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An improvement of the duality formalism of the
rational étale site

By

Takashi SUZUKT*

Abstract

We improve the arithmetic duality formalism of the rational étale site. This improvement
allows us to avoid some exotic approximation arguments on local fields with ind-rational base,
thus simplifying the proofs of the previously established duality theorems in the rational étale
site and making the formalism more user-friendly. In a subsequent paper, this new formulation
will be used in a crucial way to study duality for two-dimensional local rings.

§1. Introduction

§1.1. Aim of the paper

The arithmetic duality formalism of the rational étale site [Suz13] has been applied
to several situations [Suz20b|, [Suz20a], [Suz19], [GS20]. One of the difficulties in this
formalism is that, for a complete discrete valuation field K with perfect residue field k
of characteristic p > 0, we need to calculate the étale or fppf cohomology of a certain
complicated ring K(k’), where k' is an arbitrary “ind-rational k-algebra”. A rational
k-algebra is a finite product of perfections of finitely generated field extensions over k,
and an ind-rational k-algebra is a filtered direct limit of rational k-algebras. The ring
K(k') is the p-inverted ring of Witt vectors W (k')[1/p] (in the absolutely unramified
case) or the formal Laurent series ring k'[[t]][1/t]. A typical example of an ind-rational
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k-algebra is the affine ring of a profinite set viewed as a profinite k-scheme. If k" has only
finitely many direct factors, then K(k’) is a classical object, since it is a finite product
of complete discrete valuation fields with perfect residue fields. Otherwise K(£') is a
difficult infinite-dimensional non-noetherian ring. We need general ind-rational algebras
to describe pro-algebraic and/or profinite group structures on cohomology of K, since a
profinite set tested by field-valued points is not distinguishable with a discrete set. The
étale cohomology H"(K(k'), G,,) and more general H"(K(k'),G) for smooth group
schemes G (in particular, abelian varieties) over K are calculated based on some exotic
approximation arguments in [Suzl3, Section 2.5] and [Suz20b, Sections 3.1 and 3.2],
respectively.

In this paper, we give a simpler and more user-friendly formalism that does not re-
quire exotic approximation arguments. In this new formalism, we only need to calculate
H™"(K(K'),G) for perfect field extensions k' over k, in which case K(k’) is a genuinely
classical object as explained above. The key observation is that for most of the groups
of interest G, the 7y (component group) of the object representing the sheafification of
the presheaf k' — H™(K(k’), G) turns out to be an étale k-group (without a profinite
part). Pro-algebraic groups with finite (that is, not profinite) component groups can be
described by perfect-field-valued points alone, as we will see in this paper. Hence we
may restrict k&’ to be perfect fields. We still need arbitrary perfect fields here and not
only perfections of finitely generated fields or rational k-algebras, since the generic point
of a connected pro-algebraic group is not the spectrum of the perfection of a finitely
generated field. Once we uniquely pin down such pro-algebraic groups by perfect-field-
valued points, we can then pass to the pro-étale site of ind-rational k-algebras, where
we have full control of the derived categories of pro-algebraic groups and of profinite
groups.

This new formalism will be useful and in fact necessary for two-dimensional local

rings such as W (k)[[t]], since the sheafification of the presheaf
K e H (W (K)[[E][L/p], Z/pZ(r))

on ind-rational k-algebras k' does not commute with filtered direct limits (since the
representing object should be a pro-algebraic group) and hence an analogue of the ap-
proximation arguments mentioned above are not just difficult but in fact impossible
(at least when interpreted naively). In a subsequent paper, using the explicit compu-
tations of filtrations by symbols in the proof of [Sai86, Claim (4.11)], the above sheaf
will be shown to be representable by a pro-algebraic group over k with finite mo if &’
runs over perfect field extensions of k. The purpose of the proposed paper will be to use
the formalism of this paper to construct a duality theory for such pro-algebraic groups
associated with two-dimensional noetherian complete normal local rings of mixed char-

acteristic with perfect residue field, extending Saito’s duality theories [Sai86], [Sai87] in
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the finite residue field case.

In this paper, emphasis is put on providing a dictionary between the older and
new formalisms, so that the reader can freely translate the duality results previously
established in the older formalism into the new formalism and use them in the new
formalism. We will also provide enough foundational results on the new formalism so
that it can be used on its own (without translating back into the older formalism) to
explore new duality results in future work.

§1.2. Main theorems

Now we formulate our results. Let k& be a perfect field of characteristic p > 0. Let
kPera" be the category of finite products of perfect field extensions of k with k-algebra
homomorphisms (where “perar” stands for perfect artinian). Define Spec kb ™ to be
the étale site on the category kP°™?", which we call the perfect artinian étale site of k.

Also let kP’ be the category of quasi-compact quasi-separated perfect k-schemes.

This category can be equipped with the “pro-fppf” topology ([Suzl3, Remark 3.8.4],

perf’
. kprofppf‘
kperar y kperf induces a morphism of topologies (or a “premorphism of sites” [Suz20a,

Section 2.4])

[Suz20b, Appendix A]). Denote the resulting site by Spec The inclusion functor

[ . perf’ perar
h: Speckp o = Specke .

Its pullback functor A*: Ab(KPZ™) — Ab(kﬁf;ﬁ;pf) on the category of sheaves of abelian
groups on these sites admits a left derived functor Lh* by [Suz13, Lemma 3.7.2 and Sec-
tion 2.1]. Let Alg/k be the category of perfections (inverse limit along Frobenius mor-
phisms) of commutative algebraic groups over k. Let P Alg/k be the full subcategory
of the pro-category of Alg/k of pro-objects with affine transition morphisms and finite
étale my (where “fc” stands for “finite component (group)”). It is a full subcategory of

Ab(kgfgg;pf) via the Yoneda functor.

