phi_{6}(x)=x^{2}-x+1$, where $\Phi_{6}(x)$ is the 6 -th cyclotomic polynomial. Then

$$
\gamma_{f}(s)=-\frac{(s-1)^{2}+1}{s(s-1)(s-2)}
$$

and

$$
\begin{cases}\text { zeros of } \gamma_{f}(s): 1 \pm \sqrt{-1} \text { (imaginary), } \\ \text { poles of } \gamma_{f}(s): & 0,1,2\end{cases}
$$

Theorem 4. Let $f(x)=\left(x^{a}-1\right)\left(x^{b}+1\right)$, where a and b are integers with $0<a<b$. Then

$$
\gamma_{f}(s)=-\frac{2 a\left(\left(s-\frac{a+b}{2}\right)^{2}+\frac{b^{2}-a^{2}}{4}\right)}{s(s-a)(s-b)(s-(a+b))}
$$

and

$$
\left\{\begin{array}{l}
\text { zeros of } \gamma_{f}(s): \frac{a+b \pm \sqrt{a^{2}-b^{2}}}{2} \text { (imaginary), } \\
\text { poles of } \gamma_{f}(s): \quad 0, a, b, a+b .
\end{array}\right.
$$

To explain our next result, let $f(x)=(x-1)^{n}$. We remark that the absolute zeta function $\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)$ of $\mathbb{G}_{m}^{n}=\operatorname{GL}(1)^{n}(n \geq 1)$ is defined as

$$
\begin{aligned}
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s) & :=\zeta_{f}(s) \\
& =\lim _{p \rightarrow 1} \zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{p}}(s),
\end{aligned}
$$

where the last zeta function is the congruence zeta function; see Soule [11], ConnesConsani [2] and Kurokawa-Taguchi-Tanaka [5]. We recall that $\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{p}}(s)$ is defined by

$$
\begin{aligned}
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{p}}(s) & :=\exp \left(\sum_{m=1}^{\infty} \frac{\left|\mathbb{G}_{m}^{n}\left(\mathbb{F}_{p^{m}}\right)\right|}{m} p^{-m s}\right) \\
& =\exp \left(\sum_{m=1}^{\infty} \frac{f\left(p^{m}\right)}{m} p^{-m s}\right) .
\end{aligned}
$$

This construction gives

$$
\begin{aligned}
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s) & =\zeta_{f}(s) \\
& =\prod_{k=0}^{n}(s-k)^{(-1)^{n+1-k}}\binom{n}{k} .
\end{aligned}
$$

Theorem 5. Let $f(x)=(x-1)^{n}$. Then we have

$$
\gamma_{f}(s)=\gamma_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)=\frac{\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}^{\prime}(s)}{\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)}
$$

Then

$$
\gamma_{f}(s)=-\frac{n!}{s(s-1) \cdots(s-n)}
$$

and

$$
\left\{\begin{array}{l}
\text { zeros of } \gamma_{f}(s): \text { None, } \\
\text { poles of } \gamma_{f}(s): 0,1, \ldots, n
\end{array}\right.
$$

Here we remark that

$$
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)=-n!\zeta_{\mathbb{P}^{n} / \mathbb{F}_{1}}(s) .
$$

Our third result concerns the regularized multiple sine function constructed in Shintani [10] $(r=2)$ and Kurokawa [3] (general r):

$$
S_{r}\left(s,\left(\omega_{1}, \ldots, \omega_{r}\right)\right):=\Gamma_{r}\left(s,\left(\omega_{1}, \ldots, \omega_{r}\right)\right)^{-1} \Gamma_{r}\left(\omega_{1}+\cdots+\omega_{r}-s,\left(\omega_{1}, \ldots, \omega_{r}\right)\right)^{(-1)^{r}}
$$

where $\Gamma_{r}\left(s,\left(\omega_{1}, \ldots, \omega_{r}\right)\right)$ is the regularized version of the multiple gamma function introduced by Barnes [1]. Here we explain the construction when $\operatorname{Re}\left(\omega_{1}\right), \ldots, \operatorname{Re}\left(\omega_{r}\right)>0$ and we put $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{r}\right)$ for simplicity. The multiple Hurwitz zeta function $\zeta_{r}(w, s, \boldsymbol{\omega})$ is defined as

