RIMS Kokyiroku Bessatsu
B8&6 (2021), 269278

Absolute zeta functions and multiple sine functions:
logarithmic derivatives

By

Nobushige KUROKAWA* and Hidekazu TANAKA™*

Abstract

In this paper we investigate logarithmic derivatives of absolute zeta functions and multiple
sine functions.

§1. Introduction

First we recall from [6] that a function f(x) on Rsg is an absolute automorphic
form when it satisfies the absolute automorphy

=P i)

T

for constants C' and D. From an absolute automorphic form f(x) we define the absolute
zeta function (f(s) and the absolute e-function e¢(s) by

)

Cr(s) := exp(a%Zf(w, s)

and (e (—s)

respectively, where

Zi(w,s) == ﬁ /100 f(z)z™5 1 (logz) tdx

Received March 23, 2019. Revised September 17, 2019.
2020 Mathematics Subject Classification(s): Primary 14G10
Key Words: absolute zeta function, absolute multiple sine function, logarithmic derivative, absolute
multiple cotangent function
*Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan.

e-mail: kurokawa@math.titech.ac. jp

**Department of Mathematics, Shibaura Institute of Technology, Saitama 337-8570, Japan.
e-mail: htanaka@sic.shibaura-it.ac.jp

(© 2021 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



270 NOBUSHIGE KUROKAWA AND HIDEKAZU TANAKA

and ]
fr(z) = f(;)-

We refer to Kurokawa-Tanaka [6] and Kurokawa-Tanaka [7] for a general theory of
Cr(s) and €4(s) (see also Kurokawa—-Ochiai [4] and Kurokawa-Tanaka [8]). From the
viewpoint of absolute zeta functions the theory of multiple sine functions is considered
as the e—function theory: see Kurokawa—Tanaka [9].

In this paper we study logarithmic derivatives

d
V5 (s) = 75 log Cr(s)

_ G
Cr(s)

for absolute automorphic forms f(x). The following theorem is our first result.

Theorem 1.  Let f(z) =3, a(k)z® € Z[z], {;(s) = [[,(s— k)~ and v4(s) =
>k ';(_klz Then the following conditions (1), (2) and (3) are equivalent:

(1)

(2)

Here we remark that e(s) = (—1)f(1).
(3)
Cyp(D =) = =7 (s)-

Hereafter, we look at the zeros and the poles of y¢(s) for various f(x). For a scheme
X we define

Cx/m, (8) = Cr(s),
Tx /e, (8) =75 (s

~—

Y

when there exists f(x) satisfying | X (F,)| = f(¢) for all prime powers q.

Theorem 2. Let f(z) =2" +2" ' +---+ 1. Then we have

1 1 1

W(S):Wn/m(S):—(;ﬂLS_l+"'+S_n

and

zeros of v¢(s): n-distinct zeros each in (0,1), (1,2), ---, (n—1,n) (all real),
poles of v¢(s): 0,1,...,n (all real).
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Next result shows the existence of imaginary zeros for a simple 7¢(s), which is a
particular case of ys,,(s) for the 2/-th cyclotomic polynomial with a prime [ = 3 mod
4.

Theorem 3. Let f(z) = ®g(x) = 22 — 2+ 1, where ®g(x) is the 6-th cyclotomic
polynomial. Then
(s—1)2+1
s(s—1)(s—2)

vr(s) = —

and
zeros of v¢(s):1 £ v/—1 (imaginary),
poles of v¢(s): 0,1,2.

Theorem 4. Let f(z) = (2% — 1)(z® + 1), where a and b are integers with
0<a<b. Then

2a((s — aTer)z + #)
Vf(8) = ——— —
s(s —a)(s —b)(s — (a+))

and
zeros of yy(s): atbEvar=b> V2“2_b2 (imaginary),
poles of v¢(s) : 0,a,b,a+b.
To explain our next result, let f(z) = (x — 1)”. We remark that the absolute zeta
function (gn /r, (s) of Gy, = GL(1)" (n > 1) is defined as

e, /F, (8) == Cr ()
= lim CG}}L/IFP (S)a
p—1

where the last zeta function is the congruence zeta function; see Soulé [11], Connes—
Consani [2] and Kurokawa-Taguchi-Tanaka [5]. We recall that (gn /r (s) is defined
by

m=1 m
— exp(z_l f(f;m)p—ms>

This construction gives

Cen, /F, (8) = Cr(s)
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Theorem 5.  Let f(x) = (x — 1)". Then we have

G, (8)
Vf(s) = 7@;;/&(8) = %-
Then
n!
Vf(s):_s(s—l)---(s—n)‘
and

zeros of v¢(s): None,
poles of v¢(s): 0,1,...,n.