Theorem 1.1 (= Theorem 3.15, Proposition 7.1).  The Yoneda functor P; Alg/k —
Ab(KRE™Y s fully faithful. For any G € Pj Alg/k, the natural morphism h*G — G in

Ab(kgfgg;pf) is an isomorphism and Loh*G =0 forn > 1.

This means that treating G as a functor on perfect field extensions of k does not
lose any information, higher derived or not. This is a version of [Suzl13, Proposition
3.7.3] for Spec k5. Similar to [Suzl3, Section 3], the key points of the proof are that

the inclusion morphism £; < G (which is not of finite presentation) of the generic point

kperf’
profppf?
the restriction {g X £¢ — G of the group operation map (which is not pro-étale) is a

covering for the site Spec kgfég)pf, and that &g € kP®*?'. In Sections 4-6, the proof of

&q of a group G € Py Alg/k may appear in a covering family for the site Spec
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the above theorem will be given by checking that arguments in [Suz13, Sections 3.5 and
3.6] on Mac Lane’s resolutions may be carefully modified to work in the present setting.

Using this theorem, we can translate the duality results of [Suz13], [Suz20b], [Suz20a]
and [Suz19] in this setting. We take [Suz20b] as an example to explain this translation.
Let K be a complete discrete valuation field with ring of integer Ok whose residue field
is the above k. For k' € kP™' we define a K-algebra by

K(k') = (W(k)OwwOk) ®o, K

(see Section 8 for more detail), which is a finite product of complete discrete valua-
tion fields with perfect residue fields. This functor K defines a premorphism of sites
it Spec Kippr — Speckb™ . Let Spec kildrat he the ind-rational pro-étale site of k

proet

([Suz20b, Section 2.1]). Let h: Spec kgfég;pf — Spec kIndrat be the premorphism of sites

defined by the inclusion functor on the underlying categories. For G € D(Kypps), define

Rf‘(K; G) = R;L*LH*R(#K)*G c D(kindrat).

proet

For most of the groups of interest G, the object R(7k )G is “ﬁ—acyclic”, which implies
the existence of a spectral sequence

proet>

B/ (K,G)) = H"™ (K (K )gppt, G)
for any k' € kP (where H” = H"RI") and an isomorphism
H" (K, G)(K') = H" (KK )ppt, G)

for algebraically closed field extensions k' of k and any n. Applying the above theorem
for G = R"(7k)«Gy, and G = R"(7k )« A for an abelian variety A/K, and comparing
with the duality result [Suz20b, Theorem 4.1.2] in the older formulation, we obtain the
following.

Theorem 1.2 (= Theorem 11.2).  Let A and B be abelian varieties over K dual

to each other. Then there exists a canonical isomorphism
RI(K, A)SPSP 5 RI(K, B)SP[1]

in D(kindrat) “yhere SD denotes the derived sheaf-Hom R Homy;inara: (-, Z) for Spec kindrat,

proet

Before stating this theorem, in Section 9, we will see that some part of its proof is
much easier to prove in this new formulation. The purpose of the mentioned section is
to clearly present how to practically use the new formulation. We will give a direct proof
of the existence of the trace morphism R(7 k). G, — Z and the fact that R"(7k).G as
a functor kP — Ab commutes with filtered direct limits that exist in kP°™@" if G is a
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smooth group scheme over K and n > 1. The proofs [Suz13, Section 2.5] and [Suz20b,
Sections 3.1 and 3.2] of the corresponding statements in the older formulation are some
exotic approximation arguments. The direct proofs we give here are based on much
more standard facts on complete discrete valuation fields.

A remark is that it seems possible to completely eliminate ind-rational k-algebras
erf’
grofppf
replaced by the category of filtered inverse limits of perfections of quasi-compact smooth

— Spec kiMrat may be likely

proet

from the formulation. The target site of h: Speck

k-schemes with affine transition morphisms endowed with the pro-étale topology. But
this change would require us to redo large part of [Suz13] and [Suz20b] with this new
site and thus take many pages. We will not try doing this here.

As above, the notation is necessarily complicated in order to ensure compatibility
and provide a dictionary between the older and new formalisms. It is hoped to com-
pletely renew the notation, abandon everything old and write down proofs of the results
entirely in the new formalism some time in the future. Meanwhile, we will explain the
notation in this paper as much as possible to remedy the notational difficulties.

Acknowledgement.  The author is grateful to Kazuya Kato for his encouragement
to improve the formulation towards duality for two-dimensional local rings, and to the
referee for their very thorough comments to make the paper more readable.