$$
\zeta_{r}(w, s, \boldsymbol{\omega})=\sum_{n_{1}, \ldots, n_{r} \geq 0}\left(s+n_{1} \omega_{1}+\cdots+n_{r} \omega_{r}\right)^{-w}
$$

for $\operatorname{Re}(w)>r$. It has an analytic continuation to all $w \in \mathbb{C}$ and it is holomorphic at $w=0$. Then we obtain the regularized multiple gamma function

$$
\Gamma_{r}(s, \boldsymbol{\omega})=\exp \left(\left.\frac{\partial}{\partial w} \zeta_{r}(w, s, \boldsymbol{\omega})\right|_{w=0}\right)
$$

It is a meromorphic function in $s \in \mathbb{C}$.
A defect of this construction is the difficulty to treat the general case $\boldsymbol{\omega} \in(\mathbb{C}-\{0\})^{r}$. For example

$$
\zeta_{2}(w, s,(1,-1))=\sum_{n_{1}, n_{2} \geq 0}\left(s+n_{1}-n_{2}\right)^{-w}
$$

is meaningless, so we do not have $\Gamma_{2}(s,(1,-1))$ nor $S_{2}(s,(1,-1))$ in this way.
Now, we construct the absolute multiple sine function from the absolute automorphic form

$$
f_{\boldsymbol{\omega}}(x):=\prod_{k=1}^{r}\left(1-x^{-\omega_{k}}\right)^{-1}
$$

satisfying

$$
f_{\boldsymbol{\omega}}\left(\frac{1}{x}\right)=(-1)^{r} x^{-|\boldsymbol{\omega}|} f_{\boldsymbol{\omega}}(x),
$$

where $\boldsymbol{\omega}:=\left(\omega_{1}, \ldots, \omega_{r}\right),|\boldsymbol{\omega}|=\omega_{1}+\cdots+\omega_{r}$ and $x>0$. For $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{r}\right) \in$ $(\mathbb{C}-\sqrt{-1} \mathbb{R})^{r}$ we define the absolute multiple gamma function

$$
\nsupseteq r(s, \boldsymbol{\omega}):=\zeta_{f_{\boldsymbol{\omega}}}(s)
$$

and the absolute multiple sine function

$$
\mathbb{S}_{r}(s, \boldsymbol{\omega}):=\varepsilon_{f_{\boldsymbol{\omega}}}(s)
$$

Then we have the following results (see Kurokawa-Tanaka [9]).
Fact 1. For $\boldsymbol{\omega} \in(\mathbb{C}-\sqrt{-1} \mathbb{R})^{r}, \npreceq r(s, \boldsymbol{\omega})$ and $\mathbb{S}_{r}(s, \boldsymbol{\omega})$ are meromorphic functions in $s \in \mathbb{C}$.

Fact 2. When $\operatorname{Re}\left(\omega_{k}\right)>0(k=1, \ldots, r)$, we have

$$
\varliminf_{r}(s, \boldsymbol{\omega})=\Gamma_{r}(s, \boldsymbol{\omega})
$$

and

$$
\mathbb{S}_{r}(s, \boldsymbol{\omega})=S_{r}(s, \boldsymbol{\omega})
$$

Fact 3. Let

$$
\mathbb{S}_{2 n}(s, \pm)=\mathbb{S}_{2 n}(s,(\overbrace{1, \ldots, 1}^{n}, \overbrace{-1, \ldots,-1}^{n})) .
$$

Then

$$
\mathbb{S}_{2 n}(s, \pm)=\exp \left(\frac{(-1)^{n-1}}{(2 n-1)!} \int_{0}^{s} \prod_{k=1}^{n-1}\left(u^{2}-k^{2}\right) \pi u \cot (\pi u) d u\right)
$$

Fact 4. Let

$$
\mathbb{S}_{2 n+1}(s, \pm)=\frac{\mathbb{S}_{2 n+1}(s,(\overbrace{1, \ldots, 1}^{n}, \overbrace{-1, \ldots,-1}^{n+1}))}{\mathbb{S}_{2 n+1}(s,(\underbrace{1, \ldots, 1}_{n+1}, \underbrace{-1, \ldots,-1}_{n})}) .
$$

