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An improvement of the duality formalism of the

rational étale site

By

Takashi Suzuki∗

Abstract

We improve the arithmetic duality formalism of the rational étale site. This improvement

allows us to avoid some exotic approximation arguments on local fields with ind-rational base,

thus simplifying the proofs of the previously established duality theorems in the rational étale

site and making the formalism more user-friendly. In a subsequent paper, this new formulation

will be used in a crucial way to study duality for two-dimensional local rings.

§ 1. Introduction

§ 1.1. Aim of the paper

The arithmetic duality formalism of the rational étale site [Suz13] has been applied

to several situations [Suz20b], [Suz20a], [Suz19], [GS20]. One of the difficulties in this

formalism is that, for a complete discrete valuation field K with perfect residue field k

of characteristic p > 0, we need to calculate the étale or fppf cohomology of a certain

complicated ring K(k′), where k′ is an arbitrary “ind-rational k-algebra”. A rational

k-algebra is a finite product of perfections of finitely generated field extensions over k,

and an ind-rational k-algebra is a filtered direct limit of rational k-algebras. The ring

K(k′) is the p-inverted ring of Witt vectors W (k′)[1/p] (in the absolutely unramified

case) or the formal Laurent series ring k′[[t]][1/t]. A typical example of an ind-rational
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k-algebra is the affine ring of a profinite set viewed as a profinite k-scheme. If k′ has only

finitely many direct factors, then K(k′) is a classical object, since it is a finite product

of complete discrete valuation fields with perfect residue fields. Otherwise K(k′) is a

difficult infinite-dimensional non-noetherian ring. We need general ind-rational algebras

to describe pro-algebraic and/or profinite group structures on cohomology of K, since a

profinite set tested by field-valued points is not distinguishable with a discrete set. The

étale cohomology Hn(K(k′),Gm) and more general Hn(K(k′), G) for smooth group

schemes G (in particular, abelian varieties) over K are calculated based on some exotic

approximation arguments in [Suz13, Section 2.5] and [Suz20b, Sections 3.1 and 3.2],

respectively.

In this paper, we give a simpler and more user-friendly formalism that does not re-

quire exotic approximation arguments. In this new formalism, we only need to calculate

Hn(K(k′), G) for perfect field extensions k′ over k, in which case K(k′) is a genuinely

classical object as explained above. The key observation is that for most of the groups

of interest G, the π0 (component group) of the object representing the sheafification of

the presheaf k′ 7→ Hn(K(k′), G) turns out to be an étale k-group (without a profinite

part). Pro-algebraic groups with finite (that is, not profinite) component groups can be

described by perfect-field-valued points alone, as we will see in this paper. Hence we

may restrict k′ to be perfect fields. We still need arbitrary perfect fields here and not

only perfections of finitely generated fields or rational k-algebras, since the generic point

of a connected pro-algebraic group is not the spectrum of the perfection of a finitely

generated field. Once we uniquely pin down such pro-algebraic groups by perfect-field-

valued points, we can then pass to the pro-étale site of ind-rational k-algebras, where

we have full control of the derived categories of pro-algebraic groups and of profinite

groups.

This new formalism will be useful and in fact necessary for two-dimensional local

rings such as W (k)[[t]], since the sheafification of the presheaf

k′ 7→ Hn
(
W (k′)[[t]][1/p],Z/pZ(r)

)
on ind-rational k-algebras k′ does not commute with filtered direct limits (since the

representing object should be a pro-algebraic group) and hence an analogue of the ap-

proximation arguments mentioned above are not just difficult but in fact impossible

(at least when interpreted naively). In a subsequent paper, using the explicit compu-

tations of filtrations by symbols in the proof of [Sai86, Claim (4.11)], the above sheaf

will be shown to be representable by a pro-algebraic group over k with finite π0 if k′

runs over perfect field extensions of k. The purpose of the proposed paper will be to use

the formalism of this paper to construct a duality theory for such pro-algebraic groups

associated with two-dimensional noetherian complete normal local rings of mixed char-

acteristic with perfect residue field, extending Saito’s duality theories [Sai86], [Sai87] in
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the finite residue field case.

In this paper, emphasis is put on providing a dictionary between the older and

new formalisms, so that the reader can freely translate the duality results previously

established in the older formalism into the new formalism and use them in the new

formalism. We will also provide enough foundational results on the new formalism so

that it can be used on its own (without translating back into the older formalism) to

explore new duality results in future work.

§ 1.2. Main theorems

Now we formulate our results. Let k be a perfect field of characteristic p > 0. Let

kperar be the category of finite products of perfect field extensions of k with k-algebra

homomorphisms (where “perar” stands for perfect artinian). Define Spec kperaret to be

the étale site on the category kperar, which we call the perfect artinian étale site of k.

Also let kperf
′
be the category of quasi-compact quasi-separated perfect k-schemes.

This category can be equipped with the “pro-fppf” topology ([Suz13, Remark 3.8.4],

[Suz20b, Appendix A]). Denote the resulting site by Spec kperf
′

profppf . The inclusion functor

kperar ↪→ kperf
′
induces a morphism of topologies (or a “premorphism of sites” [Suz20a,

Section 2.4])

h́ : Spec kperf
′

profppf → Spec kperaret .

Its pullback functor h́∗ : Ab(kperaret )→ Ab(kperf
′

profppf) on the category of sheaves of abelian

groups on these sites admits a left derived functor Lh́∗ by [Suz13, Lemma 3.7.2 and Sec-

tion 2.1]. Let Alg/k be the category of perfections (inverse limit along Frobenius mor-

phisms) of commutative algebraic groups over k. Let P′
fcAlg/k be the full subcategory

of the pro-category of Alg/k of pro-objects with affine transition morphisms and finite

étale π0 (where “fc” stands for “finite component (group)”). It is a full subcategory of

Ab(kperf
′

profppf) via the Yoneda functor.

Theorem 1.1 (= Theorem 3.15, Proposition 7.1). The Yoneda functor P′
fcAlg/k →

Ab(kperaret ) is fully faithful. For any G ∈ P′
fcAlg/k, the natural morphism h́∗G → G in

Ab(kperf
′

profppf) is an isomorphism and Lnh́
∗G = 0 for n ≥ 1.

This means that treating G as a functor on perfect field extensions of k does not

lose any information, higher derived or not. This is a version of [Suz13, Proposition

3.7.3] for Spec kperaret . Similar to [Suz13, Section 3], the key points of the proof are that

the inclusion morphism ξG ↪→ G (which is not of finite presentation) of the generic point

ξG of a group G ∈ P′
fcAlg/k may appear in a covering family for the site Spec kperf

′

profppf ,

the restriction ξG ×k ξG → G of the group operation map (which is not pro-étale) is a

covering for the site Spec kperf
′

profppf , and that ξG ∈ kperar. In Sections 4–6, the proof of
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the above theorem will be given by checking that arguments in [Suz13, Sections 3.5 and

3.6] on Mac Lane’s resolutions may be carefully modified to work in the present setting.

Using this theorem, we can translate the duality results of [Suz13], [Suz20b], [Suz20a]

and [Suz19] in this setting. We take [Suz20b] as an example to explain this translation.

Let K be a complete discrete valuation field with ring of integer OK whose residue field

is the above k. For k′ ∈ kperar, we define a K-algebra by

K(k′) = (W (k′)⊗̂W (k)OK)⊗OK
K

(see Section 8 for more detail), which is a finite product of complete discrete valua-

tion fields with perfect residue fields. This functor K defines a premorphism of sites

π́K : SpecKfppf → Spec kperaret . Let Spec kindratproet be the ind-rational pro-étale site of k

([Suz20b, Section 2.1]). Let h̃ : Spec kperf
′

profppf → Spec kindratproet be the premorphism of sites

defined by the inclusion functor on the underlying categories. For G ∈ D(Kfppf), define

RΓ́(K,G) = Rh̃∗Lh́
∗R(π́K)∗G ∈ D(kindratproet ).

For most of the groups of interest G, the object R(π́K)∗G is “h́-acyclic”, which implies

the existence of a spectral sequence

Eij
2 = Hi

(
k′proet, H́

j(K,G)
)
=⇒ Hi+j(K(k′)fppf , G)

for any k′ ∈ kperar (where H́n = HnRΓ́) and an isomorphism

H́n(K,G)(k′) ∼= Hn(K(k′)fppf , G)

for algebraically closed field extensions k′ of k and any n. Applying the above theorem

for G = Rn(π́K)∗Gm and G = Rn(π́K)∗A for an abelian variety A/K, and comparing

with the duality result [Suz20b, Theorem 4.1.2] in the older formulation, we obtain the

following.

Theorem 1.2 (= Theorem 11.2). Let A and B be abelian varieties over K dual

to each other. Then there exists a canonical isomorphism

RΓ́(K,A)SDSD ∼→ RΓ́(K,B)SD[1]

in D(kindratproet ), where SD denotes the derived sheaf-Hom RHomkindrat
proet

( · ,Z) for Spec kindratproet .

Before stating this theorem, in Section 9, we will see that some part of its proof is

much easier to prove in this new formulation. The purpose of the mentioned section is

to clearly present how to practically use the new formulation. We will give a direct proof

of the existence of the trace morphism R(π́K)∗Gm → Z and the fact that Rn(π́K)∗G as

a functor kperar → Ab commutes with filtered direct limits that exist in kperar if G is a
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smooth group scheme over K and n ≥ 1. The proofs [Suz13, Section 2.5] and [Suz20b,

Sections 3.1 and 3.2] of the corresponding statements in the older formulation are some

exotic approximation arguments. The direct proofs we give here are based on much

more standard facts on complete discrete valuation fields.

A remark is that it seems possible to completely eliminate ind-rational k-algebras

from the formulation. The target site of h̃ : Spec kperf
′

profppf → Spec kindratproet may be likely

replaced by the category of filtered inverse limits of perfections of quasi-compact smooth

k-schemes with affine transition morphisms endowed with the pro-étale topology. But

this change would require us to redo large part of [Suz13] and [Suz20b] with this new

site and thus take many pages. We will not try doing this here.

As above, the notation is necessarily complicated in order to ensure compatibility

and provide a dictionary between the older and new formalisms. It is hoped to com-

pletely renew the notation, abandon everything old and write down proofs of the results

entirely in the new formalism some time in the future. Meanwhile, we will explain the

notation in this paper as much as possible to remedy the notational difficulties.

Acknowledgement. The author is grateful to Kazuya Kato for his encouragement

to improve the formulation towards duality for two-dimensional local rings, and to the

referee for their very thorough comments to make the paper more readable.

Notation. (This part is partially taken from [Suz19, Section 1.3, Notation].) The

categories of sets and abelian groups are denoted by Set and Ab, respectively. We

denote the ind-category of a category C by IC, the pro-category by PC, so that IPC :=

I(PC) is the ind-category of PC. All groups, group schemes and sheaves of groups are

assumed commutative. For an abelian category A, the category of complexes in A in

cohomological grading is denoted by Ch(A). If A → B is a morphism in Ch(A), then
its mapping cone is denoted by [A→ B]. The homotopy category of Ch(A) is denoted
by K(A) with derived category D(A). If we say A→ B → C is a distinguished triangle

in a triangulated category, we implicitly assume that a morphism C → A[1] to the shift

of A is given, and the triangle A→ B → C → A[1] is distinguished. For a triangulated

category D and a collection of objects I, we denote by ⟨I⟩D the smallest triangulated

full subcategory of D closed under isomorphism. For a site S, the categories of sheaves

of sets and abelian groups are denoted by Set(S) and Ab(S), respectively. We denote

Ch(S) = Ch(Ab(S)) and use the notation K(S), D(S) similarly. The Hom and sheaf-

Hom functors for Ab(S) are denoted by HomS and HomS , respectively. Their right

derived functors are denoted by ExtnS , RHomS and ExtnS , RHomS , respectively. The

tensor product functor ⊗ is over the ring Z (or, on some site, the sheaf of rings Z). Its
left derived functor is denoted by ⊗L.
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Here is the list of sites and (pre)morphisms to be defined in this paper:

Spec kperf
′

profppf
h̃→ Spec kindratproet

ε→ Spec kindratet
α→ Spec kperaret

whose composite is h́;

SpecKfppf −−−−→
j

SpecOK,fppf −−−−→
πOK

Spec kindratet∥∥∥ ∥∥∥ α

y
SpecKfppf

j−−−−→ SpecOK,fppf

π́OK−−−−→ Spec kperaret ,

where the composite of the upper (resp. lower) horizontal two morphisms is πK (resp.

π́K); and a := ε∗, á := Rh̃∗Lh́
∗.

§ 2. Generalities on Grothendieck sites

We mostly follow the terminology of [AGV72] on Grothendieck sites. See also

[Art62] and [KS06]. We do use the modified terminology given in [Suz20a, Section 2.4];

see there for more details. We need three classes of maps between sites: morphisms

of sites, premorphisms of sites and continuous maps of sites. This list is roughly in

decreasing order of strength. It is not exactly so since the notion of premorphism of

sites is meaningful only for sites defined by pretopologies (or covering families) and

it depends on the choice of the pretopologies. It is this intermediate notion that we

encounter most in practice in this paper.