Notation.  (This part is partially taken from [Suz19, Section 1.3, Notation].) The
categories of sets and abelian groups are denoted by Set and Ab, respectively. We
denote the ind-category of a category C by IC, the pro-category by PC, so that IPC :=
I[(PC) is the ind-category of PC. All groups, group schemes and sheaves of groups are
assumed commutative. For an abelian category A, the category of complexes in A in
cohomological grading is denoted by Ch(A). If A — B is a morphism in Ch(.A4), then
its mapping cone is denoted by [A — B]. The homotopy category of Ch(.A) is denoted
by K(A) with derived category D(A). If we say A — B — C' is a distinguished triangle
in a triangulated category, we implicitly assume that a morphism C' — A[1] to the shift
of A is given, and the triangle A — B — C' — A[l1] is distinguished. For a triangulated
category D and a collection of objects Z, we denote by (Z)p the smallest triangulated
full subcategory of D closed under isomorphism. For a site S, the categories of sheaves
of sets and abelian groups are denoted by Set(S) and Ab(S), respectively. We denote
Ch(S) = Ch(Ab(S)) and use the notation K(S), D(S) similarly. The Hom and sheaf-
Hom functors for Ab(S) are denoted by Homg and Homyg, respectively. Their right
derived functors are denoted by Exts, R Homg and Extg, R Homg, respectively. The
tensor product functor ® is over the ring Z (or, on some site, the sheaf of rings Z). Its
left derived functor is denoted by ®@%.
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Here is the list of sites and (pre)morphisms to be defined in this paper:

perf’ h indrat € indrat ¢ perar
SPeC kpofppt — SPEC Kproer — SPEC ki — Spec kg,

whose composite is h;

indrat
Spec Kgppe T) Spec Ok fppf T Spec kg
K

H H |

Spec Kgppt 7 Spec Ok.topt ——5 Spec kP
where the composite of the upper (resp. lower) horizontal two morphisms is 7x (resp.
TK); and a := €%, 4 := Rh.Lh*.

§ 2. Generalities on Grothendieck sites

We mostly follow the terminology of [AGV72] on Grothendieck sites. See also
[Art62] and [KS06]. We do use the modified terminology given in [Suz20a, Section 2.4];
see there for more details. We need three classes of maps between sites: morphisms
of sites, premorphisms of sites and continuous maps of sites. This list is roughly in
decreasing order of strength. It is not exactly so since the notion of premorphism of
sites is meaningful only for sites defined by pretopologies (or covering families) and
it depends on the choice of the pretopologies. It is this intermediate notion that we
encounter most in practice in this paper.

First we recall the weakest notion, continuous maps of sites, and related notions.

Definition 2.1.

(a) For sites S and S’, a continuous map of sites f:S" — S (called a continuous
functor from S to S’ in [AGV72, Exposé III, Définition 1.1]) is a functor f=1 from
the underlying category of S to that of S’ such that the right composition with =1
(or the pushforward functor f.) sends sheaves of sets on S’ to sheaves of sets on S.

(b) In this case, f.: Set(S") — Set(S) and f.: Ab(S") — Ab(S) have left adjoints (the
pullback functors), which we denote by f*5°*: Set(S) — Set(S’) and f*: Ab(S) —
ADb(S"), respectively.

(c) If we write X € S, we mean that X is an object of the underlying category of S.

(d) For X € S, the localization ([AGV72, Exposé II, 5.1]) of S at X is denoted by
S/X.
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(e) The restriction ([AGV72, Exposé II, 5.3, 2)]) of F € Set(S) (or € Ab(S) or €
D(S)) to S/X is denoted by F|x.

(f) We denote by fx:S'/f~1X — S/X the continuous map of sites defined by the
restriction of f~' on the localizations.

Next we recall morphisms of sites.

Definition 2.2.  Let f: S — S be a continuous map of sites. If f*>°* is exact

(i.e. commutes with finite inverse limits), we say that f is a morphism of sites.

In this case, f* and f**°* are compatible with forgetting group structures ([AGV72,
III, Proposition 1.7,4]), so we do not have to distinguish them.

*set js usually too much to ask if the underlying category of S

The exactness of f
does not have all finite inverse limits. But it is inconvenient if we make no assumption
on exactness of f*°'. Some exactness on at least representable presheaves helps much.
In this regard, the following notion, premorphisms of sites, is useful, which we recall

from [Suz20a, Section 2.4].

Definition 2.3.  Let S and S’ be sites defined by pretopologies. A premorphism
of sites f: 8" — S is a functor f=! from the underlying category of S to the underlying
category of S’ that sends covering families to covering families such that f =1 (Y xx Z) =
7y X f-1x f~YZ whenever Y — X appears in a covering family.

Such a functor f~! is called a morphism of topologies from S to S’ in [Art62,
Definition 2.4.2]. In this case, f defines a continuous map of sites f: S’ — S, and
by [Suzl3, Lemma 3.7.2] and the first paragraph of [Suzl3, Section 2.1], the functor
f*: Ab(S) — Ab(S’) admits a left derived functor Lf*: D(S) — D(S’), which is left
adjoint to Rf.: D(S") — D(S). Be careful that the coefficient ring for sheaves here is
Z, and there is nothing analogous to the functors L, f* for n > 1 if one considers only
morphisms of sites. They are not analogous to Tor(S, - ) for a ring homomorphism
R — S or L,g* for a scheme morphism g and coherent sheaves.

Now let f: S’ — S be a continuous map of sites with underlying functor f~! on
the underlying categories. We need a cup product morphism relative to f (assuming
nothing about exactness of f*). The following was essentially observed in [Suz20a,

(2.5.2)] in a special case.

Proposition 2.4. There exist canonical morphisms
(2.1) Rf.RHomg (G',F') - RHomg(Rf.G',Rf.F'),
(2.2) Rf.G' @L Rf,F' — Rf.(G' L F")

in D(S) functorial in G', F' € D(S").
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Note that this type of statements is usually proved under the assumption that f is
a morphism of sites and making use of this assumption.

