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Lehto–Virtanen-type and big Picard-type theorems

for Berkovich analytic spaces

By

Yûsuke Okuyama ∗

Abstract

In non-archimedean setting, we establish a Lehto–Virtanen-type theorem for a morphism

from the punctured Berkovich closed unit disk D \ {0} in the Berkovich affine line to the

Berkovich projective line P1 having an isolated essential singularity at the origin, and then

establish a big Picard-type theorem for such an open subset Ω in the Berkovich projective

space PN of any dimension N that the family of all morphisms from D \ {0} to Ω is normal

in a non-archimedean Montel’s sense. As an application of the latter theorem, we see a big

Brody-type hyperbolicity of the Berkovich harmonic Fatou set of an endomorphism of PN of

degree > 1.

§ 1. Introduction

Let K be a field of any characteristic that is complete with respect to a non-

archimedean absolute value |· |. Let D be the Berkovich closed unit disk in the Berkovich

affine line A1 = A1(K) = A1(K)an. We note that

D ∩K = OK = {z ∈ K : |z| ≤ 1},

and that D = P1 \U(
−−−−→
Scan∞) in the notation in §2.1. We say a morphism f from D\{0}

to a Berkovich K-analytic space X has an isolated essential singularity at the origin if

f does not extend to a morphism from D to any Berkovich K-analytic space. One of

our aims is to see the following non-archimedean analog of Lehto–Virtanen and Lehto

[10, 9] (see also [12, 13]).
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Theorem 1 (a Lehto–Virtanen-type theorem). Let K be a field of any charac-

teristic that is complete with respect to a non-archimedean absolute value | · |. Then for

every morphism f from D \ {0} to the Berkovich projective line P1 = P1(K) having an

isolated essential singularity at the origin, we have

lim sup
r↘0

diam#

(
f({z ∈ K : |z| = r})

)
= diam#(P1).(1.1)

Here, diam# is the chordal diameter function on (2P
1

) \ {∅} with respect to an equipped

chordal metric on P1 = P1(K).

In the proof of Theorem 1, we will normalize the equipped chordal metric on P1

as diam#(P1) = 1. The proof of Theorem 1 is an improvement of some argument

in the proof of Rodŕıguez Vázquez [14, Proposition 7.17], which was a little Picard-

type theorem. An argument similar to that in the proof of Theorem 1 also yields the

following big version of [14, Proposition 7.17]. For the definition of the non-archimedean

Montel-type normality appearing in Theorem 2, see [14, §1, §7] and [4, Introduction].

Theorem 2 (a big Picard-type theorem). Let K be a field of any characteristic

that is complete with respect to a non-archimedean absolute value, and let Ω be an open

subset in the Berkovich projective space PN = PN (K) of any dimension N such that

the family Mor(D \ {0},Ω) of all morphisms from D \ {0} to Ω is normal. Then any

morphism from D \ {0} to Ω extends to a morphism D → PN .

By Rodŕıguez Vázquez [14, Theorem C], an example of such an Ω as in Theorem

2 is a component of the (Berkovich) harmonic Fatou set Fharm(f) of an endomorphism

f of PN of degree > 1; see [14, Definition 7.9] for the definition of the (Berkovich)

harmonic Fatou set of f . Hence we conclude the following.

Corollary 1 (a big Brody-type hyperbolicity of the harmonic Fatou set). Let K

be a field of any characteristic that is complete with respect to a non-archimedean ab-

solute value, and let f be an endomorphism of PN = PN (K) of any dimension N of

degree > 1. Then any morphism from D \ {0} to the (Berkovich) harmonic Fatou set

Fharm(f) of f extends to a morphism D → PN .

The proof of [14, Proposition 7.17] invoked the non-archimedean little Picard theo-

rem, which asserts that any K-analytic mapping f : A1 → P1 satisfying #(P1\f(A1)) ≥
2 is constant (see, e.g., [16, (1.3) Proposition]). Our argument in the proofs of The-

orems 1 and 2 instead requires a Riemann-type extension theorem (near an isolated

singularity) below, which is almost straightforward from the Laurent expansion of a K-

analytic function around an isolated singularity of it and the strong triangle inequality,

and which can also be adopted to give a more elementary proof of [14, Proposition 7.17].
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Proposition 1.1 (a Riemann-type extension theorem). Let f be a K-analytic

function on OK \ {0}. If |f | is bounded near 0, then f extends to a K-analytic function

on OK . In particular, f extends to a morphism D → P1.