First we recall the weakest notion, continuous maps of sites, and related notions.

Definition 2.1.

(a) For sites S and S′, a continuous map of sites f : S′ → S (called a continuous

functor from S to S′ in [AGV72, Exposé III, Définition 1.1]) is a functor f−1 from

the underlying category of S to that of S′ such that the right composition with f−1

(or the pushforward functor f∗) sends sheaves of sets on S
′ to sheaves of sets on S.

(b) In this case, f∗ : Set(S′)→ Set(S) and f∗ : Ab(S′)→ Ab(S) have left adjoints (the

pullback functors), which we denote by f∗set : Set(S)→ Set(S′) and f∗ : Ab(S)→
Ab(S′), respectively.

(c) If we write X ∈ S, we mean that X is an object of the underlying category of S.

(d) For X ∈ S, the localization ([AGV72, Exposé II, 5.1]) of S at X is denoted by

S/X.
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(e) The restriction ([AGV72, Exposé II, 5.3, 2)]) of F ∈ Set(S) (or ∈ Ab(S) or ∈
D(S)) to S/X is denoted by F |X .

(f) We denote by fX : S′/f−1X → S/X the continuous map of sites defined by the

restriction of f−1 on the localizations.

Next we recall morphisms of sites.

Definition 2.2. Let f : S′ → S be a continuous map of sites. If f∗set is exact

(i.e. commutes with finite inverse limits), we say that f is a morphism of sites.

In this case, f∗ and f∗set are compatible with forgetting group structures ([AGV72,

III, Proposition 1.7,4]), so we do not have to distinguish them.

The exactness of f∗set is usually too much to ask if the underlying category of S

does not have all finite inverse limits. But it is inconvenient if we make no assumption

on exactness of f∗set. Some exactness on at least representable presheaves helps much.

In this regard, the following notion, premorphisms of sites, is useful, which we recall

from [Suz20a, Section 2.4].

Definition 2.3. Let S and S′ be sites defined by pretopologies. A premorphism

of sites f : S′ → S is a functor f−1 from the underlying category of S to the underlying

category of S′ that sends covering families to covering families such that f−1(Y ×XZ)
∼→

f−1Y ×f−1X f−1Z whenever Y → X appears in a covering family.

Such a functor f−1 is called a morphism of topologies from S to S′ in [Art62,

Definition 2.4.2]. In this case, f defines a continuous map of sites f : S′ → S, and

by [Suz13, Lemma 3.7.2] and the first paragraph of [Suz13, Section 2.1], the functor

f∗ : Ab(S) → Ab(S′) admits a left derived functor Lf∗ : D(S) → D(S′), which is left

adjoint to Rf∗ : D(S′) → D(S). Be careful that the coefficient ring for sheaves here is

Z, and there is nothing analogous to the functors Lnf
∗ for n ≥ 1 if one considers only

morphisms of sites. They are not analogous to TorRn (S, · ) for a ring homomorphism

R→ S or Lng
∗ for a scheme morphism g and coherent sheaves.

Now let f : S′ → S be a continuous map of sites with underlying functor f−1 on

the underlying categories. We need a cup product morphism relative to f (assuming

nothing about exactness of f∗). The following was essentially observed in [Suz20a,

(2.5.2)] in a special case.

Proposition 2.4. There exist canonical morphisms

Rf∗RHomS′(G′, F ′)→ RHomS(Rf∗G
′, Rf∗F

′),(2.1)

Rf∗G
′ ⊗L Rf∗F

′ → Rf∗(G
′ ⊗L F ′)(2.2)

in D(S) functorial in G′, F ′ ∈ D(S′).
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Note that this type of statements is usually proved under the assumption that f is

a morphism of sites and making use of this assumption.

Proof. We construct (2.1). First, let G′, F ′ ∈ Ab(S′). The functoriality of f∗ gives

a canonical homomorphism

(2.3) HomS′/f−1X(G′|f−1X , F
′|f−1X)→ HomS/X((f∗G

′)|X , (f∗F ′)|X)

functorial in X ∈ S. Hence we have a morphism

f∗ HomS′(G′, F ′)→ HomS(f∗G
′, f∗F

′)

in Ab(S) functorial in G′, F ′ ∈ Ab(S′). This extends to a morphism in the category

of complexes Ch(S) functorial in G′, F ′ ∈ Ch(S′), where Hom is understood to be the

total complex of the sheaf-Hom double complex. This further extends to a morphism

in the homotopy category K(S) functorial in G′, F ′ ∈ K(S′). Composing with the

localization HomS → RHomS on the right-hand side, we have a morphism

f∗ HomS′(G′, F ′)→ RHomS(f∗G
′, f∗F

′)

in D(S) functorial in G′, F ′ ∈ K(S′). If F ′ is K-injective (or homotopically injec-

tive [KS06, Definition 14.1.4 (i)]), then HomS′(G′, F ′) is K-limp ([Suz20a, Section 2.4,

Proposition 2.4.1]) and hence f∗-injective by [Suz20a, Proposition 2.4.2]. Hence the

left-hand side f∗ HomS′(G′, F ′) represents Rf∗RHomS′(G′, F ′). If moreover G′ is K-

injective, then the right-hand side is isomorphic to RHomS(Rf∗G
′, Rf∗F

′). Hence we

have a morphism

Rf∗RHomS′(G′, F ′)→ RHomS(Rf∗G
′, Rf∗F

′)

in D(S) functorial in the objects G′, F ′ of the homotopy category of K-injective com-

plexes in Ab(S′). Since the homotopy category of K-injective complexes in Ab(S′) is

equivalent to D(S′) ([KS06, Corollary 14.1.12 (i)]), we have the morphism (2.1).

We construct (2.2). The morphism (2.1) gives a morphism

Rf∗RHomS′(G′, G′ ⊗L F ′)→ RHomS

(
Rf∗G

′, Rf∗(G
′ ⊗L F ′)

)
.

By the derived tensor-Hom adjunction ([KS06, Theorem 18.6.4 (vii)]), we have a mor-

phism

Rf∗G
′ ⊗L Rf∗RHomS′(G′, G′ ⊗L F ′)→ Rf∗(G

′ ⊗L F ′).

By composing it with the evaluation morphism

F ′ → RHomS′(G′, G′ ⊗L F ′),
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we obtain the morphism (2.2).

As one can see from the above proof, the key point was the part that shows

f∗ HomS′(G′, F ′) represents Rf∗RHomS′(G′, F ′) if F ′ is K-injective.

Next assume that S and S′ are sites defined by pretopologies and f : S′ → S is a

premorphism of sites. The derived pullback Lf∗ is difficult to handle in general. There

are two senses in which Lf∗ is controllable:

Definition 2.5.

(a) We say that an object F ∈ D(S) is f -compatible if the natural morphism L(f |X)∗(F |X)→
(Lf∗F )|f−1X is an isomorphism for any X ∈ S.

(b) We say that F is (weakly) f -acyclic if the natural morphism F → Rf∗Lf
∗F is an

isomorphism.

The f -compatibility is automatically true (for any F ) if f is a morphism of sites

(essentially stated in [AGV72, IV (5.10.1)]). It can fail in general; see [Suz13, Remark

3.5.2]. Also see [Suz19, Proposition 3.1 (1)] for a certain positive result. On the other

hand, the similar morphism (Rf∗F
′)|X → R(f |X)∗(F

′|f−1X) is always an isomorphism

for any F ′ ∈ D(S′). What is weak in the definition of f -acyclicity is that we do not

require each cohomology object of F to satisfy the same condition. If F → F ′ → F ′′

is a distinguished triangle in D(S) and if F and F ′ are f -compatible (resp. f -acyclic),

then so is F ′′.

Proposition 2.6. If S′′ is another site defined by a pretopology and g : S′′ → S′

a premorphism of sites. Then R(f ◦g)∗
∼→ Rf∗◦Rg∗ as D(S′′)→ D(S) and Lg∗◦Lf∗ ∼→

L(f ◦ g)∗ as D(S)→ D(S′′).

Proof. The statement about the pushforward follows from [Suz20a, Propositions

2.4.2 and 2.4.3]. This implies the other statement by adjunction.

In the next two propositions, we relate the morphism (2.1) to Lf∗.

Proposition 2.7. The morphism (2.1) after applying RΓ(X, · ) for any X ∈ S
can be canonically identified with the composite

RHomS′/f−1X(G′|f−1X , F
′|f−1X)

→ RHomS′/f−1X

(
L(f |X)∗R(f |X)∗(G

′|f−1X), F ′|f−1X

)
∼= RHomS/X

(
R(f |X)∗(G

′|f−1X), R(f |X)∗(F
′|f−1X)

)
in D(Ab), where the first morphism is induced by the counit of adjunction and the

second isomorphism is the adjunction.

□ 

□ 
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Proof. For K-injective G′, F ′ ∈ K(S′), the composite morphism in the statement

can be written as

HomS′/f−1X(G′|f−1X , F
′|f−1X)

→ HomS′/f−1X

(
(f |X)∗(f |X)∗(G

′|f−1X), F ′|f−1X

)
→ RHomS′/f−1X

(
L(f |X)∗(f |X)∗(G

′|f−1X), F ′|f−1X

)
∼= RHomS/X

(
(f |X)∗(G

′|f−1X), (f |X)∗(F
′|f−1X)

)
inD(Ab), where Hom is understood to be the total complex of the Hom double complex.

Hence it can also be written as

HomS′/f−1X(G′|f−1X , F
′|f−1X)

→ HomS′/f−1X

(
(f |X)∗(f |X)∗(G

′|f−1X), F ′|f−1X

)
∼= HomS/X

(
(f |X)∗(G

′|f−1X), (f |X)∗(F
′|f−1X)

)
→ RHomS/X

(
(f |X)∗(G

′|f−1X), (f |X)∗(F
′|f−1X)

)
.

The composite morphism from the first term to the third term can be identified with

the morphism (2.3). This implies the result.

Proposition 2.8. For G ∈ D(S) and F ′ ∈ D(S′), consider the composite

Rf∗RHomS′(Lf∗G,F ′)→ RHomS(Rf∗Lf
∗G,Rf∗F

′)→ RHomS(G,Rf∗F
′)

of the morphism (2.1) and the unit of adjunction. This is an isomorphism if G is

f -compatible.

Proof. It is enough to show that the stated morphism becomes an isomorphism in

D(Ab) when RΓ(X, · ) is applied for any X ∈ S. Let φ : L(f |X)∗(G|X)→ (Lf∗G)|f−1X

be the natural morphism, which is an isomorphism under the assumption. By the

previous proposition, the morphism after RΓ(X, · ) is given by the composite

RHomS′/f−1X

(
(Lf∗G)|f−1X , F

′|f−1X

)
→ RHomS′/f−1X

(
L(f |X)∗R(f |X)∗

(
(Lf∗G)|f−1X

)
, F ′|f−1X

)
∼= RHomS/X

(
(Rf∗Lf

∗G)|X , (Rf∗F ′)|X
)

→ RHomS/X

(
G|X , (Rf∗F ′)|X

)
of the counit of adjunction, the adjunction isomorphism and the unit of adjunction.

The morphism G|X → (Rf∗Lf
∗G)|X used in the third morphism can be written as the

composite

G|X → R(f |X)∗L(f |X)∗(G|X)→ R(f |X)∗
(
(Lf∗G)|f−1X

)

□ 
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of the unit of adjunction and the morphism φ. Hence the morphism after RΓ(X, · )
can also be written as the composite

RHomS′/f−1X

(
(Lf∗G)|f−1X , F

′|f−1X

)
→ RHomS′/f−1X

(
L(f |X)∗(G|X), F ′|f−1X

)
∼= RHomS/X

(
G|X , (Rf∗F ′)|X

)
of φ and the adjunction isomorphism since φ and the adjunction isomorphism commute

with the unit and the counit and the composite of the counit and the unit is the identity.

This composite is an isomorphism if φ is an isomorphism. Hence the result follows.

Using the above, we obtain a compatibility between Lf∗ and ⊗L under an f -

compatibility assumption:

Proposition 2.9. For any G,F ∈ D(S), consider the morphism

Lf∗(G⊗L F )→ Lf∗G⊗L Lf∗F

corresponding to the composite

G⊗L F → Rf∗Lf
∗G⊗L Rf∗Lf

∗F → Rf∗(Lf
∗G⊗L Lf∗F )

of the unit of adjunction and the morphism (2.2). This morphism is an isomorphism if

G or F is f -compatible.

Proof. We may assume that F is f -compatible. For any F ′ ∈ D(S′), we have

isomorphisms

RHomS′(Lf∗G⊗L Lf∗F, F ′)

∼= RHomS

(
G,Rf∗RHomS′(Lf∗F, F ′)

)
∼= RHomS

(
G,RHomS(F,Rf∗F

′)
)

∼= RHomS′
(
Lf∗(G⊗L F ), F ′)

in D(Ab) functorial in F ′, where the second isomorphism is given by the previous

proposition. This implies the result.

§ 3. Derived pullback from the perfect artinian étale site

In the rest of the paper, we let k be a perfect field of characteristic p > 0. We fix

our basic terminology:

□ 

□ 
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Definition 3.1.