Here we remark that

CG;/IFl(S) = —n!CPn/IFl(S)-

Our third result concerns the regularized multiple sine function constructed in
Shintani [10] (r = 2) and Kurokawa [3] (general r):

Sy (8, (W1 ooy wr)) 1= T8, (Wi, ooy wp)) (w1 + - wp — 8, (W1, ey w0y )) T

where T',.(s, (w1, ..., w;)) is the regularized version of the multiple gamma function intro-
duced by Barnes [1]. Here we explain the construction when Re(w;), ..., Re(w,) > 0 and
we put w = (wyq, ...,w,) for simplicity. The multiple Hurwitz zeta function (,(w, s, w) is
defined as
Glws,w)=" Y (s+mnw+-+nw) "
N1,y >0

for Re(w) > r. It has an analytic continuation to all w € C and it is holomorphic at
w = 0. Then we obtain the regularized multiple gamma function

w—0>
It is a meromorphic function in s € C.
A defect of this construction is the difficulty to treat the general case w € (C—{0})".
For example

) (5, w) = exp(a%qrw, 5w)

Gw,s,(1,=1))= Y (s+mn1—ny)™"
ni,n2 20
is meaningless, so we do not have I's(s, (1,—1)) nor Sa(s, (1,—1)) in this way.
Now, we construct the absolute multiple sine function from the absolute automor-

phic form
-

fula) = [J(1 =2

k=1
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satisfying
1 _
fu(2) = (=127 fo(a),
where w = (wi,...,w;), |[w| = w1 + -4+ w, and z > 0. For w = (wi,...,w,) €

(C — /=1R)" we define the absolute multiple gamma function
Sr(s,w) = Cru(5)

and the absolute multiple sine function
Sr(s,w) :=¢y,(s).

Then we have the following results (see Kurokawa-Tanaka [9]).

Fact 1. Forw e (C—/—1R)", £,(s,w) and S, (s,w) are meromorphic functions
in s e C.

Fact 2.  When Re(wy) >0 (k=1,...,7), we have

sr(s,w) =T (s,w)

and
Sr(s,w) = S, (s,w).
Fact 3. Let . .
—~ ——
Sgn(s, :i:) = Sgn(s, (1, ceey 1, —1, ceny —1))
Then
(—1! = 2 2
Son(s, £+ :exp(—/ u® — k%) mu cot(mu du).
() = e (g =y |, [0 = Kmucotim
Fact 4. Let
n n+1
—~— ——
SQ 1(5 j:) _ Sgn+1(8,(1,...,1,—1,...,—1))‘
nE Sont1(s, (1,...,1,—1,...,—1))
—— ———
n+1 n
Then
n 12 sn 1
Sonti1(s, ) = Cyp exp( / — k%) WCOt(FU)dU)

0

where

(1"

C, = n)] z_:c(n,m)g“’(—Qm)
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and c¢(m,n) is defined by

I:I(X — k%) = c(n,m)X™ € Z[X] :
k=0 m=1

c(n,n) =1 and c¢(n,1) = (=1)"1((n — 1)1)2.