§ 2. Background

Let K be a field of any characteristic that is complete with respect to a non-

archimedean absolute value | · |. Recall that the absolute value | · | is said to be non-

archimedean if the strong triangle inequality |z + w| ≤ max{|z|, |w|} holds for any

z, w ∈ K. Let π = πN : KN+1 \ {(0, . . . , 0)} → PN = PN (K) be the canonical

projection associated to PN of any dimensionN , and let ‖·‖ = ‖·‖ℓ be themaximal norm

‖(z1, . . . , zℓ)‖ = max{|z1|, . . . , |zℓ|} on Kℓ of any dimension ℓ. Noting that
∧2

KN+1 ∼=
K(N+1

2 ) as K-linear spaces (cf. [8, §8.1]), the (normalized) chordal metric on PN is

defined as

[z, w]PN :=
‖Z ∧W‖(N+1

2 )

‖Z‖N+1 · ‖W‖N+1
, z, w ∈ PN ,

where Z ∈ π−1(z),W ∈ π−1(w) (the notation is adopted from Nevanlinna’s and Tsuji’s

books [11, 15]), so that diam#(PN ) = 1. We equip P1 = K ∪ {∞} with this normal-

ized [z, w]P1 in this section. The topology of P1 coincides with the metric topology of

(P1, [z, w]P1).

§ 2.1. Berkovich projective line as a tree

For the details on P1, see [1, 5]. For simplicity, we also assume that K is alge-

braically closed and | · | is non-trivial. As a set, the Berkovich affine line A1 = A1(K)

is the set of all multiplicative seminorms on K[z] extending | · |. An element of A1 is

denoted by S, and also by [·]S as a multiplicative seminorm on K[z]. The topology of A1

is the weakest topology such that for any ϕ ∈ K[z], the function A1 3 S 7→ [ϕ]S ∈ R≥0

is continuous, and then A1 is a locally compact, uniquely arcwise connected, Hausdorff

topological space. A subset B in K is called a K-closed disk if

B = B(a, r) := {z ∈ K : |z − a| ≤ r}

for some a ∈ K and some r ≥ 0. For any K-closed disks B,B′, if B∩B′ 6= ∅, then either

B ⊂ B′ or B′ ⊂ B (by the strong triangle inequality). The Berkovich representation

[3] asserts that any element S ∈ A1 is induced by a non-increasing and nesting sequence

(Bn) of K-closed disks in that [ϕ]S = infn∈N supz∈Bn
|ϕ(z)| for any ϕ ∈ K[z]; a point

S ∈ A1 is said to be of type I, II, III, and IV if S can be induced by a (constant sequence

of a singleton B(a, 0) = {a} consisting of a unique) point a ∈ A1, a (constant sequence
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of a) K-closed disk B(a, r) satisfying r ∈ |K∗|, a (constant sequence of a) K-closed disk

B(a, r) satisfying r ∈ R>0 \ |K∗|, and any other case holds, respectively. We identify,

as a set, K with the set of all type I points in A1.

Any [·]S ∈ A1 extends to the function K(z) → R≥0 ∪ {+∞} such that, for any

ϕ = ϕ1/ϕ2 ∈ K(z) where ϕ1, ϕ2 ∈ K[z] are coprime, [ϕ]S = [ϕ1]S/[ϕ2]S ∈ R≥0 ∪ {+∞},
and we also regard ∞ ∈ P1 as the function [·]∞ : K(z) → R≥0 ∪ {+∞} such that for

every ϕ ∈ K(z), [ϕ]∞ = |ϕ(∞)| ∈ R≥0 ∪ {+∞}. As a set, the Berkovich projective line

P1 = P1(K) is nothing but A1 ∪ {∞}. The point ∞ is also said to be of type I.

Set H1 := P1 \ P1, and let H1
II (resp. H

1
III) be the set of all type II (resp. type III)

points in P1. The Gauss (or canonical) point

Scan ∈ H1
II

is induced by the (constant sequence of the) K-closed disk OK = B(0, 1), that is, the

ring of K-integers. Let MK be the unique maximal ideal of OK and k be the residue

field OK/MK of K.

An ordering ≤∞ on P1 is defined so that for any S,S ′ ∈ P1, S ≤∞ S ′ if and only if

[·]S ≤∞ [·]S′ on K[z]. For any S,S ′ ∈ P1, if S ≤∞ S ′, then set [S,S ′] = [S ′,S] := {S ′′ ∈
P1 : S ≤∞ S ′′ ≤∞ S ′}, and in general, there is the unique point, say, S ∧∞ S ′ ∈ P1

such that [S,∞] ∩ [S ′,∞] = [S ∧∞ S ′,∞], and set

[S,S ′] := [S,S ∧∞ S ′] ∪ [S ∧∞ S ′,S ′].