(a) A perfect field extension of k is a field extension of k that is a perfect field.

(b) A k-scheme is said to be perfect if its (relative or absolute) Frobenius morphism is

an isomorphism.

(c) For a k-algebra (resp. a k-scheme), its perfection is the direct (resp. inverse) limit

along Frobenius morphisms on it.

See [BGA18] for a general reference on perfect schemes. In [BGA18, Section 5], the

perfection of a k-scheme is called the inverse perfection. A perfect field extension does

not have to be the perfection of a finitely generated extension of k.

Definition 3.2.

(a) Define kperar to be the category of finite products of perfect field extensions of k with

k-algebra homomorphisms.

(b) For any k′ =
∏
k′i ∈ kperar with fields k′i, define k′perar to be the category of k′-

algebras k′′ =
∏
k′′i with each factor k′′i ∈ k

′perar
i with k′-algebra homomorphisms.

Proposition 3.3. For any k′ ∈ kperar, the category k′perar is canonically equiv-

alent to the category of morphisms k′ → k′′ from k′ in kperar.

Proof. A perfect field extension of a perfect field extension is a perfect field ex-

tension. This implies the result.

A similar statement does not hold for the category of ind-rational k-algebras kindrat

(see the second paragraph after [Suz13, Definition 2.1.3]). An étale algebra over an

object of kperar is again in kperar. The tensor product k2 ⊗k1 k3 of morphisms in kperar

does not belong to kperar in general, but it does if either k2 or k3 is étale over k1. Now

we define the site Spec kperaret .

Definition 3.4.

(a) For any k′ ∈ kperar, we put the étale topology on (the opposite category of) the

category k′perar and denote the resulting site by Spec k′peraret . That is, a covering of

k′′ ∈ k′perar is a finite family of étale k′′-algebras {k′′i } such that
∏
k′′i is faithfully

flat over k′′.

(b) We denote the cohomology functor for Spec kperaret at the object k′ by Hn(k′et, · ),
with derived categorical version RΓ(k′et, · ).

□ 
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(c) We denote the sheaf-Hom functor HomSpec kperar
et

for Spec kperaret by Homkperar
et

.

As above, we are not always strictly rigorous about the distinction between the

algebra k′ and the corresponding affine scheme Spec k′ in this paper. The context

should make it clear.

The general rule to denote a site in this paper is that the upper script (such as

“perar”) denotes the type of objects of the underlying category and the lower script

(such as “et”) denotes the topology.

Proposition 3.5. For any k′ ∈ kperar, the site Spec k′perar is canonically equiv-

alent to the localization Spec kperar/k′ of the site Spec kperar at the object k′.

Proof. This follows from Proposition 3.3.

For any perfect k-scheme (resp. perfect k-group scheme) X, we denote by the same

symbol X to also mean the sheaf of sets (resp. groups) on Spec kperaret represented by X,

which is described as follows.

Proposition 3.6. Any perfect k-scheme X as a sheaf of sets on Spec kperaret is

given by the disjoint union of its points (identified with the spectra of the residue fields).

As a presheaf of sets, this disjoint union sheaf in the étale (or Zariski) topology may be

described as the filtered union of finite sets of points of X.

Proof. Any morphism Spec k′ → X from the spectrum of a perfect field extension

k′ of k factors uniquely through a point of X. If k′ ∈ kperar, then any morphism

Spec k′ → X factors uniquely through a finite set of points of X. These show the

proposition.

We recall the site Spec kperf
′

profppf defined in [Suz13, Remark 3.8.4] (which is a variant

of the site Spec kperfprofppf defined in [Suz13, Section 3.1]).

Definition 3.7.

(a) Define kperf
′
to be the category of quasi-compact quasi-separated perfect k-schemes

with k-scheme morphisms.

(b) A morphism Y → X in kperf
′
is said to be flat of finite presentation (in the perfect

sense) if it is the perfection of a k-morphism Y0 → X flat of finite presentation in

the usual sense.

(c) A morphism Y → X in kperf
′
is said to be flat of profinite presentation if it can be

written as the inverse limit lim←−Yλ → X of a filtered inverse system of morphisms

Yλ → X in kperf
′
flat of finite presentation (in the above perfect sense) with affine

transition morphisms Yµ → Yλ.

□ 

□ 
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(d) A faithfully flat morphism of (pro)finite presentation is, by definition, a flat mor-

phism of (pro)finite presentation that is surjective.

(e) We define the site Spec kperf
′

profppf to be the category kperf
′
where a covering {Xi → X}

is a finite jointly surjective family of morphisms Xi → X flat of profinite presenta-

tion.

(f) For X ∈ kperf′ , we denote the localization of Spec kperf
′

profppf at X by Xperf′

profppf .

See [Suz13, Remark 3.8.4] and [Suz13, Section 3.1] for the details about Spec kperf
′

profppf

(see also [Suz20b, Appendix A]). Restricting the objects of the underlying category to

affine schemes, we have the corresponding pro-fppf site Spec kperfprofppf of perfect affine

k-schemes. The morphism of sites Spec kperf
′

profppf → Spec kperfprofppf defined by the inclusion

functor on the underlying categories induces an equivalence on the topoi by the same

proof as [Suz20b, Proposition (A.4)]. We only use Spec kperf
′

profppf in this paper, though

[Suz13] uses Spec kperfprofppf and we use results from [Suz13].

We relate Spec kperaret to Spec kperf
′

profppf .

Definition 3.8. We denote by

h́ : Spec kperf
′

profppf → Spec kperaret

the premorphism of sites defined by the inclusion functor on the underlying categories.

In [Suz13, Section 3.5], a similar closely related premorphism Spec kperfprofppf →
Spec kindratet to the ind-rational étale site was denoted by h, though we do not technically

need h in this paper. We generally put the accent symbol ´ to distinguish objects for the

ind-rational étale site and objects for the perfect artinian étale site. We need to clearly

distinguish and compare these two sites when we cite [Suz13]. A perfect k-scheme X

viewed as a sheaf on Spec kperaret is nothing but h́∗X.

Just as h is not a morphism of sites ([Suz13, Proposition 3.2.3]), neither is h́ by the

same reason:

Proposition 3.9. The pullback h́∗set for sheaves of sets is not exact. More

explicitly, the natural morphism

h́∗set(A2
k)→ (h́∗setA1

k)
2

in Set(kperf
′

profppf) is not an isomorphism, where An
k is the perfection of affine n-space over

k.

Proof. By Proposition 3.6, the sheaf h́∗set(A2
k) is the disjoint union of points of

the k-scheme A2
k. Also, the sheaf (h́∗setA1

k)
2 is the disjoint union of the k-scheme fiber
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products x×k y, where x, y ∈ A1
k. If x = y is the generic point of A1

k, then x×k y is not

a point and hence not contained in the image of the morphism in question.

There is a certain functoriality available for h́:

Proposition 3.10. Let k′ be a perfect field extension of k. Consider the pre-

morphism h́ with k replaced by k′, and denote it by h́k′ : Spec k′perf
′

profppf → Spec k′peraret .

This agrees with the restriction h́|k′ : Spec k′perf
′

profppf → Spec kperaret /k′ of h́ under the iden-

tification given in Proposition 3.5.

Proof. Obvious.

We study the derived pullback functor Lh́∗. First, it does nothing on étale group

schemes. More precisely:

Proposition 3.11. Let G be a commutative étale group scheme over k. Con-

sider the natural morphism Lh́∗G→ h́∗G and the counit of adjunction h́∗G = h́∗h́∗G→
G. Their composite Lh́∗G → G is an isomorphism (or equivalently, Lnh́

∗G = 0 for

n ≥ 1 and h́∗G
∼→ G).

Proof. Let f : Spec kperf
′

profppf → Spec ket and g : Spec kperaret → Spec ket be the mor-

phisms of sites defined by the inclusion functors on the underlying categories. Then

f = g ◦ h́. Hence f∗ = Lh́∗g∗ by Proposition 2.6. Since G is étale over k, we have

g∗G = g∗g∗G
∼→ G and f∗G = f∗f∗G

∼→ G. Applying f∗ = Lh́∗g∗ to G, we get the

result.

Now we study Lh́∗ applied to pro-algebraic groups. Recall from the Notation part

of Section 1 that we use the symbols I and P to denote the ind-category and the pro-

category constructions, respectively.

Definition 3.12.

(a) Define Alg/k be the category of perfections of commutative algebraic groups over k

with group scheme morphisms over k.

(b) Define P′Alg/k ⊂ PAlg/k be the full subcategory consisting of extensions of perfec-

tions of abelian varieties by perfect affine group schemes.

(c) For any G ∈ P′Alg/k (or PAlg/k), its group of geometric connected components is

denoted by π0(G), which is a pro-finite-étale group scheme over k (see the paragraph

after [Suz20b, Equation (2.1.1)]).

□ 

□ 

□ 
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The category P′Alg/k was previously denoted by P′Alg′/k in [Suz13, Remark 3.8.4].

The category PAlg/k is the (abelian) category of pro-algebraic groups in the sense of

Serre [Ser60]; see the paragraph after [Suz20b, Equation (2.1.1)] for more details on

Serre’s category. Any object of P′Alg/k is representable in kperf
′
. We view P′Alg/k ⊂

Ab(kperf
′

profppf), which is an exact embedding by [Suz20b, Proposition (2.1.2) (e)].

Definition 3.13.

(a) Define P′
fcAlg/k to be the full subcategory of P′Alg/k consisting of objects G with

finite π0(G).

(b) The disjoint union of the generic points of the irreducible components of G ∈
P′
fcAlg/k is denoted by ξG ∈ kperar.

The category P′
fcAlg/k is closed under cokernel, but not under kernel and hence

not abelian. For instance, the kernel of multiplication by l ̸= p on the perfection of the

connected affine group GN
m is not finite.

Recall from [Suz20b, Proposition (2.3.4)] that the Yoneda functor induces a fully

faithful embedding from the ind-category IPAlg/k = I(PAlg/k) to Ab(kperf
′

profppf), which

itself induces a fully faithful embedding Db(IPAlg/k) ↪→ Db(kperf
′

profppf). We define a

slightly larger category than P′
fcAlg/k so that we can simultaneously treat non-finite

étale group schemes such as the discrete group scheme Z.

Definition 3.14. Define Ek to be the full subcategory of Ab(kperf
′

profppf) consisting

of objects G that can be written as an extension 0 → G′ → G → G′′ → 0, where

G′ ∈ IP′
fcAlg/k and G′′ an étale group scheme over k and the morphism G → G′′ is

surjective (not only in the pro-fppf topology but also) in the étale topology.

The category Ek contains perfections of smooth group schemes over k. As above, an

object G ∈ P′Alg/k viewed as an object of Ab(kperaret ) (or equivalently, h́∗G) is denoted

by the same symbol G. We extend this convention to G ∈ Ek, writing h́∗G simply as G.

Theorem 3.15. Let G ∈ Ek. Then the morphism Lh́∗G → G in D(kperf
′

profppf)

defined as in Proposition 3.11 is an isomorphism.

The proof of this theorem will finish at the end of Section 6.

§ 4. Review of Mac Lane’s resolution

To compute the derived pullback, we need Mac Lane’s canonical resolution of

abelian groups [ML57]. We merely provide notation for Mac Lane’s resolution and

list its properties that we will use later. For the definition itself, see [ML57]. Also see
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[Lod98, Chapter 13] for a more accessible account. What we need are summarized in

[Suz13, Section 3.4].

As one can see from the proof of Proposition 5.1 in the next section, the key point

of Mac Lane’s resolution of an abelian group G is that each term is essentially built up of

terms of the form Z[G] (the group ring of G), and not of the form Z[Z[G]],Z[Z[Z[G]]] etc.
that one typically needs for simplicial resolutions, so that the higher derived pullback

of each term by a premorphism of sites vanishes under some representability condition.

Phrased differently, Ext groups Extn(G, · ) for a sheaf of groups G on a site can be

essentially described by cohomology groups Hn(G, · ) = Extn(Z[G], · ) of G if G

satisfies some representability condition. This is important when we have an exactness

property of a relevant pullback functor only for representable presheaves (i.e. when we

have a premorphism of sites that is not a morphism of sites).

We need symbols for Mac Lane’s resolution and the related construction, the cubical

construction.

Definition 4.1.

(a) We denote the free abelian group generated by a set X by Z[X].

(b) Let G 7→ Q′(G), Q(G),M(G) be the (non-additive) functors that assign (homologi-

cally non-negatively graded) chain complexes to abelian groups G defined in [ML57,

§4, §7] (where the base ring Λ is taken to be Z).

See also [Lod98, §13.2 and E.13.2.1] for Q′ and Q. In the notation of [Lod98,

Lemma 13.2.12], M(G) is given by the two-sided bar construction B(Z, Q(Z), Q(G))

(where we and [ML57] do not assume G to be finitely generated free). We will use the

following properties.

Proposition 4.2.

(a) The n-th term Q′
n(G) of Q

′(G) for any n ≥ 0 is given by Z[G2n ].

(b) The complex Q(G) is a functorial quotient of Q′(G) by a subcomplex.