Then

$$
\mathbb{S}_{2 n+1}(s, \pm)=C_{n} \exp \left(\frac{(-1)^{n-1} 2}{(2 n)!} \int_{0}^{s} \prod_{k=0}^{n-1}\left(u^{2}-k^{2}\right) \pi \cot (\pi u) d u\right)
$$

where

$$
C_{n}=\frac{(-1)^{n} 4}{(2 n)!} \sum_{m=1}^{n} c(n, m) \zeta^{\prime}(-2 m)
$$

and $c(m, n)$ is defined by

$$
\prod_{k=0}^{n-1}\left(X-k^{2}\right)=\sum_{m=1}^{n} c(n, m) X^{m} \in \mathbb{Z}[X]:
$$

$c(n, n)=1$ and $c(n, 1)=(-1)^{n-1}((n-1)!)^{2}$.
Theorem 6. For $n \geq 1$, let

$$
f_{n}(x)=\left\{\begin{array}{cc}
\frac{1}{(1-x)^{m}\left(1-x^{-1}\right)^{m}} & \text { if } n=2 m \\
\frac{1}{(1-x)^{m+1}\left(1-x^{-1}\right)^{m}}-\frac{1}{(1-x)^{m}\left(1-x^{-1}\right)^{m+1}} & \text { if } n=2 m+1
\end{array}\right.
$$

and

$$
\operatorname{Cot}_{n}(s, \pm)=\frac{\mathbb{S}_{n}^{\prime}(s, \pm)}{\mathbb{S}_{n}(s, \pm)}
$$

Then we have

$$
\begin{aligned}
\gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s) & =-\operatorname{Cot}_{n}(s, \pm) \\
& =\left\{\begin{array}{l}
\frac{(-1)^{m}}{(2 m-1)!} \prod_{k=1}^{m-1}\left(s^{2}-k^{2}\right) \pi s \cot (\pi s) \quad \text { if } n=2 m, \\
\frac{\left.(-1)^{m}\right)}{(2 m)!} \prod_{k=0}^{m-1}\left(s^{2}-k^{2}\right) \pi \cot (\pi s) \quad \text { if } n=2 m+1
\end{array}\right.
\end{aligned}
$$

and

$$
\left\{\begin{array}{lcc}
\text { zeros of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): & \mathbb{Z}+\frac{1}{2} & \text { if } n=2 m, \\
\text { zeros of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): & \mathbb{Z}+\frac{1}{2} & \text { if } n=1, \\
\text { zeros of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): & \left(\mathbb{Z}+\frac{1}{2}\right) \cup\{0\} & \text { if } n=2 m+1(m \geq 1), \\
\text { poles of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): \mathbb{Z}-\{0, \pm 1, \ldots, \pm(m-1)\} & \text { if } n=2 m, \\
\text { poles of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): & \mathbb{Z} & \text { if } n=1, \\
\text { poles of } \gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s): \mathbb{Z}-\{0, \pm 1, \ldots, \pm(m-1)\} & \text { if } n=2 m+1 .
\end{array}\right.
$$

§ 2. Proof of Theorem 1

Consider the following condition (0) on the coefficients $a(k)$ of the polynomial $f(x)$: (0)