Proof.  'We construct (2.1). First, let G', F' € Ab(S’). The functoriality of f, gives

a canonical homomorphism

(2.3) Homg/ /p-1x (G'|p-1x, F'| -1 x) = Homg, x ((f.G")|x, (f+F')|x)

functorial in X € S. Hence we have a morphism
f«Homg (G', F') - Homg(f.G', f. F')

in Ab(S) functorial in G’, F/ € Ab(S’). This extends to a morphism in the category
of complexes Ch(S) functorial in G’, F’ € Ch(S’), where Hom is understood to be the
total complex of the sheaf-Hom double complex. This further extends to a morphism
in the homotopy category K(S) functorial in G', F' € K(S’). Composing with the
localization Homg — R Homg on the right-hand side, we have a morphism

f+Homg/ (G', F') - RHomg(f.G', f F')

in D(S) functorial in G',F" € K(S"). If F’' is K-injective (or homotopically injec-
tive [KS06, Definition 14.1.4 (i)]), then Homg/ (G’, F') is K-limp ([Suz20a, Section 2.4,
Proposition 2.4.1]) and hence f.-injective by [Suz20a, Proposition 2.4.2]. Hence the
left-hand side f. Homg (G, F’) represents Rf.RHomg/ (G', F"). If moreover G’ is K-
injective, then the right-hand side is isomorphic to R Homg(Rf.G', Rf.F"). Hence we

have a morphism
Rf.RHomg (G',F') - RHomg(Rf.G',Rf.F")

in D(S) functorial in the objects G’, F’ of the homotopy category of K-injective com-
plexes in Ab(S"). Since the homotopy category of K-injective complexes in Ab(S’) is
equivalent to D(S") ([KS06, Corollary 14.1.12 (i)]), we have the morphism (2.1).

We construct (2.2). The morphism (2.1) gives a morphism

Rf.RHomg (G',G' ®" F') - RHomg (Rf.G', Rf.(G' ®" F")).

By the derived tensor-Hom adjunction ([KS06, Theorem 18.6.4 (vii)]), we have a mor-
phism
Rf.G' @ Rf.RHomg (G',G' @" F') — Rf.(G' @ F).

By composing it with the evaluation morphism

F' - RHomg (G',G' @ F'),
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we obtain the morphism (2.2). O

As one can see from the above proof, the key point was the part that shows
f« Homg (G', F') represents Rf,RHomg (G', F') if F' is K-injective.

Next assume that S and S’ are sites defined by pretopologies and f: S — S is a
premorphism of sites. The derived pullback Lf* is difficult to handle in general. There
are two senses in which L f* is controllable:

Definition 2.5.

(a) We say that an object F' € D(S) is f-compatible if the natural morphism L(f|x)*(F|x) —
(Lf*F)|g-1x is an isomorphism for any X € S.

(b) We say that F is (weakly) f-acyclic if the natural morphism F — Rf.Lf*F is an

tsomorphism.

The f-compatibility is automatically true (for any F) if f is a morphism of sites
(essentially stated in [AGV72, IV (5.10.1)]). It can fail in general; see [Suzl3, Remark
3.5.2]. Also see [Suzl9, Proposition 3.1 (1)] for a certain positive result. On the other
hand, the similar morphism (Rf.F')|x — R(f|x)«(F'|f-1x) is always an isomorphism
for any F’ € D(S’). What is weak in the definition of f-acyclicity is that we do not
require each cohomology object of F' to satisfy the same condition. If F* — F' — F”
is a distinguished triangle in D(S) and if F' and F’ are f-compatible (resp. f-acyclic),
then so is F"'.

Proposition 2.6.  IfS” is another site defined by a pretopology and g: S” — S’
a premorphism of sites. Then R(fog). — Rf«oRg. as D(S"”) — D(S) and Lg*oLf* =
L(fog)* as D(S) — D(S").

Proof. The statement about the pushforward follows from [Suz20a, Propositions
2.4.2 and 2.4.3]. This implies the other statement by adjunction. O

In the next two propositions, we relate the morphism (2.1) to Lf*.

Proposition 2.7.  The morphism (2.1) after applying RU(X, -) for any X € S
can be canonically identified with the composite
RHomS//f—lx(G/’f—lx, F/‘fle)
— RHomg/ /p—1 x (L(f|x)*R(f|x)+ (G| g1 x), F'| -1x)
=~ RHomg)x (R(f|x)«(G'|s-1x), R(f|x)«(F'lf-1x))

in D(AD), where the first morphism is induced by the counit of adjunction and the
second isomorphism is the adjunction.
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Proof. For K-injective G, F’ € K(S’), the composite morphism in the statement
can be written as

Homg:/-1x (G'] -1, F'| y-1x)

— Homg/ s p—1x (f1x)*(fx)«(G'|p-1x), F'| -1 x)

— RHomg: -1 x (L(f]x)"(f|x)«(G'ly-1x), F'| -1 x)
=~ RHomg, x ((f]x)«(G'|f-1x), (f|x)«(F'| -1 x))

in D(Ab), where Hom is understood to be the total complex of the Hom double complex.

Hence it can also be written as

Homg:/p-1x(G'|p-1x, F'|p-1x)

— Homg/ /g1 x (f|x)*(fIx)«(G'|p-1x), F'| -1 x)
=~ Homg, x ((f|x)«(G'p-1x), (f|x)«(F'|p-1x))

— RHomg, x ((f|x)«(G"|j-1x): (f1x)«(F'|s-1x))-

The composite morphism from the first term to the third term can be identified with
the morphism (2.3). This implies the result. O

Proposition 2.8.  For G € D(S) and F' € D(S’), consider the composite
Rf.RHomg (Lf*G,F') - RHomg(Rf.Lf*G,Rf.F') - RHomg (G, Rf.F")

of the morphism (2.1) and the unit of adjunction. This is an isomorphism if G is

f-compatible.