(c) For each n ≥ 0, the quotient map Q′
n(G) ↠ Qn(G) admits a functorial splitting

sn : Qn(G) ↪→ Q′
n(G) ([Lod98, Lemma 13.2.6] for example).

(d) We have a functorial homomorphismM0(G)→ G (which is given by Z[G]/Z(0G) ↠
G, (g) 7→ g), and the complex M(G) = (· · · ∂→ M1(G)

∂→ M0(G)) is a functorial

resolution of G ([ML57, Théorème 6]).

(e) As a graded abelian group forgetting the differentials, M(G) can be functorially

written as Q(G) ⊗Z B for some graded abelian group B that does not depend on G

and whose n-th term is free for any n.
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The group B is B̄(0, Q(Z), ηQ) in Mac Lane’s notation [ML57, §7, Remarque 1] and

B(Z, Q(Z),Z) as a two-sided bar construction.

We recall the splitting homotopy from the last two paragraphs of [Suz13, Section

3.4]. See also [ML57, §5, §8] (resp. the proof of [EM51, Theorem 11.2]) for the splitting

homotopy with respect to additive projections (resp. arbitrary homomorphisms).

Definition 4.3.

(a) Let φ0, φ1 : G→ H be any homomorphisms of abelian groups with sum φ = φ0+φ1

and let n ≥ 0. We view 2 = {0, 1}. Define a map V : G2n → H2n+1

by sending

(ai(1),...,i(n))0≤i(1),...,i(n)≤1 to(
φ0(ai(2),...,i(n+1)) for i(1) = 0, φ1(ai(2),...,i(n+1)) for i(1) = 1

)
0≤i(1),i(2),...,i(n+1)≤1

.

In other words, V = (φ0, φ1) : G
2n → H2n ×H2n with respect to the decomposition

2n+1 = 2× 2n.

(b) This extends to a homomorphism V : Q′
n(G)→ Q′

n+1(H), which factors through the

quotient V : Qn(G)→ Qn+1(H). Define a homomorphism V : Mn(G)→Mn+1(H)

by V ⊗ id on Q(G)⊗Z B.

(c) The homomorphisms φ0, φ1, φ induce homomorphisms φ0, φ1, φ : Q
′(G) → Q′(H)

of complexes by functoriality. We have similar homomorphisms of complexes for Q

and M . Define a homomorphism of complexes T : Q′(G)→ Q′(H) by φ0 +φ1, and

similarly T : Q(G)→ Q(H) and T : M(G)→M(H).

Note that φ ̸= φ0+φ1 for Q′, Q and M since they are non-additive functors. Here

is the key property, which says that Q′, Q and M are additive up to the homotopy V

(see the cited references above for the proof):

Proposition 4.4. We have

T − φ = ∂V + V ∂

as Q′(G)→ Q′(H), Q(G)→ Q(H) and M(G)→M(H), where ∂ denotes the differen-

tials of these complexes.

The above constructions generalize to (pre)sheaves of groups G by functoriality.

Definition 4.5. Let S be a site.

(a) For a presheaf of abelian groups G, define

ZP[G](X) = Z[G(X)], Q′
P(G)(X) = Q′(G(X)),

QP(G)(X) = Q(G(X)), MP(G)(X) =M(G(X)),

for X ∈ S.
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(b) For G ∈ Ab(S) (that is, a sheaf of abelian groups), sheafification produces corre-

sponding sheaves Z[G], Q(G), Q′(G) and M(G).

The subscript P for the presheaf constructions means “pre”. Of course T and V

extend to the (pre)sheaf setting, but we do not need this extension in this paper.

§ 5. Mac Lane’s resolution and derived pullback

We relate Mac Lane’s resolution to derived pullback functors. Let f : S′ → S be a

continuous map of sites and f−1 the underlying functor on the underlying categories.

Let G′ ∈ Ab(S′). For any X ∈ S, the X-valued points of the complexes MP(f∗G
′) and

f∗MP(G
′) (where f∗ is applied term-wise) both giveM(G′(f−1X)). HenceMP(f∗G

′) ∼=
f∗MP(G

′) as complexes of presheaves on S. With sheafification, we obtain a canonical

morphismM(f∗G
′)→ f∗M(G′) of complexes of sheaves on S. By adjunction, we obtain

a canonical morphism f∗M(f∗G
′)→M(G′) of complexes of sheaves on S′. Composing

it with the morphism M(G′)→ G′, we obtain a canonical morphism f∗M(f∗G
′)→ G′.

In other words, we have a complex

· · · → f∗M1(f∗G
′)→ f∗M0(f∗G

′)→ G′ → 0

in Ab(S′).

We can ask whether or not the complex f∗M(f∗G
′) gives a resolution of G′ in this

manner. When f is a premorphism of sites, this question is closely related to whether

the morphism Lf∗f∗G
′ → G′ in D(S′) is an isomorphism or not. To see this relation, we

need the fact that Mac Lane’s resolution calculates Lf∗ under a certain representability

condition:

Proposition 5.1. Let f : S′ → S be a premorphism of sites defined by pretopolo-

gies and G ∈ Ab(S). Assume that G as a sheaf of sets is the sheafification of a filtered

direct limit of representable presheaves. Then the natural morphism

Lf∗M(G)→ f∗M(G)

in D(S′) is an isomorphism.

Proof. The spectral sequence

Eij
1 = L−jf

∗M−i(G) =⇒ Hi+jLf∗M(G),

shows that it is enough to show Ljf
∗Mi(G) = 0 for any j ≥ 1 and i ≥ 0. Furthermore,

it is enough to show that Ljf
∗Z[G] = 0 by the structure of Mi(G) (Proposition 4.2 (a),
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(b), (c), (e)). Being a left adjoint, f∗ commutes with direct limits. Hence by [Suz13,

Lemma 3.7.2] and [KS06, Corollary 14.4.6 (ii)], we know that Ljf
∗ commutes with

filtered direct limits. Hence, by the assumption on G, the statement reduces to the fact

[Suz13, Lemma 3.7.2] that Ljf
∗Z[X] = 0 for X ∈ S.

Using this, we obtain the desired relation:

Proposition 5.2. Let f : S′ → S be a premorphism of sites defined by pre-

topologies and G′ ∈ Ab(S′). Assume that f∗G
′ as a sheaf of sets is the sheafification of

a filtered direct limit of representable presheaves. Then the morphism Lf∗f∗G
′ → G′ is

an isomorphism in D(S′) if and only if f∗M(f∗G
′) is a resolution of G′.

Proof. We have a commutative diagram

Lf∗M(f∗G
′) −−−−→ f∗M(f∗G

′) −−−−→ M(G′)y≀
y ≀

y
Lf∗f∗G

′ −−−−→ f∗f∗G
′ −−−−→ G′

in D(S′). Hence the result follows from the previous proposition.

Note that G′ = Z[X ′] for X ′ ∈ S′ does not always satisfy the assumption of the

proposition. The description of Z[X ′] as a sheaf of sets involves quotients of powers of

X ′ by some equivalence relations, which are not filtered direct limits.

To prove Theorem 3.15, the key step will be to show that h́∗M(G) is a resolution

of G ∈ P′
fcAlg/k in Ab(kperf

′

profppf), which we will do in the next section.

§ 6. Acyclicity of the pullback of Mac Lane’s resolution

Let G ∈ P′
fcAlg/k. Let L be a finitely generated free abelian group. Denote the

sheaf-Hom, Hom
kperf′
profppf

(L,G), by [L,G] ∈ P′
fcAlg/k. Let X ∈ kperf

′
and set Y =

X ×k [L,G] ∈ kperf′ . Let φ : L → G(X) be a homomorphism. Its composite with the

homomorphism G(X)→ G(Y ) induced by the first projection Y → X is still denoted by

φ. The natural evaluation homomorphism L → G([L,G]) is denoted by φ0. Therefore

φ(a) for any a ∈ L is a morphism X → G in kperf
′
and φ0(a) is a morphism [L,G]→ G

in P′
fcAlg/k. The composite of φ0 with the homomorphism G([L,G])→ G(Y ) induced

by the second projection Y → [L,G] is still denoted by φ0. Set φ1 = φ−φ0 : L→ G(Y ).

Since G ∈ P′
fcAlg/k is faithfully flat of profinite presentation over k, the scheme Y is

faithfully flat of profinite presentation over X. We recall the following fact from [Suz13,

Lemma 3.6.2] to create sufficiently many pro-fppf covers of X:

□ 

□ 
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Proposition 6.1. Let Zi → Y be morphisms in kperf
′
, i = 1, . . . , n, and let

Z = Z1 ×Y · · · ×Y Zn. Assume the following conditions for each i:

• Zi → Y is flat of profinite presentation,

• the morphism (Zi)x → Yx on the fiber over any point x ∈ X is dominant.

Then Z also satisfies these two conditions. In particular, Z/X is faithfully flat of

profinite presentation.

Proof. This follows from the fact that a flat base change of a dominant morphism

is dominant.

Recall that h́ is not a morphism of sites (Proposition 3.9). We note the structures

of h́∗setP G and h́∗PZP[G].

Proposition 6.2. Let h́∗P (resp. h́∗setP ) be the pullback functors for presheaves of

abelian groups (resp. sets) by h́.

(a) The presheaf h́∗setP G on Spec kperf
′

profppf is the filtered union of finite sets of points of

G, which is a subpresheaf of G.

(b) The presheaf h́∗PZP[G] on Spec kperf
′

profppf is the filtered union of ZP[x] over the finite

sets of points x of G, which is a subpresheaf of ZP[G].

Proof. This follows from Proposition 3.6.

The following proposition and its proof are a variant of [Suz13, Lemma 3.6.3], with

the ind-rational étale site replaced by the perfect artinian étale site. The proposition

allows us to pro-fppf locally “generify” sections of G (and G2).

Proposition 6.3. Let a ∈ L.

(a) There exist a scheme Z ∈ kperf
′
and a k-morphism Z → Y satisfying the two

conditions of Proposition 6.1 such that the natural images φ0(a), φ1(a) ∈ G(Z) are
contained in the subset (h́∗setP G)(Z).

(b) If φ(a) ∈ G(X) is contained in (h́∗setP G)(X), then Z can be taken so that the natural

image (φ0(a), φ1(a)) ∈ G2(Z) is contained in (h́∗setP (G2))(Z).

Proof. (a) The element φ0(a) gives a morphism [L,G] → G in P′
fcAlg/k, whose

image Im(φ0(a)) is again in P′
fcAlg/k. Hence its generic point ξIm(φ0(a)) is an object of

□ 

□ 
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kperar (Definition 3.13). Consider the following commutative diagram in kperf
′
with a

cartesian square:

φ0(a)
−1(ξIm(φ0(a))) −−−−→

φ0(a)
ξIm(φ0(a))yincl incl

y
[L,G]

φ0(a)−−−−→ Im(φ0(a))
incl−−−−→ G,

The bottom arrow in the square is faithfully flat of profinite presentation since it is a

surjection of pro-algebraic groups. The right arrow is dominant flat of profinite pre-

sentation. Hence the left arrow is dominant flat of profinite presentation. We define

Z1 = X ×k φ0(a)
−1(ξIm(φ0(a))). Then the natural morphism Z1 → Y satisfies the

two conditions in Proposition 6.1 by the same reasoning as the proof of Proposition

6.1. The natural image φ0(a) ∈ G(Z1) is a morphism Z1 → G that factors through

ξIm(φ0(a)) ⊂ h́∗setP G (Proposition 6.2). Hence φ0(a) ∈ (h́∗setP G)(Z1).

The morphism φ : L → G(X) defines a morphism φ̃ : X → [L,G]. We have an

automorphism of the X-scheme Y = X ×k [L,G] given by (x, ψ) ↔ (x, φ̃(x) − ψ).

The composite of this with the morphism φ0(a) : Y → G is φ(a) − φ0(a) = φ1(a).

We define Z2 → Y to be the inverse image of the morphism Z1 → Y by this X-

automorphism of Y . Then we have φ1(a) ∈ (h́∗setP G)(Z2) by the previous paragraph

and Z2 satisfies the two conditions of Proposition 6.1. We define Z = Z1 ×Y Z2. Then

we have φ0(a), φ1(a) ∈ (h́∗setP G)(Z) and Z satisfies the two conditions of Proposition

6.1.

(b) Assume that φ(a) ∈ (h́∗setP G)(X). Consider the automorphism (b, c)↔ (b+c, b)

of the group G2, which maps (φ0(a), φ1(a)) to (φ(a), φ0(a)). Hence it is enough to

show that we can take Z so that (φ(a), φ0(a)) ∈ (h́∗setP (G2))(Z). The image Im(φ(a))

of φ(a) : X → h́∗setP G ⊂ G is an object of kperar (Proposition 6.2). We have a faithfully

flat morphism φ(a) : X ↠ Im(φ(a)) of profinite presentation. Define W = Im(φ(a))×k

Im(φ0(a)), which is the finite disjoint union of the fibersWk′ ∈ P′
fcAlg/k′ over the points

Spec k′ of Im(φ(a)). In particular, its generic point ξW is an object of kperar. We have

a faithfully flat morphism (φ(a), φ0(a)) : X ×k [L,G] ↠ W of profinite presentation.