$$
a(D-k)=C a(k) \quad(k \in \mathbb{Z}) .
$$

Then

$$
\begin{aligned}
(1) & \Leftrightarrow \sum_{k} a(k) x^{-k}=C x^{-D} \sum_{k} a(k) x^{k} . \\
& \Leftrightarrow \sum_{k} a(D-k) x^{k-D}=\sum_{k} C a(k) x^{k-D} . \\
& \Leftrightarrow a(D-k)=C a(k) \quad(k \in \mathbb{Z}) . \\
& \Leftrightarrow(0) . \\
(2) & \Leftrightarrow \prod_{k}(D-s-k)^{-C a(k)}=(-1)^{f(1)} \prod_{k}(s-k)^{-a(k)} . \\
& \Leftrightarrow \prod_{k}((D-k)-s)^{-C a(k)}=\prod_{k}(k-s)^{-a(k)} . \\
& \Leftrightarrow \prod_{k}((D-k)-s)^{-C a(k)}=\prod_{k}((D-k)-s)^{-a(D-k)} . \\
& \Leftrightarrow C a(k)=a(D-k) \quad(k \in \mathbb{Z}) . \\
& \Leftrightarrow(0) . \\
(3) & \Leftrightarrow-\sum_{k} \frac{C a(k)}{D-s-k}=\sum_{k} \frac{a(k)}{s-k} . \\
& \Leftrightarrow-\sum_{k} \frac{C a(k)}{(D-k)-s}=-\sum_{k} \frac{a(D-k)}{(D-k)-s} . \\
& \Leftrightarrow C a(k)=a(D-k) \quad(k \in \mathbb{Z}) . \\
& \Leftrightarrow(0) .
\end{aligned}
$$

Q.E.D.

§ 3. Proof of Theorem 2

From $f(x)=x^{n}+x^{n-1}+\cdots+1$ we have

$$
\zeta_{f}(s)=\frac{1}{s(s-1) \cdots(s-n)}
$$

This gives

$$
\begin{aligned}
\gamma_{f}(s) & =-\left(\frac{1}{s}+\frac{1}{s-1}+\cdots+\frac{1}{s-n}\right) \\
& =-\frac{P_{n}(s)}{s(s-1) \cdots(s-n)}
\end{aligned}
$$

for a polynomial $P_{n}(s)=(n+1) s^{n}+\cdots+(-1)^{n} n$!. Note that

$$
\gamma_{f}^{\prime}(s)=\frac{1}{s^{2}}+\frac{1}{(s-1)^{2}}+\cdots+\frac{1}{(s-n)^{2}}>0
$$

for $s \in(k-1, k)$, where $k=1, \ldots, n$. Hence we see that $\gamma_{f}(s)$ takes values from $-\infty$ to $+\infty$ on each $(k-1, k)$. Thus we have distinct n real zeros. The complex zeros are exhausted by these zeros.
Q.E.D.

§4. Proof of Theorem 3

Since $f(x)=x^{2}-x+1$, we have

$$
\begin{aligned}
\zeta_{f}(s) & =\frac{s-1}{s(s-2)} \\
\gamma_{f}(s) & =-\frac{1}{s-2}+\frac{1}{s-1}-\frac{1}{s} \\
& =-\frac{(s-1)^{2}+1}{s(s-1)(s-2)}
\end{aligned}
$$

Thus, we obtain Theorem 3.
Q.E.D.

§ 5. Proof of Theorem 4

From $f(x)=x^{a+b}-x^{b}+x^{a}-1$ we have

$$
\zeta_{f}(s)=\frac{s(s-b)}{(s-a)(s-(a+b))}
$$

and

$$
\begin{aligned}
\gamma_{f}(s) & =-\frac{1}{s-(a+b)}+\frac{1}{s-b}-\frac{1}{s-a}+\frac{1}{s} \\
& =-\frac{2 a\left(\left(s-\frac{a+b}{2}\right)^{2}+\frac{b^{2}-a^{2}}{4}\right)}{s(s-a)(s-b)(s-(a+b))} .
\end{aligned}
$$

This gives Theorem 4.
Q.E.D.

§6. Proof of Theorem 5

We have

$$
\begin{aligned}
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s) & =\zeta_{f}(s) \\
& =\prod_{k=0}^{n}(s-k)^{(-1)^{n+1-k}}\binom{n}{k} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\gamma_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s) & =\left(\log \zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)\right)^{\prime} \\
& =\left(\sum_{k=0}^{n}(-1)^{n+1-k}\binom{n}{k} \log (s-k)\right)^{\prime} \\
& =\sum_{k=0}^{n} \frac{(-1)^{n+1-k}\binom{n}{k}}{s-k}
\end{aligned}
$$

Hence, it remains to show that

$$
\sum_{k=0}^{n} \frac{(-1)^{n+1-k}\binom{n}{k}}{s-k}=-\frac{n!}{s(s-1) \cdots(s-n)}
$$