Proof. 1t is enough to show that the stated morphism becomes an isomorphism in
D(Ab) when RI'(X, - ) is applied for any X € S. Let ¢: L(f|x)*(G|x) = (Lf*G)|;-1x
be the natural morphism, which is an isomorphism under the assumption. By the
previous proposition, the morphism after RI'(X, - ) is given by the composite

RHomg:y-1x ((Lf*G)|f-1x, F'|j-1x)
— RHomg//p-1x (L(f\X)*R(ﬂX)* (Lf*G)|s-1x), F/|f—1X)
~ RHomg)x (Rf.Lf*G)|x, (Rf.F)|x)
— RHomg, x (G|x, (RfF')|x)
of the counit of adjunction, the adjunction isomorphism and the unit of adjunction.

The morphism G|x — (Rf«Lf*G)|x used in the third morphism can be written as the
composite

Glx = R(fIx)L(f|x)"(Glx) = R(f1x)« (Lf"G)|s-1x)
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of the unit of adjunction and the morphism . Hence the morphism after RI'(X, - )
can also be written as the composite

RHomS//f_lx ((Lf*G)|f—1x, F/’f—IX)
— RHOII]S//f71X (L(f|X)*(G’)(), F,’fle)
=~ RHomg, x (G|x, (Rf«F')|x)

of ¢ and the adjunction isomorphism since ¢ and the adjunction isomorphism commute
with the unit and the counit and the composite of the counit and the unit is the identity.
This composite is an isomorphism if ¢ is an isomorphism. Hence the result follows. [J

Using the above, we obtain a compatibility between Lf* and ®” under an f-
compatibility assumption:

Proposition 2.9.  For any G, F € D(S), consider the morphism
LI (Ge"F) = Lf*Ge" Lf*F
corresponding to the composite
G F = Rf.Lf*G@F Rf.Lf*F — Rf.(Lf*G @F Lf*F)

of the unit of adjunction and the morphism (2.2). This morphism is an isomorphism if
G or F is f-compatible.

Proof. We may assume that F' is f-compatible. For any F’ € D(S’), we have

isomorphisms
RHomg (Lf*G @ Lf*F, F’)
>~ RHomg (G, Rf.RHomg (Lf*F,F"))
>~ RHomg (G, RHomg(F, Rf.F'))
~ RHomg (Lf*(G®" F), F’)

in D(Ab) functorial in F’, where the second isomorphism is given by the previous
proposition. This implies the result. O

§ 3. Derived pullback from the perfect artinian étale site

In the rest of the paper, we let k be a perfect field of characteristic p > 0. We fix
our basic terminology:
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Definition 3.1.
(a) A perfect field extension of k is a field extension of k that is a perfect field.

(b) A k-scheme is said to be perfect if its (relative or absolute) Frobenius morphism is

an isomorphism.

(c) For a k-algebra (resp. a k-scheme), its perfection is the direct (resp. inverse) limit

along Frobenius morphisms on it.

See [BGA18] for a general reference on perfect schemes. In [BGA18, Section 5], the
perfection of a k-scheme is called the inverse perfection. A perfect field extension does
not have to be the perfection of a finitely generated extension of k.

Definition 3.2.

(a) Define kP to be the category of finite products of perfect field extensions of k with
k-algebra homomorphisms.

(b) For any k' = [[ Kk, € kP™?" with fields k,, define k'P***" to be the category of k'-
algebras k" = [[ k! with each factor k! € k;P**™" with k'-algebra homomorphisms.

Proposition 3.3.  For any k' € kP, the category k'’ is canonically equiv-
alent to the category of morphisms k' — k" from k' in kPerar.

Proof. A perfect field extension of a perfect field extension is a perfect field ex-
tension. This implies the result. O

A similar statement does not hold for the category of ind-rational k-algebras kmdrat
(see the second paragraph after [Suzl3, Definition 2.1.3]). An étale algebra over an
object of kP is again in kP"?". The tensor product ks ®g, k3 of morphisms in kP2
does not belong to kP'®" in general, but it does if either ks or k3 is étale over ky. Now

perar

we define the site Spec kg;

Definition 3.4.

(a) For any k' € kP we put the étale topology on (the opposite category of) the

category k'P'® and denote the resulting site by Spec kX", That is, a covering of

k" € K'Perar s a finite family of étale k' -algebras {kl'} such that [] k! is faithfully
flat over K.

(b) We denote the cohomology functor for Speckls™ at the object k' by H™(kL,, - ),
with derived categorical version RI'(kl, - ).
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(c) We denote the sheaf-Hom functor Homg,e, rerar for Speckg ™ by Homyperar.

As above, we are not always strictly rigorous about the distinction between the
algebra k’ and the corresponding affine scheme Speck’ in this paper. The context
should make it clear.

The general rule to denote a site in this paper is that the upper script (such as
“perar”) denotes the type of objects of the underlying category and the lower script
(such as “et”) denotes the topology.

Proposition 3.5.  For any k' € kP, the site Spec k'P™@" is canonically equiv-
alent to the localization Spec kP2 [k’ of the site Spec kP at the object k’.

Proof. This follows from Proposition 3.3. O

For any perfect k-scheme (resp. perfect k-group scheme) X, we denote by the same
symbol X to also mean the sheaf of sets (resp. groups) on Spec k5™ represented by X,
which is described as follows.

perar

Proposition 3.6.  Any perfect k-scheme X as a sheaf of sets on Speckg, = 1is
given by the disjoint union of its points (identified with the spectra of the residue fields).
As a presheaf of sets, this disjoint union sheaf in the étale (or Zariski) topology may be
described as the filtered union of finite sets of points of X.