Consider the following commutative diagram with a cartesian square:

(φ(a), φ0(a))
−1(ξW ) −−−−−−−−→

(φ(a),φ0(a))
ξWyincl incl

y
X ×k [L,G]

(φ(a),φ0(a))−−−−−−−−→ W
incl−−−−→ G2

We define Z = (φ(a), φ0(a))
−1(ξW ). Then (φ(a), φ0(a)) ∈ (h́∗setP (G2))(Z) by the same

argument as above. The square in the above diagram can be split into the following
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two cartesian squares:

Z −−−−→ X ×Im(φ(a)) ξW −−−−→
proj2

ξWyincl

yincl incl

y
Y

(id,φ0(a))−−−−−−→ X ×k Im(φ0(a))
(φ(a),id)−−−−−−→ W

The bottom two arrows are faithfully flat of profinite presentation. The third vertical

arrow is dominant flat of profinite presentation. By pulling back the left square by a

point of X, we see that the morphism Z → Y satisfies the two conditions of Proposition

6.1.

The above proposition extends to Z[G] and Z[G2] in the following manner.

Proposition 6.4. Let t ∈ Z[L].

(a) There exist a scheme Z ∈ kperf
′
and a k-morphism Z → Y satisfying the two

conditions of Proposition 6.1 such that the natural images φ0(t), φ1(t) ∈ Z[G(Z)] =
ZP[G](Z) are contained in the subgroup (h́∗PZP[G])(Z).

(b) If φ(t) ∈ Z[G(X)] is contained in (h́∗PZP[G])(X), then Z can be taken so that the

natural image (φ0, φ1)(t) ∈ Z[G2(Z)] is contained in (h́∗PZP[G
2])(Z).

Proof. Write t =
∑n

i=1mi(ai), mi ∈ Z, ai ∈ L, where (ai) is the image of ai in

Z[L]. For any i, take Zi corresponding to ai ∈ L given in the previous proposition (a).

Then φ0(ai), φ1(ai) ∈ ZP[h́
∗set
P G](Zi) = (h́∗PZP[G])(Zi). Let Z = Z1×Y · · ·×Y Zn. Then

Z/X is faithfully flat of profinite presentation by Proposition 6.1, and we have φ0(t) =∑
miφ0(ai) ∈ (h́∗PZP[G])(Z) and similarly φ1(t) ∈ (h́∗PZP[G])(Z). The statement for

(φ0, φ1)(t) =
∑
mi(φ0(ai), φ1(ai)) is similar, using the previous proposition (b).

Now we consider the homomorphisms V : Q′
n(L)→ Q′

n+1(G(Y )) and T : Q′
n(L)→

Q′
n(G(Y )) corresponding to φ0, φ1 : L→ G(Y ) as defined in Definition 4.3, and similar

morphisms for Q and M . The above proposition on Z[ · ] extends to Q′, Q,M using the

homomorphisms T and V :

Proposition 6.5. Let F be one of the functors Q′, Q or M . Let n ≥ 0 and

t ∈ Fn(L).

(a) There exist a scheme Z ∈ kperf′ and a k-morphism Z → Y satisfying the two condi-

tions of Proposition 6.1 such that the natural image T (t) ∈ Fn(G(Z)) = FP,n(G)(Z)

is contained in the subgroup (h́∗PFP,n(G))(Z).

(b) If φ(t) ∈ Fn(G(X)) is contained in (h́∗PFP,n(G))(X), then Z can be taken so that

the natural image V (t) ∈ Fn+1(G(Z)) is contained in (h́∗PFP,n+1(G))(Z).

□ 

□ 
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Proof. First, let F = Q′, so Fn = Z[( · )2n ] (Proposition 4.2 (a)). Then t ∈ Z[L2n ].

Applying the previous proposition to L2n and G2n instead of L and G, we know that

φ0(t), φ1(t) ∈ Z[G2n(Z)] = ZP[G
2n ](Z) are contained in (h́∗PZP[G

2n ])(Z). So is their

sum T (t). If φ(t) ∈ Z[G2n(X)] is contained in (h́∗PZP[G
2n ])(X), then the same method

shows that Z can be taken so that the natural image (φ0, φ1)(t) = V (t) ∈ Z[G2n+1

(Z)]

is contained in (h́∗PZP[G
2n+1

])(Z).

Next let F = Q. Let sn : Qn ↪→ Q′
n be the section to the quotient Q′

n ↠ Qn as

in Proposition 4.2 (c). The case of Q′ above applied to sn(t) ∈ Q′
n(L) gives a scheme

Z ∈ kperf
′
and a k-morphism Z → Y satisfying the two conditions of Proposition

6.1 such that the natural image T (sn(t)) ∈ Q′
n(G(Z)) = Q′

P,n(G)(Z) is contained in

(h́∗PQ
′
P,n(G))(Z). Taking the quotient, we know that T (t) ∈ Qn(G(Z)) = QP,n(G)(Z)

is contained in (h́∗PQP,n(G))(Z). If φ(t) ∈ Qn(G(X)) is contained in (h́∗PQP,n(G))(X),

then sn(φ(t)) = φ(sn(t)) ∈ Q′
n(G(X)) is contained in (h́∗PQ

′
P,n(G))(X). Hence the case

of Q′ implies that Z can be taken so that the natural image V (sn(t)) ∈ Q′
n+1(G(Z)) is

contained in (h́∗PQ
′
P,n+1(G))(Z). Thus V (t) ∈ Qn+1(G(Z)) is contained in (h́∗PQP,n+1(G))(Z).

Finally, let F = M . For each m ≥ 0, take a basis Jm of the free abelian group

Bm (Proposition 4.2 (e)) and write Bm ∼= Z
⊕

Jm . Then Mn
∼=

⊕
mQ

⊕
Jn−m

m since

M = Q ⊗Z B as graded abelian groups. In this decomposition, T and V on Mn are

given by the term-wise applications of T and V on the Qm. Hence the case of F = Q

implies the case of F =M .

Proposition 6.6. The complex h́∗M(G) in Ab(kperf
′

profppf) is a resolution of G.

Proof. We know that h́∗M(G) is the pro-fppf sheafification of h́∗PMP(G). We want

to show that the complex

· · · → h́∗MP,1(G)→ h́∗MP,0(G)→ G→ 0

in Ab(kperf
′

profppf) sheafifies to an acyclic complex. Let n ≥ −1 and X ∈ kperf
′
. Let

u ∈ (h́∗PMP,n(G))(X) with ∂u = 0 if n ≥ 1; u ∈ (h́∗PMP,0(G))(X) whose natural image

in G(X) is zero if n = 0; and u ∈ G(X) if n = −1. Since M(G(X)) is a resolution of

G(X), there exists an element u′ ∈ Mn+1(G(X)) such that: ∂u′ = u if n ≥ 0; and the

natural image of u′ in G(X) is u if n = −1. Take a finitely generated free abelian group

L, a homomorphism φ : L→ G(X) and an element t′ ∈Mn+1(L) such that φ(t′) = u′.

Then φ(∂t′) = u, where ∂t′ in the case n = −1 is understood to be the natural image

of t′ in L. Applying the previous proposition (a) to t′ and (b) to ∂t′, we know that

there exist a scheme Z ∈ kperf′ and a k-morphism Z → Y satisfying the two conditions

of Proposition 6.1 such that T (t′) ∈ Mn+1(G(Z)) = MP,n+1(G)(Z) is contained in

(h́∗PMP,n(G))(Z) and V (∂t′) ∈ Mn+1(G(Z)) is contained in (h́∗PMP,n+1(G))(Z). We

have T (t′)− φ(t′) = ∂(V (t′)) + V (∂(t′)) in Mn+1(G(Z)). Hence u = ∂(T (t′)− V (∂t′))

□ 
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if n ≥ 0 and u is the image of T (t′)− V (∂t′) in G(Z) if n = −1. Since T (t′)− V (∂t′) ∈
(h́∗PMP,n+1(G))(Z) and Z/X faithfully flat of profinite presentation, this proves the

result.

Now we prove Theorem 3.15.

Proof of Theorem 3.15. Write G ∈ Ek as an extension 0 → G′ → G → G′′ → 0

as in Definition 3.14. Since G→ G′′ is surjective in the étale topology, this short exact

sequence remains exact in Ab(kperaret ) (after applying h́∗). Therefore we may assume that

G ∈ IP′
fcAlg/k by Proposition 3.11. The functor Lnh́

∗ for any n commutes with filtered

direct limits as we saw in the proof of Proposition 5.1. Hence we may furthermore

assume that G ∈ P′
fcAlg/k. We know that h́∗G as a sheaf of sets on Spec kperaret is the

filtered union of finite sets of points of G by Proposition 3.6. Hence we may apply

Proposition 5.2 to G. This implies, by the previous proposition, that Lh́∗G
∼→ G in

D(kperf
′

profppf). This proves the theorem.

§ 7. Consequences of the derived pullback theorem

Theorem 3.15 together with the following finishes the proof of Theorem 1.1.

Proposition 7.1. The functor Ek → Ab(kperaret ) given by restriction of h́∗ is

fully faithful.

Proof. Let G,H ∈ Ek. We have h́∗G ∼= G by Theorem 3.15. As we are denoting

h́∗H as H, we have

Homkperar
et

(G,H) ∼= Hom
kperf′
profppf

(h́∗G,H) ∼= Hom
kperf′
profppf

(G,H).

We frequently identify Ek with its image in Ab(kperaret ). The functor Lh́∗ behaves

well on Ek:

Proposition 7.2. Any object of the triangulated subcategory ⟨Ek⟩D(kperar
et ) of D(kperaret )

generated by Ek (see the notation section in Section 1) is h́-compatible.

Proof. By Definition 2.5, the statement means that for G ∈ Ek, the morphism

L(h́|k′)∗(G|k′) → (Lh́∗G)|k′ is an isomorphism for any k′ ∈ kperar. To show this, we

may assume that G ∈ P′
fcAlg/k and k′ is a field. The restriction G|k′ ∈ Ab(k′perar) is

represented by the scheme-theoretic fiber product G ×k k
′. The restriction h́|k′ is the

premorphism h́ with k replaced by k′ by Proposition 3.10. Therefore the result follows

from Theorem 3.15 for G over k and G×k k
′ over k′.

□ 

□ 

□ 

□ 
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Theorem 3.15 and Proposition 7.1 are about a single object G ∈ Ek. In practice,

we need to treat an object of ⟨Ek⟩D(kperar
et ). Then the corresponding statements are

slightly tricky to state since the expression “Lh́∗G
∼→ G” for G ∈ ⟨Ek⟩D(kperar

et ) does not

literally make sense (the both sides live in different categories). Also, the most practical

category is the full subcategory of Db(kperaret ) of objects with cohomologies in Ek, which
is an additive subcategory of ⟨Ek⟩D(kperar

et ) but is not triangulated. With these in mind,

we have the following version of Theorem 3.15 and Proposition 7.1 for these categories.

Proposition 7.3.

(a) The functor Lh́∗ : D(kperaret )→ D(kperf
′

profppf) maps the subcategory ⟨Ek⟩D(kperar
et ) to the

subcategory ⟨Ek⟩D(kperf′
profppf )

.

(b) For any G ∈ Db(kperaret ) whose cohomologies are in Ek, the spectral sequence

Eij
2 = L−ih́

∗Hj(G) =⇒ Hi+j(Lh́∗G)

has zero terms for all i ̸= 0, and hence induces an isomorphism

Hn(G) ∼= Hn(Lh́∗G)

in Ek for all n.

Proof. The first statement follows from the second, which itself follows from The-

orem 3.15.

The above does not claim that ⟨Ek⟩D(kperar
et ) and ⟨Ek⟩D(kperf′

profppf )
are equivalent via

Lh́∗. The best we can say is the above somewhat clumsy statement.

We recall the ind-rational étale site Spec kindratet and the ind-rational pro-étale site

Spec kindratproet from [Suz13, Definition 2.1.3] and [Suz20b, Section 2.1].

Definition 7.4.

(a) Define krat to be the category of finite products of perfections of finitely generated

field extensions of k with k-algebra homomorphisms.

(b) Define kindrat to be its ind-category, whose objects may be identified with k-algebras

that is a filtered union of rational k-subalgebras.

(c) An étale covering of k′ ∈ kindrat is a finite family {k′i} of étale k′-algebras (nec-

essarily in kindrat; [Suz13, Proposition 2.1.2]) such that
∏
k′i is faithfully flat over

k′.

(d) Define the site Spec kindratet to be the category kindrat with this class of coverings.

□ 
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(e) A pro-étale covering of k′ ∈ kindrat is a finite family {k′i} of k′-algebras such that

each k′i is a filtered direct limit of étale k′-algebras and
∏
k′i is faithfully flat over

k′.

(f) Define the site Spec kindratproet to be the category kindrat with this class of coverings.

(g) The cohomology functor for Spec kindratproet at the object k′ ∈ kindrat is denoted by

Hn(k′proet, · ), with derived categorical version RΓ(k′proet, · ).