Theorem 6. Forn > 1, let

ml_ —1\ym Zf’I”LZQm,

(1_$)m+11(1_x—1)m - (1_x)m(11_x71)m+1 Zf n = 2m + 1

and

Then we have

Vfa(8) + (=1)"7, (=s) = —Cota(s, +)

% ?2_11(32 — k?)wscot(ms) if n=2m,
— w Zn:_()l(SZ_kQ)ﬂ_COt(ﬂ_s) lfn:2m+1

(2m)!
and

( zeros of vy, (s) + (—=1)"yg, (—s) Z+1 if n = 2m,
zeros of vy, (s) + (=1)"v¢, (—s): Z+1 if n=1,
zeros of v, (s) + (—=1)"vy, (—s): (Z + %)U{O} ifn=2m+1 (m>1),
poles of vy, (s) + (—=1)"v¢, (=s):Z — {0, %1, ..., £(m — 1)} if n =2m,
poles of vy, (s) + (—=1)"vs, (—s): A ifn=1,

( poles of v¢, (s) + (—1)"4,(—s): Z —{0,%£1,...,£(m — 1)} ifn=2m+1.

§2. Proof of Theorem 1

Consider the following condition (0) on the coefficients a(k) of the polynomial f(x):
(0)
a(D —k)=Ca(k) (k€Z).



ABSOLUTE ZETA FUNCTIONS AND MULTIPLE SINE FUNCTIONS: LOGARITHMIC DERIVATIVES 275

Then

(1)< Za(k‘)x*k = Cz P Za(kz)xk.
k k
& Z a(D — k)2 P = Z Ca(k)z*P.
k k

Sa(D—k)=Ca(k) (ke€Z).
< (0).
2) e [[(D-s—k)=® = (=1)fDT](s — k)~®.
k

k

Q.E.D.

83. Proof of Theorem 2

From f(z) = 2" + 2" ! + ... + 1 we have

1
(f<s):s(s—1)~-(s—n)'

This gives

for a polynomial P,(s) = (n+1)s™ +---+ (—1)"n!. Note that
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for s € (k —1,k), where k = 1,...,n. Hence we see that v;(s) takes values from —oo

to 400 on each (k — 1,k). Thus we have distinct n real zeros. The complex zeros are
exhausted by these zeros. Q.E.D.

84. Proof of Theorem 3

Since f(z) = 2? — x + 1, we have

s—1
Grls) = s(s —2)’
1 1 1
W(S)__s—2+3—1 s
o (s—1)2+1
os(s—1)(s—2)
Thus, we obtain Theorem 3. Q.E.D.

85. Proof of Theorem 4

From f(x) = 29%% — 2% + 2% — 1 we have

B s(s —b)
) = = (et D)
and
(-1 L1
TS = s—(a+b) s—b s—a s
2a((s axby2 4 bz;‘*)
T s(s—a)(s—b)(s—(a+b)
This gives Theorem 4. Q.E.D.
8§6. Proof of Theorem 5
We have

Cer, /F, (8) = Cr(s)
n (—pyntrk
(s — k) 1 <k>

0

k
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We have

YGn, /Py (3) = (10g CG% /1 (5)>

_ <§(_1)n+1—k (Z) log(s — k))l
o)

s—k

Hence, it remains to show that

L)

k=0
Let
1 B "L a(k)
s(s—1) (s—n)_kzzos—k
Since
a(k) = lim !
Csoks(s—1)---(s—k+1)(s—k—1)---(s—n)
1
Tk =D 1 () ()
B (_1)n—k
~kl(n—k)!
(1)
B n! ’
we obtain
n (—1)n+1_k(z> !
Z; s—k  s(s—1)---(s—n)
This gives

n!
Cs(s—1)---(s—n)

Lastly we notice that our calculation implies the following results:

TGy, /F. (S) =

n (—1yrHih <Z>1
(o ey () =—n! [T (s = )
k=0

— Cen /r, (8)
s(s—1)---(s—n)

277
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Q.E.D.
8§7. Proof of Theorem 6
As noted in [9, §6] we have
Samr1(5.%) = 7, (5) 7 p (=) VT
Hence we obtain
Vi (8) + (=1)"7,(=s) = —Cota(s, £)
by the logarithmic differentiation. From Fact 3 and Fact 4, we have
sm—1
log Som (s, +) = 2m — /0 kli[l (u? — k*)mu cot(mu)du
and
m 12 s m 1
log Som+1(s,£) =log C)n + / — k%) cot(mu)du
0
respectively. Hence the logarithmic differentiation gives Theorem 6. Q.E.D.
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