Proof. Any morphism Speck’ — X from the spectrum of a perfect field extension
k' of k factors uniquely through a point of X. If ¥/ € kP®™' then any morphism
Speck’ — X factors uniquely through a finite set of points of X. These show the

proposition. Ol
We recall the site Spec k:gf;g)pf defined in [Suz13, Remark 3.8.4] (which is a variant
of the site Spec kgféfppf defined in [Suz13, Section 3.1]).

Definition 3.7.

(a) Define kPert’ to be the category of quasi-compact quasi-separated perfect k-schemes
with k-scheme morphisms.

(b) A morphism'Y — X in kP is said to be flat of finite presentation (in the perfect
sense) if it is the perfection of a k-morphism Yy — X flat of finite presentation in
the usual sense.

(¢) A morphismY — X in kPert’ s said to be flat of profinite presentation if it can be
written as the inverse limit %iLnYA — X of a filtered inverse system of morphisms
Yy — X in kperf’ flat of finite presentation (in the above perfect sense) with affine
transition morphisms Y, — Y.
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(d) A faithfully flat morphism of (pro)finite presentation is, by definition, a flat mor-
phism of (pro)finite presentation that is surjective.

e) We define the site Spec kP10 be the category kP where a covering {X; — X
profppf

is a finite jointly surjective family of morphisms X; — X flat of profinite presenta-
tion.

(f) For X € kP we denote the localization of Spec kgfgi;pf at X by nggff;pf.

See [Suz13, Remark 3.8.4] and [Suz13, Section 3.1] for the details about Spec kgfgﬁ;pf

(see also [Suz20b, Appendix A]). Restricting the objects of the underlying category to
rf
kgfofppf

k-schemes. The morphism of sites Spec k:gf;g)pf — Spec kﬁfgippf defined by the inclusion

functor on the underlying categories induces an equivalence on the topoi by the same

perf’
profpp

affine schemes, we have the corresponding pro-fppf site Spec of perfect affine

proof as [Suz20b, Proposition (A.4)]. We only use Speck ¢ in this paper, though

[Suz13] uses Spec kfﬁfégppf and we use results from [Suz13].

We relate Spec kb, ™" to Spec kﬁfcigppf'

Definition 3.8.  We denote by

[ . perf’ perar
h: Specky, o — SPEC ki

the premorphism of sites defined by the inclusion functor on the underlying categories.

In [Suzl3, Section 3.5], a similar closely related premorphism Spec kgreéfppf —

Spec kdrat to the ind-rational étale site was denoted by h, though we do not technically
need h in this paper. We generally put the accent symbol “ to distinguish objects for the
ind-rational étale site and objects for the perfect artinian étale site. We need to clearly
distinguish and compare these two sites when we cite [Suz13]. A perfect k-scheme X
viewed as a sheaf on Spec k2™ is nothing but A, X.

Just as h is not a morphism of sites ([Suz13, Proposition 3.2.3]), neither is & by the

same reasomn:

Proposition 3.9.  The pullback frset for sheaves of sets is not exact. More

explicitly, the natural morphism
h*set (A%) — (h*setA};)2

. perf’ . . . n - .
m Set(k:pmfppf) is not an isomorphism, where A} is the perfection of affine n-space over
k.

Proof. By Proposition 3.6, the sheaf frset (A?) is the disjoint union of points of
the k-scheme AZ. Also, the sheaf (ﬁ*setA,ﬁ)Z is the disjoint union of the k-scheme fiber
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products = xj y, where z,y € A}. If x = y is the generic point of A}, then = x, y is not
a point and hence not contained in the image of the morphism in question. U

There is a certain functoriality available for h:

Proposition 3.10.  Let k' be a perfect field extension of k. Consider the pre-

morphism h with k replaced by k', and denote it by hy : Spec k:g;irfgpf — Spec kP
This agrees with the restriction h|g : Spec kgi‘;;pf — Spec kb /K" of h under the iden-
tification given in Proposition 3.5.

Proof. Obvious. O

We study the derived pullback functor Lh*. First, it does nothing on étale group
schemes. More precisely:

Proposition 3.11.  Let G be a commutative étale group scheme over k. Con-
sider the natural morphism Lh*G — h*G and the counit of adjunction h*G = h*h,G —
G. Their composite Lh*G — G is an isomorphism (or equivalently, L.h*G =0 for
n>1 and H*GQG).

Proof. Let f: Spec kgfgﬁ;pf — Spec ket and g: Spec kb — Spec ke, be the mor-
phisms of sites defined by the inclusion functors on the underlying categories. Then
f=go h. Hence = Lﬁ*g* by Proposition 2.6. Since G is étale over k, we have
7*G = ¢g*¢.G = G and f*G = f*f,G = G. Applying f* = Lfl*g* to G, we get the
result. U

Now we study Lh* applied to pro-algebraic groups. Recall from the Notation part
of Section 1 that we use the symbols I and P to denote the ind-category and the pro-
category constructions, respectively.

Definition 3.12.

(a) Define Alg/k be the category of perfections of commutative algebraic groups over k
with group scheme morphisms over k.

(b) Define P’Alg/k C PAlg/k be the full subcategory consisting of extensions of perfec-
tions of abelian varieties by perfect affine group schemes.