An object of krat is the perfection of the ring of rational functions on a not-

necessarily-irreducible variety over k, whence “rat”. These sites are related to Spec kperaret

and Spec kperf
′

profppf by premorphisms of sites:

Definition 7.5. Define

Spec kperf
′

profppf
h̃→ Spec kindratproet

ε→ Spec kindratet
α→ Spec kperaret

to be the premorphisms of sites defined by the inclusion functors on the underlying

categories. Note that their composite is h́.

The composite ε◦ h̃ was denoted by h in [Suz13, §3.5]. (To be precise, this reference

used the affine version Spec kperfprofppf of Spec kperf
′

profppf .) All the three premorphisms h, h́

and h̃ are defined on Spec kperf
′

profppf (or Spec k
perf
profppf), and their primary usages are roughly

the same: to pin down pro-algebraic groups by perfect-field-valued points. The target

sites are different, though.

The premorphism ε is a morphism of sites, which is the change-of-topology mor-

phism on the category kindrat between pro-étale and étale, so that ε∗ is the pro-étale

sheafification functor. The premorphism α is a change-of-category premorphism, whose

pushforward (but not pullback) functor is exact. (The choice of the letter ε comes

from the fact that some references use ε to denote a change-of-topology morphism,

such as [BK86, paragraph before Theorem (6.7)] between étale and Zariski. On the

other hand, there might not exist a common convention for the choice of letters for

change-of-category premorphisms such as the above α.)

There are analogues of Theorem 3.15 and Proposition 7.1 for h̃ : Spec kperf
′

profppf →
Spec kindratproet , basically proved in [Suz13] and [Suz20b]:

Proposition 7.6. Let Ẽk be the full subcategory of Ab(kperf
′

profppf) consisting of

extensions of étale group schemes by objects of IP′Alg/k. For any G ∈ Ẽk, denote its

image by h̃∗ by the same symbol G.

(a) G
∼→ Rh̃∗G and Lh̃∗G

∼→ G.

(b) h̃∗ maps Ẽk and Ek fully faithfully onto their essential images.
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(c) Rh̃∗ gives an equivalence from ⟨Ẽk⟩D(kperf′
profppf )

to ⟨Ẽk⟩D(kindrat
proet ) and an equivalence

from ⟨Ek⟩D(kperf′
profppf )

to ⟨Ek⟩D(kindrat
proet ).

Proof. The isomorphism G
∼→ Rh̃∗G follows from [Suz20b, Proposition (2.1.2)

(c) and (g)]. We show Lh̃∗G
∼→ G. The case G ∈ P′Alg/k follows from [Suz13,

Proposition 3.7.3 and Remark 3.8.4] (see also [Suz20b, Appendix A]). This implies the

case G ∈ IP′Alg/k since Lnh̃
∗ commutes with filtered direct limits as we saw in the

proof of Proposition 5.1. The case G is an étale group scheme can be proven similarly

to Proposition 3.11. These imply the general case.

We bring objects from D(kperf
′

profppf) to D(kindratproet ).

Definition 7.7. We define á = Rh̃∗Lh́
∗ : D(kperaret )→ D(kindratproet ).

We think of this as an analogue of the pro-étale sheafification functor ε∗. We

will denote the latter functor ε∗ by a in Definition 10.1 below, since it is the usual

notation [AGV72, II, Définition 3.5] for the sheafification or “associated sheaf” functor.

Sheafification commutes with (derived) tensor products. For á, we still have a cup

product morphism under an h́-compatibility assumption:

Proposition 7.8. For any F, F ′ ∈ D(kperaret ) such that F is h́-compatible, we

have a canonical morphism

á(F )⊗L á(F ′)→ á(F ⊗L F ′)

in D(kindratproet ) functorial in F and F ′.

Proof. By Propositions 2.4 and 2.9, we have canonical morphisms

Rh̃∗Lh́
∗F ⊗L Rh̃∗Lh́

∗F ′ → Rh̃∗(Lh́
∗F ⊗L Lh́∗F ′)← Rh̃∗Lh́

∗(F ⊗L F ′),

the latter of which is an isomorphism since F is h́-compatible. This gives the desired

morphism.

We bring Proposition 7.6 to D(kindratproet ):

Proposition 7.9.

(a) The functor á : D(kperaret ) → D(kindratproet ) maps the subcategory ⟨Ek⟩D(kperar
et ) to the

subcategory ⟨Ek⟩D(kindrat
proet ).

(b) For any G ∈ Db(kperaret ) whose cohomologies are in Ek, we have a canonical isomor-

phism

Hn(G) ∼= Hn(á(G))

in Ek for all n.

□ 

□ 
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Proof. This follows from Propositions 7.3 and 7.6.

The presence of Lh́∗ in the definition of á makes it difficult to calculate derived

sections RΓ(k′proet, á( · )) of objects á( · ) over each k′ ∈ kindrat. The situation is better

under an h́-acyclicity assumption; see the proof of Proposition 8.5 below. Here are

criteria of h́-acyclicity:

Proposition 7.10.

(a) If {Fλ} is a filtered direct system in Ab(kperaret ) consisting of h́-acyclic objects, then

its direct limit is h́-acyclic.

(b) If G ∈ P′Alg/k can be written as lim←−n
Gn with Gn ∈ Alg/k such that the transition

morphisms Gn+1 → Gn are surjective with connected unipotent kernel, then G as

an object of D(kperaret ) is h́-acyclic.

Proof. The first statement follows from the fact that Lnh́
∗ commutes with filtered

direct limits and Rnh́∗ also commutes with filtered direct limits by [Suz20b, Proposition

(2.2.4) (b)]. For the second statement, the assumption implies that G ∈ P′
fcAlg/k,

hence Lh́∗G ∼= G by Theorem 3.15. By Proposition 7.6 (a), we have Rh̃∗G ∼= G.

Since Rh́∗ = α∗Rε∗Rh̃∗, we have Rh́∗Lh́
∗G ∼= α∗Rε∗G. Hence it is enough to show

that RΓ(k′et, G)
∼→ RΓ(k′proet, G) for any perfect field extension k′ over k. This can be

proven in the same way as [Suz20b, Proposition (2.4.2) (b)] (or is reduced to it).

§ 8. A duality formalism for local fields

Let K be a complete discrete valuation field with perfect residue field k of charac-

teristic p > 0. Denote its ring of integers by OK and maximal ideal by pK . If K has

mixed characteristic, then OK is a finite free W (k)-algebra. If K has equal characteris-

tic, then OK is a pro-finite-length k-algebra, and hence a pro-finite-lengthW (k)-algebra

via the reduction map W (k) ↠ k. As in [Suz13, §2.3], we make the following definition.

Definition 8.1. For k′ ∈ kperar, we define

OK(k′) =W (k′) ⊗̂W (k) OK = lim←−
n

(
Wn(k

′) ⊗̂Wn(k) OK/p
n
K

)
,

K(k′) = OK(k′)⊗OK K.

The functors k′ 7→ OK(k′) and K(k′) commute with finite products, taking values

in the categories ofOK-algebras and ofK-algebras, respectively. If k′ has only one direct

factor (hence a perfect field extension of k), thenOK(k′) is a complete discrete valuation

ring with maximal ideal pKOK(k′) and residue field k′, and K(k′) is its fraction field.

We consider the fppf sites of OK and K. To be precise:

□ 

□ 
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Definition 8.2.

(a) Define SpecOK,fppf (resp. SpecKfppf) to be the category of OK-algebras (resp. K-

algebras) endowed with the fppf topology.

(b) The sheaf-Hom functor for SpecOK,fppf (resp. SpecKfppf) is denoted by HomOK

(resp. HomK).

We have the following “structure morphisms of OK and K over k”:

Proposition 8.3.

(a) The functors OK , K define premorphisms of sites

π́OK
: SpecOK,fppf → Spec kperaret , π́K : SpecKfppf → Spec kperaret ,

respectively.

(b) We have π́K = π́OK ◦ j, where j : SpecKfppf ↪→ SpecOK,fppf is the morphism

induced by the inclusion j : SpecK ↪→ SpecOK .

Proof. Coverings in Spec kperar are finite extensions of perfect field extensions of k

up to finite products. Let k′′/k′ be a finite extension of perfect field extensions of k. Let

f(x) be the minimal polynomial of a generator of k′′/k′. ThenW (k′′) ∼=W (k′)[x]/(f̃(x))

by [Ser79, I, §6, Corollaries to Proposition 15; II, §5, Theorem 3], which is finite free

étale over W (k′), where f̃(x) is any lift of f(x). Taking the completed tensor product

with OK , we know that OK(k′′)/OK(k′) is a finite free étale covering and hence an

fppf covering. Therefore OK preserves covering families. For any other perfect field

extension k′′′ of k′, the tensor product k′′ ⊗k′ k′′′ is a finite product of finite extensions

of k′′′. Hence W (k′′) ⊗W (k′) W (k′′′) is isomorphic to W (k′′ ⊗k′ k′′′). This implies

that OK(k′′)⊗OK(k′)OK(k′′′) is isomorphic to O(k′′⊗k′ k′′′). This shows that π́OK is a

premorphism of sites. We have π́K = π́OK
◦j obviously. Hence π́K is also a premorphism

of sites.

We will define “cohomology of OK and K with an additional structure as a complex

of sheaves on Spec kindratproet ” using Spec k
perar
et . We will use the very general theorem [KS06,

Theorem 14.3.1 (vi)] on existence of derived functors in Grothendieck categories.

Definition 8.4.

(a) Define

RΓ́(OK , · ) := á ◦Rπ́OK ,∗ : D(OK,fppf)→ D(kindratproet ),

RΓ́(K, · ) := á ◦Rπ́K,∗ : D(Kfppf)→ D(kindratproet ),

where π́OK ,∗ = (π́OK
)∗ and π́K,∗ = (π́K)∗.

□ 
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(b) Define

π́x,∗ = [π́OK ,∗ → π́K,∗j
∗][−1] : Ch(OK,fppf)→ Ch(kperaret ),

where [ · ] denotes the mapping cone. We have its right derived functor

Rπ́x,∗ : D(OK,fppf)→ D(kperaret ),

Define

RΓ́x(OK , · ) := á ◦Rπ́x,∗ : D(OK,fppf)→ D(kindratproet ).

(c) We denote H́n(OK , · ) = HnRΓ́(OK , · ) and use the similar notation H́n
x(OK , · ),

H́n(K, · ).

The subscript x is meant to be the closed subscheme Spec k ⊂ SpecOK , soRΓ́x(OK , · )
is the “cohomology of SpecOK with support on x”. The restriction functor j∗ as above

will be frequently omitted by abuse of notation. By definition, we have a canonical

distinguished triangle

(8.1) RΓ́x(OK , F )→ RΓ́(OK , F )→ RΓ́(K,F )

in D(kindratproet ) functorial in F ∈ D(OK,fppf), which we call the localization triangle.

To understand these cohomology functors, we need to know their (derived) sections.

Under suitable h́-acyclicity assumptions, this is given as follows.

Proposition 8.5.

(a) Let G ∈ D(OK,fppf). Assume that Rπ́OK ,∗G is h́-acyclic. Then there exists a

canonical isomorphism

RΓ
(
k′proet, RΓ́(OK , G)

) ∼= RΓ(OK(k′)fppf , G)

in D(Ab) for any k′ ∈ kperar. In particular, if G is bounded below, then we have a

spectral sequence

Eij
2 = Hi

(
k′proet, H́

j(OK , G)
)
=⇒ Hi+j(OK(k′)fppf , G),

and if moreover k′ is an algebraically closed field, then we have an isomorphism

H́n(OK , G)(k
′) ∼= Hn(OK(k′)fppf , G)

for any n.

(b) A similar statement to (a) holds with OK and OK replaced by K and K, respectively.
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(c) Let G ∈ D(OK,fppf). Assume that Rπ́OK ,∗G and Rπ́K,∗j
∗G are both h́-acyclic.

Then there exists a canonical isomorphism

RΓ
(
k′proet, RΓ́x(OK , G)

) ∼= RΓx(OK(k′)fppf , G)

in D(Ab) for any k′ ∈ kperar (where the right-hand side is the usual fppf cohomology

with support on the closed subscheme Spec k′ ⊂ SpecOK(k′)). In particular, if G

is bounded below, then we have a spectral sequence

Eij
2 = Hi

(
k′proet, H́

j
x(OK , G)

)
=⇒ Hi+j

x (OK(k′)fppf , G),

and if moreover k′ is an algebraically closed field, then we have an isomorphism

H́n
x(OK , G)(k

′) ∼= Hn
x (OK(k′)fppf , G)

for any n.

Proof. For (a), since Rπ́OK ,∗G is h́-acyclic, we have

Rπ́OK ,∗G
∼→ Rh́∗Lh́

∗Rπ́OK ,∗G ∼= α∗Rε∗á(Rπ́OK ,∗G) = α∗Rε∗RΓ́(OK , G).

Taking RΓ(k′et, · ), we get the result, noting that an algebraically closed field is w-

contractible [BS15, Definition 2.4.1] (see also the proof of [Suz20a, Proposition 2.5.2]).

Assertion (b) can be proven similarly. Assertion (c) follows from (a) and (b).

These cohomology functors support a cup product formalism:

Proposition 8.6.