These closed intervals [S,S ′] ⊂ P1 make P1 an “R-”tree in the sense of Jonsson [7,

Definition 2.2]. For any S ∈ P1, the equivalence class TSP
1 := (P1 \ {S})/ ∼ is defined

so that for any S ′,S ′′ ∈ P1\{S}, S ′ ∼ S ′′ if [S,S ′]∩[S,S ′′] = [S,S ′∧SS ′′] for some point

say S ′∧S S ′′ ∈ P1 \{S}. An element of TSP
1 is called a direction of P1 at S and denoted

by v, and also by U(v) = US(v) as a subset in P1 \ {S}. If v ∈ TSP
1 is represented by

an element S ′ ∈ P1 \ {S}, then we also write v as
−−→
SS ′. A point S ∈ P1 is of type either

I or IV if and only if #TSP
1 = 1, that is, S is an end point of P1 as a tree. On the other

hand, a point S ∈ P1 is of type II (resp. type III) if and only if #TSP
1 > 2 (resp. = 2).

A (Berkovich) strict connected open affinoid in P1 is a non-empty subset in P1 which

is the intersection of some finitely many elements of {U(v) : S ∈ H1
II,v ∈ TSP

1}. The

topology of P1 has the quasi-open basis {U(v) : S ∈ P1,v ∈ TSP
1}, so has the open

basis consisting of all Berkovich strict connected open affinoids in P1. Both P1 and H1
II

are dense in P1, the set U(v) is a component of P1 \ {S} for each S ∈ P1 and each

v ∈ TSP
1, and for any S,S ′ ∈ P1, the interval [S,S ′] is the unique arc in P1 between S

and S ′.

We also denote the left-half open interval [S,S ′] \ {S} ⊂ P1 by (S,S ′]. For every

0 < r ≤ 1, letting S(r) ∈ (0,Scan] be the point induced by the (constant sequence of
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the) K-closed disk B(0, r), we have

{z ∈ K : |z| = r} =
∪

v∈TS(r)P1\{
−−−→
S(r)0,

−−−−→
S(r)∞}

(U(v) ∩ P1).(2.1)

The normalized chordal metric [z, w]P1 on P1 extends to an upper semicontinuous and

separately continuous function (S,S ′) 7→ [S,S ′]can on P1 × P1, which is called the

generalized Hsia kernel function on P1 with respect to Scan ([1, §4.4]); the function

S 7→ [S,S]can is continuous on any interval in P1, and for every S ∈ P1 and every

v ∈ TSP
1, we have

diam#

(
U(v) ∩ P1

)
=


[Scan,Scan]can = 1 if S = Scan,

[Scan,Scan]can = 1 if S 6= Scan and v =
−−−→
SScan,

[S,S]can if S ∈ (H1
II \ {Scan}) ∪ H1

III and v 6=
−−−→
SScan.

(2.2)

§ 2.2. Mapping properties of morphisms

Any non-constant morphism f from an open neighborhood of a point S ∈ P1 to

P1 is finite to one near S and induces a surjection f∗ = (f∗)S : TSP
1 → Tf(S)P

1, which

is called the tangent map of f at S; when f(Scan) = Scan, (f∗)Scan is regarded as the

action on P1(k) of the reduction f̃ ∈ k(z) of f (see, e.g., [7, §2.6, §4.5] for the details).

Let f : D \ {0} → P1 be a non-constant morphism. Then from a general mapping

property of a non-constant K-analytic mapping from a disk in A1 to P1 (see, e.g., [2,

§3]), for every S ∈ (0,Scan] and every v ∈ TSP
1 \ {

−→
S0,

−−→
S∞},

if f(US(v)) 6= P1, then f(US(v)) = Uf(S)(f∗v).(2.3)

§ 3. Proofs of Theorems 1 and 2

With no loss of generality, we also assume that K is algebraically closed and | · | is
non-trivial. We equip P1 with the normalized chordal metric [z, w]P1 defined in Section

2, so diam#(P1) = 1.

Proof of Theorem 1. Let f : D \ {0} → P1 be a morphism, and suppose that f

does not satisfy (1.1). Then by (2.1), for every S ∈ (0,Scan] close enough to 0 and

every v ∈ TSP
1 \

{−→
S0,

−−→
S∞

}
, we have f(U(v)) 6= P1, and in turn by (2.2), (2.3), and the

continuity of f , there is u0 ∈ TScanP
1 such that f(S) ⊂ U(u0) for every S ∈ (0,Scan]

close enough to 0. Then, under the assumption that f does not satisfy (1.1), by (2.2)

and (2.3), for any S ∈ (0,Scan] close enough to 0, we even have

f
(
P1 \ (U(

−→
S0) ∪ U(

−−→
S∞))

)
⊂ U(u0),
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and then by (2.1) and a Riemann-type extension theorem (Proposition 1.1), f extends

to a morphism from D to a K-analytic space.

Proof of Theorem 2. We can assume N = 1 by an argument similar to that in the

final paragraph in [14, Proof of Proposition 7.17] involving not only the existence of a

nice lifting of f |(OK \{0}) to a morphism OK \{0} → AN+1 through the canonical pro-

jection π : AN+1 \ {(0, . . . , 0)} → PN (using [6, Theorem 2.7.6]) but also the projection

AN+1 \ {z0 = 0} 7→ [z0 : z1] ∈ P1.