(c) For any G € P'Alg/k (or PAlg/k), its group of geometric connected components is
denoted by wo(G), which is a pro-finite-étale group scheme over k (see the paragraph
after [Suz20b, Equation (2.1.1)]).
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The category P’ Alg/k was previously denoted by P’Alg’ /k in [Suz13, Remark 3.8.4].
The category PAlg/k is the (abelian) category of pro-algebraic groups in the sense of
Serre [Ser60]; see the paragraph after [Suz20b, Equation (2.1.1)] for more details on
Serre’s category. Any object of P’Alg/k is representable in kpert’ . We view P/ Alg/k C

Ab(kgfg;pf), which is an exact embedding by [Suz20b, Proposition (2.1.2) (e)].

Definition 3.13.

(a) Define P Alg/k to be the full subcategory of P'Alg/k consisting of objects G with
finite mo(G).

(b) The disjoint union of the generic points of the irreducible components of G €
Pt Alg/k is denoted by {q € kP,

The category Pf Alg/k is closed under cokernel, but not under kernel and hence
not abelian. For instance, the kernel of multiplication by [ # p on the perfection of the
connected affine group G is not finite.

Recall from [Suz20b, Proposition (2.3.4)] that the Yoneda functor induces a fully
faithful embedding from the ind-category IPAlg/k = I(PAlg/k) to Ab(kPF ), which

profppf

itself induces a fully faithful embedding D®(IPAlg/k) — Db(kgfgf;pf). We define a
slightly larger category than Pj Alg/k so that we can simultaneously treat non-finite

étale group schemes such as the discrete group scheme Z.

Definition 3.14.  Define & to be the full subcategory of Ab(kgfégpf) consisting
of objects G that can be written as an extension 0 — G’ — G — G"” — 0, where
G’ € IP; Alg/k and G an étale group scheme over k and the morphism G — G" is

surjective (not only in the pro-fppf topology but also) in the étale topology.

The category & contains perfections of smooth group schemes over k. As above, an
object G € P'Alg/k viewed as an object of Ab(kP®™") (or equivalently, 5, @) is denoted
by the same symbol G. We extend this convention to G € &, writing /.G simply as G.

Theorem 3.15. Let G € &. Then the morphism Lh*G — G in D(kgfégpf)

defined as in Proposition 3.11 is an isomorphism.

The proof of this theorem will finish at the end of Section 6.

84. Review of Mac Lane’s resolution

To compute the derived pullback, we need Mac Lane’s canonical resolution of
abelian groups [ML57]. We merely provide notation for Mac Lane’s resolution and
list its properties that we will use later. For the definition itself, see [ML57]. Also see
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[Lod98, Chapter 13] for a more accessible account. What we need are summarized in
[Suzl13, Section 3.4].

As one can see from the proof of Proposition 5.1 in the next section, the key point
of Mac Lane’s resolution of an abelian group G is that each term is essentially built up of
terms of the form Z[G] (the group ring of G), and not of the form Z[Z|G]|, Z|Z[Z|G]]] etc.
that one typically needs for simplicial resolutions, so that the higher derived pullback
of each term by a premorphism of sites vanishes under some representability condition.
Phrased differently, Ext groups Ext"(G, - ) for a sheaf of groups G on a site can be
essentially described by cohomology groups H"(G, - ) = Ext"(Z[G], - ) of G if G
satisfies some representability condition. This is important when we have an exactness
property of a relevant pullback functor only for representable presheaves (i.e. when we
have a premorphism of sites that is not a morphism of sites).

We need symbols for Mac Lane’s resolution and the related construction, the cubical
construction.

Definition 4.1.
(a) We denote the free abelian group generated by a set X by Z[X].

(b) Let G — Q'(G),Q(G), M(G) be the (non-additive) functors that assign (homologi-
cally non-negatively graded) chain complexes to abelian groups G defined in [ML57,
§4, 87] (where the base ring A is taken to be Z).

See also [Lod98, §13.2 and E.13.2.1] for Q" and @. In the notation of [Lod98,
Lemma 13.2.12], M(G) is given by the two-sided bar construction B(Z,Q(Z),Q(G))
(where we and [ML57] do not assume G to be finitely generated free). We will use the
following properties.

Proposition 4.2.
(a) The n-th term Q' (G) of Q'(G) for any n > 0 is given by Z[G?"].
(b) The complex Q(G) is a functorial quotient of Q'(G) by a subcomplex.

(¢c) For each n > 0, the quotient map Q. (G) — Qn(G) admits a functorial splitting
sn: Qn(G) — QL (G) ([Lod98, Lemma 13.2.6] for example).

(d) We have a functorial homomorphism My(G) — G (which is given by Z|G|/Z(0g) —
G, (9) — g), and the complex M(G) = (--- LA M, (G) LA My(G)) is a functorial
resolution of G ([ML57, Théoréme 6]).

(e) As a graded abelian group forgetting the differentials, M(G) can be functorially
written as Q(G) ®z B for some graded abelian group B that does not depend on G
and whose n-th term is free for any n.
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The group B is B(0,Q(Z),nq) in Mac Lane’s notation [ML57, §7, Remarque 1] and
B(Z,Q(Z),7) as a two-sided bar construction.

We recall the splitting homotopy from the last two paragraphs of [Suzl3, Section
3.4]. See also [ML57, §5, §8] (resp. the proof of [EM51, Theorem 11.2]) for the splitting
homotopy with respect to additive projections (resp. arbitrary homomorphisms).

Definition 4.3.