(a) There exists a canonical morphism

RΓ́(K,G)⊗L RΓ́(K,G′)→ RΓ́(K,G⊗L G′)

in D(kindratproet ) functorial in G,G
′ ∈ D(Kfppf) such that Rπ́K,∗G is h́-compatible.

(b) There exists a canonical morphism

RΓ́(OK , G)⊗L RΓ́x(OK , G
′)→ RΓ́x(OK , G⊗L G′)

in D(kindratproet ) functorial in G,G
′ ∈ D(OK,fppf) such that Rπ́OK ,∗G is h́-compatible.

Proof. (a) This follows from Proposition 2.4 applied to π́K and Proposition 7.8.

(b) It is enough to construct a canonical morphism

Rπ́OK ,∗G⊗L Rπ́x,∗G
′ → Rπ́x,∗(G⊗L G′)

□ 
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in D(kperaret ) functorial in (arbitrary) G,G′ ∈ D(OK,fppf). By the same method as

the construction of the morphism (2.2) of Proposition 2.4, it is enough to construct a

canonical morphism

Rπ́x,∗RHomOK
(G,G′′)→ RHomkperar

et

(
Rπ́OK ,∗G,Rπ́x,∗G

′′)
in D(kperaret ) functorial in G,G′′ ∈ D(OK,fppf). By the same method as the construction

of the morphism (2.1) of Proposition 2.4, it is enough to construct a canonical morphism

π́x,∗ HomOK
(G,G′′)→ Homkperar

et

(
π́OK ,∗G, π́x,∗G

′′)
in Ch(kperaret ) functorial in G,G′′ ∈ Ch(OK,fppf). The construction is given by applying

the functoriality of mapping fibers to the commutative diagram

π́OK ,∗ HomOK
(G,G′′) −−−−→ Homkperar

et

(
π́OK ,∗G, π́OK ,∗G

′′)y y
π́K,∗j

∗ HomOK
(G,G′′) −−−−→ Homkperar

et

(
π́OK ,∗G, π́K,∗j

∗G′′)
in Ch(kperaret ).

The next proposition shows how the above cup product morphisms for OK and K

are compatible to each other. It is a version of [Suz20b, Proposition (3.3.7)] for RΓ́. This

type of compatibility is important in applications in order to deduce a duality result

for K from that of OK ([Suz20b, Proposition (5.2.2.2)] for example) and, conversely

in some cases, a duality result for OK from that of K ([Suz20a, Proposition 2.5.4] for

example).

Proposition 8.7. Let G,F ∈ D(OK,fppf). To simplify the notation, we denote

[ · , · ]OK
= RHomOK

, [ · , · ]K = RHomK , [ · , · ]k = RHomkindrat
proet

,

RΓ́x = RΓ́x(OK , · ), RΓ́OK
= RΓ́(OK , · ), RΓ́K = RΓ́(K, · ).

Then we have a morphism of distinguished triangles

RΓ́x[G,F ]OK −−−−→ RΓ́OK [G,F ]OK −−−−→ RΓ́K [G,F ]Ky y y
[RΓ́OKG,RΓ́xF ]k −−−−→ [RΓ́xG,RΓ́xF ]k −−−−→ [RΓ́KG,RΓ́xF ]k[1]

in D(kindratproet ), where the horizontal triangles are the localization triangles (8.1), the left

two vertical morphisms are the morphism in Proposition 8.6 (b) translated by the derived

tensor-Hom adjunction, and the right vertical morphism is the morphism in Proposition

8.6 (a) translated similarly composed with the connecting morphism RΓ́KF → RΓ́xF [1]

of the localization triangle.

□ 
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Note that there is a hidden square next to the right square in the diagram since we

are hiding the shifted terms of distinguished triangles from the notation.

Proof. Denote the total complex of the sheaf-Hom double complex functorHomOK

by [ · , · ]cOK
. Use the notation [ · , · ]cK similarly. Denote the total complex of the

sheaf-Hom double complex functor Homkperar
et

for Spec kperaret by [ · , · ]′ck . Let G
∼→ I

and F
∼→ J be quasi-isomorphisms to K-injective complexes. We can check that the

natural diagram

π́x,∗[I, J ]
c
OK

−−−−→ π́OK ,∗[I, J ]
c
OK
−−−−→ π́K,∗[I, J ]

c
Ky y y

[π́OK ,∗I, π́x,∗J ]
′c
k −−−−→ [π́x,∗I, π́x,∗J ]

′c
k −−−−→ [π́K,∗I, π́x,∗J ]

′c
k [1]

in Ch(kperaret ) is commutative up to homotopy (where again there is a hidden square

next to the right one). Applying the localization morphism [ · , · ]′ck → [ · , · ]′k (where

[ · , · ]′k = RHomkperar
et

) to the lower triangle, we have a morphism of distinguished

triangles

Rπ́x,∗[G,F ]OK −−−−→ Rπ́OK ,∗[G,F ]OK −−−−→ Rπ́K,∗[G,F ]Ky y y
[Rπ́OK ,∗G,Rπ́x,∗F ]

′
k −−−−→ [Rπ́x,∗G,Rπ́x,∗F ]

′
k −−−−→ [Rπ́K,∗G,Rπ́x,∗F ]

′
k[1]

in D(kperaret ). Applying á and using the morphism

á([G′, F ′]′k)→ [á(G′), á(F ′)]k

for G′, F ′ ∈ D(kperaret ) coming from Proposition 7.8, we get the result.

§ 9. Trace morphisms and a finiteness property of cohomology

In this section, we prove two statements that are keys in order to apply the formal-

ism in the previous section and obtain duality results. The corresponding statements in

[Suz13] and [Suz20b] in the older formalism are proved using some exotic approximation

arguments. The proofs in this section are self-contained and much more standard.

The first statement is the existence of a trace (iso)morphism in this formalism. In

the older formalism, it is [Suz13, Proposition 2.4.4] and [Suz20b, (5.2.1.1)].

Proposition 9.1. There exists a canonical isomorphism

RΓ́x(OK ,Gm) ∼= Z[−1],

□ 
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which we call the trace isomorphism. The composite

RΓ́(K,Gm)→ RΓ́x(OK ,Gm)[1] ∼= Z

is called the trace morphism.

Proof. We have π́K,∗Gm = K× in Ab(kperaret ). For any perfect field extension

k′ of k, the normalized valuation for the discrete valuation field K(k′) defines a split

surjection K(k′)× ↠ Z functorial in k′. This uniquely extends to a split surjection

K(k′)× ↠ Z(k′) functorial in arbitrary k′ ∈ kperar that commutes with finite products.

Hence we obtain a split surjection K× ↠ Z in Ab(kperaret ). Its kernel is π́OK ,∗Gm = O×
K .

For n ≥ 1, let 1 + pn
K ⊂ O×

K be the subsheaf that assigns k′ 7→ 1 + pnKOK(k′).

Then O×
K/(1+p1

K) ∼= Gm and (1+pn
K)/(1+pn+1

K ) ∼= Ga, and O×
K is the inverse limit

of O×
K/(1 + pn

K) over n ≥ 1. Hence O×
K ∈ P′

fcAlg/k and it satisfies the condition of

Proposition 7.10 (b). Hence O×
K is h́-acyclic. So is K× ∼= O×

K × Z ∈ Ek.
We show that Rnπ́OK ,∗Gm and Rnπ́K,∗Gm are zero for any n ≥ 1. They are étale

sheafifications of the presheaves

k′ ∈ kperar 7→ Hn(OK(k′),Gm), Hn(K(k′),Gm).

SinceOK(k′) is a finite product of complete discrete valuation rings, we haveHn(OK(k′),Gm)
∼→

Hn(k′,Gm), which sheafifies to zero. To show that the second presheaf sheafifies to zero,

it is enough to show that for any perfect field extension k′ over k, we have

lim−→
k′′/k′

Hn(K(k′′),Gm) = 0,

where the direct limit is over finite extensions of k′ in a fixed algebraic closure of k′.

The direct limit of K(k′′) over k′′/k′ is the maximal unramified extension K(k′)ur of

K(k′), which is an excellent henselian discrete valuation field with algebraically closed

residue field. Since the direct limit commutes with cohomology, the left-hand side is

isomorphic to Hn(K(k′)ur,Gm). The vanishing of this cohomology is classical ([Ser79,

Chapter V, Section 4, Proposition 7 and Chapter X, Section 7, Proposition 11]).

Therefore Rπ́OK ,∗Gm
∼= O×

K and Rπ́K,∗Gm
∼= K×. We apply á to them. By

Proposition 7.9 (b), we have

RΓ(OK ,Gm) ∼= á(O×) ∼= O×, RΓ(K,Gm) ∼= á(K×) ∼= K×

and hence RΓx(OK ,Gm) ∼= Z[−1].

The next one states that Rnπ́K,∗G is locally of finite presentation for n ≥ 1 when-

ever it is representable andG is a smooth group scheme overK. In the older formulation,

□ 
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it is [Suz20b, Proposition (3.4.3) (a)]. As in [Suz20b, Proposition (3.4.3) (d)], this is a

key step to prove that H́1(K,A) ∈ IAlg/k (without a pro-algebraic part) for an abelian

variety A over K, though we do not explain the proof of this fact in this paper.

Proposition 9.2. Let G be a smooth group scheme over K and n ≥ 1. Then

Rnπ́K,∗G is torsion and commutes with filtered direct limits as a functor kperar → Ab.

Proof. The sheaf Rnπ́K,∗G is the étale sheafification of the presheaf

k′ ∈ kperar 7→ Hn(K(k′), G).

This is torsion since K(k′) is a finite direct product of fields and Galois cohomology in

positive degrees is torsion. It is enough to show that

lim−→
λ

Hn(K(kλ), G)
∼→ Hn(K(k′), G)

for any k′ ∈ kperar that can be written as a direct limit of a filtered direct system {kλ}
in kperar. We may assume that the kλ and k′ are fields. The ring lim−→λ

K(kλ) is an

(excellent) henselian discrete valuation field with completion K(k′). Hence they have

isomorphic cohomology in positive degrees with coefficients in a smooth group scheme

by [GGMB14, Proposition 2.5.3 (2) (3)]. This gives the result.

§ 10. Comparison with the older formulation

Recall the morphism of sites ε : Spec kindratproet → Spec kindratet from Definition 7.5.

Definition 10.1. Define a = ε∗ (as Ab(kindratet ) → Ab(kindratproet ) or D(kindratet ) →
D(kindratproet )), which is the pro-étale sheafification functor.

We compare á and a applied to objects of Ek.

Proposition 10.2. For any G ∈ ⟨Ek⟩D(kindrat
et ), there exists a canonical isomor-

phism

(10.1) á(α∗G) ∼= a(G)

in ⟨Ek⟩kindrat
proet

. More precisely, the morphism

(10.2) Lh́∗α∗G ∼= Lh̃∗ε∗Lα∗α∗G→ Lh̃∗ε∗G

defined by the counit for α is an isomorphism, the morphism

(10.3) ε∗G→ Rh̃∗Lh̃
∗ε∗G

defined by the unit for h̃ is an isomorphism, and the isomorphism (10.1) is obtained by

applying Rh̃∗ to (10.2) and using (10.3) on the right-hand side.

□ 
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Proof. We may assume that G ∈ Ek. Since G is a sheaf for the pro-fppf topology

and hence for any coarser topology, the morphism (10.2) is of the form Lh́∗G→ Lh̃∗G.

But we have Lh́∗G
∼→ G by Theorem 3.15 and Lh̃∗G

∼→ G by Proposition 7.6. Therefore

(10.2) is an isomorphism. The same proposition shows that (10.3) is an isomorphism.

Recall the following definition from [Suz20b, Section 2.4].

Definition 10.3.

(a) A sheaf F ∈ Ab(kindratet ) is said to be P-acyclic if F
∼→ Rε∗ε

∗F .

(b) An object F ∈ D+(kindratet ) is said to be P-acyclic if each cohomology object of F is

P-acyclic. This implies that F
∼→ Rε∗ε

∗F .

The letter “’P’ means “pro”; see [Suz20b, Footnote 8] for more details. Here is the

relation to h́-acyclicity:

Proposition 10.4. If G ∈ ⟨Ek⟩kindrat
et

is P-acyclic, then α∗G is h́-acyclic.

Proof. By Proposition 10.2, we have

Rh́∗Lh́
∗α∗G ∼= α∗Rε∗Rh̃

∗Lh́∗α∗G ∼= α∗Rε∗á(α∗G)

∼= α∗Rε∗ε
∗G ∼= α∗G.

We can compare cup products for á and a on Ek:

Proposition 10.5. Let φ : G ⊗L G′ → G′′ be a morphism in D(kindratet ) with

G,G′, G′′ ∈ ⟨Ek⟩kindrat
et

. Consider the composite of the morphisms

á(α∗G)⊗L á(α∗G
′)→ á(α∗G⊗L α∗G

′)→ á
(
α∗(G⊗L G′)

)
→ á(α∗G

′′),

where the first morphism is given by Propositions 7.8 and 7.2, the second by Proposition

2.4 and the third by φ. Also consider the composite of the morphisms

a(G)⊗L a(G′) ∼= a(G⊗L G′)→ a(G′′),

where the first isomorphism is the obvious isomorphism about sheafification and the

second φ. These two composite morphisms are compatible under the isomorphism (10.1).