Let

$$
\frac{1}{s(s-1) \cdots(s-n)}=\sum_{k=0}^{n} \frac{a(k)}{s-k} .
$$

Since

$$
\begin{aligned}
a(k) & =\lim _{s \rightarrow k} \frac{1}{s(s-1) \cdots(s-k+1)(s-k-1) \cdots(s-n)} \\
& =\frac{1}{k(k-1) \cdots 1 \cdot(-1) \cdots(-(n-k))} \\
& =\frac{(-1)^{n-k}}{k!(n-k)!} \\
& =\frac{(-1)^{n-k}\binom{n}{k}}{n!},
\end{aligned}
$$

we obtain

$$
\sum_{k=0}^{n} \frac{(-1)^{n+1-k}\binom{n}{k}}{s-k}=-\frac{n!}{s(s-1) \cdots(s-n)}
$$

This gives

$$
\gamma_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)=-\frac{n!}{s(s-1) \cdots(s-n)} .
$$

Lastly we notice that our calculation implies the following results:

$$
\begin{aligned}
\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}^{\prime}(s) & =-n!\prod_{k=0}^{n}(s-k)^{(-1)^{n+1-k}}\binom{n}{k}-1 \\
& =-n!\frac{\zeta_{\mathbb{G}_{m}^{n} / \mathbb{F}_{1}}(s)}{s(s-1) \cdots(s-n)}
\end{aligned}
$$

Q.E.D.

§ 7. Proof of Theorem 6

As noted in $[9, \S 6]$ we have

$$
\mathbb{S}_{2 m+1}(s, \pm)=\zeta_{f_{n}}(s)^{-1} \zeta_{f_{n}}(-s)^{(-1)^{n-1}}
$$

Hence we obtain

$$
\gamma_{f_{n}}(s)+(-1)^{n} \gamma_{f_{n}}(-s)=-\operatorname{Cot}_{n}(s, \pm)
$$

by the logarithmic differentiation. From Fact 3 and Fact 4, we have

$$
\log \mathbb{S}_{2 m}(s, \pm)=\frac{(-1)^{m-1}}{(2 m-1)!} \int_{0}^{s} \prod_{k=1}^{m-1}\left(u^{2}-k^{2}\right) \pi u \cot (\pi u) d u
$$

and

$$
\log \mathbb{S}_{2 m+1}(s, \pm)=\log C_{m}+\frac{(-1)^{m-1} 2}{(2 m)!} \int_{0}^{s} \prod_{k=0}^{m-1}\left(u^{2}-k^{2}\right) \pi \cot (\pi u) d u
$$

respectively. Hence the logarithmic differentiation gives Theorem 6.
Q.E.D.

References

[1] E.W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc, 19 (1904), 374-425.
[2] A. Connes and C. Consani, Schemes over \mathbb{F}_{1} and zeta functions, Compositio Mathematica, 146 (2010), 1383-1415.
[3] N. Kurokawa, Gamma factors and Plancherel measures, Proc. Japan Acad. Ser. A., 68 (1992), 256-260.
[4] N. Kurokawa and H. Ochiai, Dualities for absolute zeta functions and multiple gamma functions, Proc. Japan Acad. Ser. A., 89 (2013), 75-79.
[5] N. Kurokawa, Y. Taguchi and H. Tanaka, A p-analogue of the multiple Euler constant, Kodai Math. J., 42 (2019), 393-408.
[6] N. Kurokawa and H. Tanaka, Absolute zeta functions and the automorphy, Kodai Math. J., 40 (2017), 584-614.
[7] N. Kurokawa and H. Tanaka, Absolute zeta functions and absolute automorphic forms, J. Geom. Phys., 126 (2018), 168-180, NCG 2017: Connes' 70th birthday celebration.
[8] N. Kurokawa and H. Tanaka, Limit formulas for multiple Hurwitz zeta functions, J. Number Theory 192 (2018), 348-355.
[9] N. Kurokawa and H. Tanaka, Absolute multiple sine functions, Proc. Japan Acad. Ser. A., 95 (2019), 41-46.
[10] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 24 (1977), 167-199.
[11] C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J., 4 (2004), 217-244.