Let Ω be an open subset in P1. Suppose that Mor(D \ {0},Ω) is normal and, to

the contrary, that there is a morphism f : D \ {0} → Ω having an isolated essential

singularity at the origin.

(i). If there is a point S0 ∈ H1
II such that #(f−1(S0) ∩ (0,Scan]) = ∞, then we

can conclude a contradiction by an argument similar to that in the former half of [14,

Proof of Theorem 7.17]. For completeness, we include the argument; by the surjectivity

of f∗ : TSP
1 → TS0

P1 for every S ∈ f−1(S0) ∩ (0,Scan] (and by #TS0
P1 = ∞ > 2),

there are a sequence (Sn) in f−1(S0) ∩ (0,Scan] tending to 0 as n → ∞ and a direction

u0 ∈ TS0
P1 such that for every n ∈ N, u0 ∈ f∗(TSn

P1 \
{−−→
Sn0,

−−−→
Sn∞

}
). Then fixing a

point a0 ∈ U(u0) ∩ P1, for every n ∈ N, there is a point bn ∈ P1 ∩ f−1(a0) such that
−−−→
Snbn ∈ TSn

P1 \
{−−→
Sn0,

−−−→
Sn∞

}
. For every n ∈ N, by (2.1), Sn is induced by the (constant

sequence of the) K-closed disk B(0, |bn|).
Now setting

gn(z) := f(bn! · zn!) ∈ Mor(D \ {0},Ω)

for each n ∈ N, under the assumption that Mor(D \ {0},Ω) is normal in the sense

of [4, Introduction], taking a subsequence of (gn) if necessary, the (pointwise) limit

g := limn→∞ gn on D \ {0} exists and is a continuous mapping D \ {0} → P1. Then

g(Scan) = lim
n→∞

gn(Scan) = lim
n→∞

f(Sn!) = S0.

On the other hand, we can fix a sequence (ζm) inK such that (ζm)m = 1 (so ζm ∈ D\{0})
for every m ∈ N and that limm→∞ ζm = Scan. Then for any m ∈ N,

g(ζm) = lim
n→∞

gn(ζm) = lim
n→∞

f(bn! · 1n!/m) = lim
n→∞

f(bn!) = a0, and in turn

g(Scan) = lim
m→∞

g(ζm) = lim
m→∞

a0 = a0.

Hence we must have P1 3 a0 = S0 ∈ H1
II, which is a contradiction.

(ii). If there is a sequence (Sn) in (0,Scan] tending to 0 as n → ∞ such that for

every n ∈ N, there is a direction vn ∈ TSn
P1 \

{−−→
Sn0,

−−−→
Sn∞

}
satisfying f(U(vn)) = P1,

then taking a subsequence of (Sn) if necessary, there is a direction u0 ∈ TScan
P1 such

□ 
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that f(Sn) ∈ P1 \U(u0) for any n ∈ N. Fixing a point a0 ∈ P1 ∩U(u0), there is a point

bn ∈ P1 ∩ U(vn) ∩ f−1(a0) for each n ∈ N.
Now by a (branched) rescaling argument similar to that in the case (i), we must

have U(u0) 3 a0 ∈ {f(Sn) : n ∈ N} ⊂ P1 \ U(u0). This is a contradiction.

(iii). Suppose finally that for every S ∈ H1
II, #(f−1(S) ∩ (0,Scan]) < ∞ and that

for every S ∈ (0,Scan] close enough to 0 and every v ∈ TSP
1 \{

−→
S0,

−−→
S∞}, f(U(v)) 6= P1.

Then under the former assumption (for S = Scan), by the continuity of f , there is

u0 ∈ TScan
P1 such that f(S) ⊂ U(u0) for every S ∈ (0,Scan] close enough to 0. Then

under the latter assumption, by (2.1), (2.3), and a Riemann-type extension theorem

(Proposition 1.1), there must exist a sequence (Sn) in (0,Scan] tending to 0 as n → ∞
such that for every n ∈ N, f(Sn) ∈ U(u0) and there is a direction vn ∈ TSnP

1 \{−−→
Sn0,

−−−→
Sn∞

}
satisfying

f∗(vn) =
−−−−−−−→
f(Sn)Scan,

and then f(U(vn)) ⊃ P1 \ U(u0). Fixing a point a0 ∈ P1 \ U(u0) = P1 \ U(u0), there

is a point bn ∈ P1 ∩ U(vn) ∩ f−1(a0) for each n ∈ N.
Now by a (branched) rescaling argument similar to that in the case (i), we have

P1 \ U(u0) 3 a0 ∈ {f(Sn) : n ∈ N} ⊂ U(u0). This is a contradiction.
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