□ 
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Proof. Arguing similarly to the proof of Proposition 7.2 using Proposition 7.6

instead of Theorem 3.15, we know that a(G) is h̃-compatible. The same is true for

a(G′) and a(G′′). Hence we have a canonical isomorphism

Lh̃∗
(
a(G)⊗L a(G′)

) ∼→ Lh̃∗a(G)⊗L Lh̃∗a(G′)

by Proposition 2.9. Therefore we have a composite morphism

Rh̃∗Lh̃
∗a(G)⊗L Rh̃∗Lh̃

∗a(G′)→ Rh̃∗
(
Lh̃∗a(G)⊗L Lh̃∗a(G′)

)
∼← Rh̃∗Lh̃

∗a(G⊗L G′)

→ Rh̃∗Lh̃
∗a(G′′).

Now one checks that the diagram

á(α∗G)⊗L á(α∗G
′) −−−−→ á(α∗G

′′)y≀ ≀
y

Rh̃∗Lh̃
∗a(G)⊗L Rh̃∗Lh̃

∗a(G′) −−−−→ Rh̃∗Lh̃
∗a(G′′)x≀ ≀
x

a(G)⊗L a(G′) −−−−→ a(G′′)

is commutative. (Be careful that both the upper and middle horizontal morphisms are

actually defined as zigzags of the form • → • ∼← • → •.) This gives the result.

We recall some of the constructions in [Suz20a, Section 2.5].

Definition 10.6.

(a) Define OK(k′) and K(k′) for k′ ∈ kindrat by the same formulas as Definition 8.1.

(b) Define premorphisms of sites

πOK
: SpecOK,fppf → Spec kindratet , πK : SpecKfppf → Spec kindratet

by the functors OK , K, respectively (which are indeed premorphisms by [Suz20a,

Proposition 2.5.1]).

(c) Define

Γ(OK , · ) = a ◦ πOK ,∗ : Ab(OK,fppf)→ Ab(kindratproet ),

Γ(K, · ) = a ◦ πK,∗ : Ab(Kfppf)→ Ab(kindratproet ),

where πOK ,∗ = (πOK
)∗ and πK,∗ = (πK)∗. They naturally extend to the categories

of complexes. Define

Γx(OK , · ) =
[
Γ(OK , · )→ Γ(K, · )

]
[−1] : Ch(OK,fppf)→ Ch(kindratproet ).

□ 
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(d) We have their right derived functors

RΓ(OK , · ), RΓx(OK , · ) : D(OK,fppf)→ D(kindratproet ),

RΓ(K, · ) : D(Kfppf)→ D(kindratproet ).

(e) We denote Hn(OK , · ) = HnRΓ(OK , · ) and use the similar notation Hn
x(OK , · ),

Hn(K, · ).

In [Suz20b, Section 3.3], the functor πOK ,∗ was denoted by Γ(OK , · ) and the

functor Γ(OK , · ) was denoted by Γ̃(OK , · ). Similar for their derived versions and for

K instead of OK .

The relation between these πOK
, πK and the previous π́OK

, π́K is the following.

Proposition 10.7. The composite of

SpecOK,fppf

πOK→ Spec kindratet
α→ Spec kperaret

is π́OK . The same relation holds with OK replaced by K.

Proof. Obvious.

We compare RΓ and RΓ́.

Proposition 10.8.

(a) Let G ∈ D(OK,fppf). Assume that RπOK ,∗G ∈ ⟨Ek⟩D(kindrat
et ). Then there exists a

canonical isomorphism RΓ́(OK , G) ∼= RΓ(OK , G) in ⟨Ek⟩kindrat
proet

.

(b) Let G ∈ D(Kfppf). Assume that RπK,∗G ∈ ⟨Ek⟩D(kindrat
et ). Then there exists a

canonical isomorphism RΓ́(K,G) ∼= RΓ(K,G) in ⟨Ek⟩D(kindrat
proet ).

(c) Let G ∈ D(OK,fppf). Assume that G satisfies the assumption of (a) and that

j∗G satisfies the assumption of (b). Then there exists a canonical isomorphism

RΓ́x(OK , G) ∼= RΓx(OK , G) in ⟨Ek⟩D(kindrat
proet ).

Proof. This follows from Propositions 10.2 and 10.7.

The sheaves RΓ(OK , G), RΓ(K,G), RΓ́(OK , G), RΓ́(K,G) for most of the groups

of interest G satisfy appropriate acyclicity properties and have cohomologies in Ek by

the following proposition:

Proposition 10.9.

□ 
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(a) If G is a finite flat group scheme or a smooth group scheme over OK , then RnπOK ,∗G

is P-acyclic and in Ek for any n (in particular, RπOK ,∗G ∈ ⟨Ek⟩D(kperar
et )). The ob-

ject Rπ́OK ,∗G is h́-acyclic with cohomologies in Ek.

(b) If G is a finite flat group scheme, a lattice, an abelian variety or a torus over K, then

RnπK,∗G is P-acyclic and in Ek for any n (in particular, RπK,∗G ∈ ⟨Ek⟩D(kperar
et )).

The object Rπ́K,∗G is h́-acyclic with cohomologies in Ek.

Proof. These follow from Proposition 10.4 and [Suz20b, Proposition (3.4.2), (3.4.3)]

except for a finite flat group scheme G = N over K. For this case, the only non-trivial

part is to check that R1πK,∗N is in IP′
fcAlg/k. But this follows from the proof of

[Suz20b, Proposition (3.4.3) (b)].

The above two propositions give some information about the structure ofRΓ́(OK , G),

RΓ́(K,G) and RΓ́x(OK , G). For more detailed information, see [Suz20b, Propositions

(3.4.1), (3.4.2), (3.4.3), (3.4.6); Section 9], [Suz20a, Proposition 2.5.3], [Suz19, Proposi-

tion 6.2 and its proof].

We can compare the cup product morphisms for RΓ and RΓ́:

Proposition 10.10.

(a) Let φ : G⊗L G′ → G′′ be a morphism in D(Kfppf) such that all of G,G′, G′′ satisfy

the assumption of Proposition 10.8 (b). Consider the composite of the morphisms

RΓ(K,G)⊗L RΓ(K,G′)→ RΓ(K,G⊗L G′)
φ→ RΓ(K,G′′),

where the first morphism is given by [Suz20a, (2.5.6)] (translated into a morphism

involving ⊗L by the same method as the proof of Proposition 2.4). Also consider

the composite of the morphisms

RΓ́(K,G)⊗L RΓ́(K,G′)→ RΓ́(K,G⊗G′)
φ→ RΓ́(K,G′′),

where the first morphism is given by Proposition 8.6 (a). These composite mor-

phisms are compatible under the isomorphism in Proposition 10.8 (b).

(b) Let φ : G⊗LG′ → G′′ be a morphism in D(OK,fppf) such that all of G,G′, G′′ satisfy

the assumption of Proposition 10.8 (c). Consider the composite of the morphisms

RΓ(OK , G)⊗L RΓx(OK , G
′)→ RΓx(OK , G⊗L G′)

φ→ RΓx(OK , G
′′),

where the first morphism is given by [Suz20a, (2.5.4)] (translated as above). Also

consider the composite of the morphisms

RΓ́(OK , G)⊗L RΓ́x(OK , G
′)→ RΓ́x(OK , G⊗G′)

φ→ RΓ́x(OK , G
′′),

□ 
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where the first morphism is given by Proposition 8.6 (b). These composite mor-

phisms are compatible under the isomorphism in Proposition 10.8 (a) and (c).

Proof. (a) The composite morphism

α∗RπK,∗G⊗L α∗RπK,∗G
′ → α∗

(
RπK,∗G⊗L RπK,∗G

′)→ α∗RπK,∗(G⊗L G′)

and the morphism

Rπ́K,∗G⊗L Rπ́K,∗G
′ → Rπ́K,∗(G⊗L G′)

are compatible by Proposition 10.7. The rest follows from Proposition 10.5.

(b) This can be proven similarly.

§ 11. A duality statement in the new formulation

As in [Suz20b, Section 2.4], we define the Serre dual functor as follows.

Definition 11.1. Define ( · )SD = RHomkindrat
proet

( · ,Z).

See [Suz20b, Section 2.4, Footnote 4] for why it is called the Serre dual.

Now we state the duality for abelian varieties over K. In [Suz20b], this duality is

stated using RΓ (i.e. using the functor k′ ∈ kindrat 7→ Hn(K(k′), · )). Here we state

it using RΓ́ (i.e. using the functor k′ ∈ kperar 7→ Hn(K(k′), · )). We here deduce the

statement from the result in [Suz20b] using the comparison statements in the previous

section. But note that we have developed a duality formalism with Spec kperaret in this

paper well enough so that a direct, simpler proof (using only RΓ́) is possible.

Theorem 11.2. Let A and B be abelian varieties dual to each other over K.

Let A and B be their Néron models over OK and B0 the open subgroup scheme of B
with connected fibers. Consider the morphisms A ⊗L B → Gm[1] in D(Kfppf) and

A ⊗L B0 → Gm[1] in D(OK,fppf) given by the Poincaré bi-extension and its canonical

extension to OK ([Gro72, IX, 1.4.3]). Consider the morphism

RΓ́(K,A)⊗L RΓ́(K,B)→ RΓ́(K,Gm)[1]
trace→ Z[1],

RΓ́(OK ,A)⊗L RΓ́x(OK ,B0)→ RΓ́x(OK ,Gm)[1]
trace→ Z

RΓ́x(OK ,A)⊗L RΓ́(OK ,B0)→ RΓ́x(OK ,Gm)[1]
trace→ Z

induced by Propositions 8.6 and 9.1.

(a) The resulting five morphisms

RΓ́(K,B)SDSD → RΓ́(K,A)SD[1],

RΓ́x(OK ,B0)→ RΓ́x(OK ,B0)SDSD → RΓ́(OK ,A)SD

RΓ́x(OK ,A)→ RΓ́x(OK ,A)SDSD → RΓ́(OK ,B0)SD

□ 
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are all isomorphisms.

(b) They form an isomorphism of distinguished triangles

RΓ́(OK ,B0)SDSD −−−−→ RΓ́(K,B)SDSD −−−−→ RΓ́x(OK ,B0)[1]y≀
y≀

y≀

RΓ́x(OK ,A)SD −−−−→ RΓ́(K,A)SD[1] −−−−→ RΓ́(OK ,A)SD[1]

between the localization triangles (8.1).

Proof. (a) The morphisms

RΓ́(K,A)⊗L RΓ́(K,B)→ RΓ́(K,Gm),

RΓ(K,A)⊗L RΓ(K,B)→ RΓ(K,Gm)

are compatible under the isomorphisms of the terms by Propositions 10.9 (b) and 10.10

(a). The trace morphism RΓ́(K,Gm) → Z in Proposition 9.1 and the trace morphism

RΓ(K,Gm) → Z in [Suz13, Proposition 2.4.4] are compatible since they both are the

valuation morphism K× ↠ Z. Hence the morphisms

RΓ́(K,B)SDSD → RΓ́(K,A)SD[1], RΓ(K,B)SDSD → RΓ(K,A)SD[1]

are compatible. The latter is an isomorphism by [Suz20b, Theorem (4.1.2)]. Therefore

so is the former. The statements for RΓ́(OK , · ), RΓ́x(OK , · ) can be similarly proven.

(b) The stated diagram can be identified with the isomorphism of distinguished

triangles

RΓ(OK ,B0)SDSD −−−−→ RΓ(K,B)SDSD −−−−→ RΓx(OK ,B0)[1]y≀
y≀

y≀

RΓx(OK ,A)SD −−−−→ RΓ(K,A)SD[1] −−−−→ RΓ(OK ,A)SD[1]

of [Suz20a, Proposition 2.5.4] by Proposition 10.8.

The diagram in (b) can also be obtained directly without referring to [Suz20b]. By

Proposition 8.7, we obtain a morphism of distinguished triangles

RΓ́OK
[A,Gm]OK

[1] −−−−→ RΓ́K [A,Gm]K [1] −−−−→ RΓ́x[A,Gm]OK
[2]y y y

[RΓ́xA, RΓ́xGm]k[1] −−−−→ [RΓ́KA,RΓ́xGm]k[2] −−−−→ [RΓ́OK
A, RΓ́xGm]k[2].

□ 
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Applying the morphisms B0 → [A,Gm]OK
[1] and B → [A,Gm]K [1] to the upper tri-

angle and the trace isomorphism RΓ́xGm
∼→ Z[−1] to the lower triangle, we obtain a

morphism of distinguished triangles

RΓ́(OK ,B0) −−−−→ RΓ́(K,B) −−−−→ RΓ́x(OK ,B0)[1]y y y
RΓ́x(OK ,A)SD −−−−→ RΓ́(K,A)SD[1] −−−−→ RΓ́(OK ,A)SD[1].

Applying SDSD and using (a), we obtain the desired diagram.

References

[AGV72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos.
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topologie algébrique, Louvain, 1956, pages 55–80. Georges Thone, Liège, 1957.
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