(a) Let oo, p1: G — H be any homomorphisms of abelian groups with sum ¢ = g+ p1
and let n > 0. We view 2 = {0,1}. Define a map V: G*>" — H2"" by sending

0<i(1),6(2),.veri(nt1)<1
In other words, V- = (¢q, p1): G** — H?" x H?" with respect to the decomposition
ntl — 92 % om,

(b) This extends to a homomorphism V: Q) (G) — Q)1 (H), which factors through the
quotient V: Qn(G) = Quni1(H). Define a homomorphism V: M, (G) — M,+1(H)
by V ®id on Q(G) @z B.

(¢) The homomorphisms o, 1, ¢ induce homomorphisms o, p1,¢: Q' (G) — Q'(H)
of complexes by functoriality. We have similar homomorphisms of complexes for Q
and M. Define a homomorphism of complezes T: Q'(G) — Q'(H) by wo + 1, and
similarly T: Q(G) — Q(H) and T: M(G) — M(H).

Note that ¢ # pg+ 1 for @', @Q and M since they are non-additive functors. Here
is the key property, which says that @', @ and M are additive up to the homotopy V'
(see the cited references above for the proof):

Proposition 4.4. We have
T—9p=0V+Vo
as Q'(G) — Q'(H), Q(G) —» Q(H) and M(G) — M(H), where O denotes the differen-

tials of these complexes.
The above constructions generalize to (pre)sheaves of groups G by functoriality.
Definition 4.5.  Let S be a site.
(a) For a presheaf of abelian groups G, define
Zo[GI(X) = ZIG(X)],  Qb(G)(X) = Q'(G(X)),
Qp(G)(X) = Q(G(X)), Mp(G)(X) = M(G(X)),
for X € S.
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(b) For G € Ab(S) (that is, a sheaf of abelian groups), sheafification produces corre-
sponding sheaves Z|G|, Q(G), Q' (G) and M(G).

The subscript P for the presheaf constructions means “pre”. Of course 1" and V'

extend to the (pre)sheaf setting, but we do not need this extension in this paper.

§5. Mac Lane’s resolution and derived pullback

We relate Mac Lane’s resolution to derived pullback functors. Let f: S’ — S be a
continuous map of sites and f~! the underlying functor on the underlying categories.
Let G’ € Ab(S’). For any X € S, the X-valued points of the complexes Mp(f.G’) and
f«Mp(G') (where f, is applied term-wise) both give M (G’(f~1X)). Hence Mp(f.G') =
f+«Mp(G') as complexes of presheaves on S. With sheafification, we obtain a canonical
morphism M (f.G") — f.M(G") of complexes of sheaves on S. By adjunction, we obtain
a canonical morphism f*M(f.G’) — M(G') of complexes of sheaves on S’. Composing
it with the morphism M (G’) — G’, we obtain a canonical morphism f*M(f.G') — G'.
In other words, we have a complex

s = fIML(fGN) = Mo (f.G) - G' =0

in Ab(S5’).

We can ask whether or not the complex f*M(f.G’) gives a resolution of G’ in this
manner. When f is a premorphism of sites, this question is closely related to whether
the morphism Lf*f.G" — G’ in D(S’) is an isomorphism or not. To see this relation, we
need the fact that Mac Lane’s resolution calculates L f* under a certain representability
condition:

Proposition 5.1.  Let f: 8" — S be a premorphism of sites defined by pretopolo-
gies and G € Ab(S). Assume that G as a sheaf of sets is the sheafification of a filtered
direct limit of representable presheaves. Then the natural morphism

Lf*M(G) — [*M(G)

in D(S") is an isomorphism.

Proof. The spectral sequence
EY =L _;f*M_;(G) = HYILf*M(G),

shows that it is enough to show L; f*M;(G) = 0 for any j > 1 and 7 > 0. Furthermore,
it is enough to show that L; f*Z[G] = 0 by the structure of M;(G) (Proposition 4.2 (a),
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(b), (c), (e)). Being a left adjoint, f* commutes with direct limits. Hence by [Suzl3,
Lemma 3.7.2] and [KS06, Corollary 14.4.6 (ii)], we know that L;f* commutes with
filtered direct limits. Hence, by the assumption on G, the statement reduces to the fact
[Suz13, Lemma 3.7.2] that L; f*Z[X] =0 for X € S. O

Using this, we obtain the desired relation:

Proposition 5.2.  Let f: S" — S be a premorphism of sites defined by pre-
topologies and G' € Ab(S”). Assume that f.G' as a sheaf of sets is the sheafification of
a filtered direct limit of representable presheaves. Then the morphism Lf* f.G' — G’ is
an isomorphism in D(S") if and only if f*M(f.G’) is a resolution of G'.

Proof. 'We have a commutative diagram

Lf*M(f.G") —— f*M(f.G') —— M(G)

l l |
Ly f.¢" —— ARG ——

in D(S”). Hence the result follows from the previous proposition. O

Note that G’ = Z[X'] for X’ € S’ does not always satisfy the assumption of the
proposition. The description of Z[X'] as a sheaf of sets involves quotients of powers of
X’ by some equivalence relations, which are not filtered direct limits.

To prove Theorem 3.15, the key step will be to show that A* M (G) is a resolution

of G € P{ Alg/k in Ab(k:gfggpf), which we will do in the next section.

§6. Acyclicity of the pullback of Mac Lane’s resolution

Let G € P{ Alg/k. Let L be a finitely generated free abelian group. Denote the
sheaf-Hom, Hom, ,.v (L, G), by [L,G] € P Alg/k. Let X € kPert” and set Y =

profppf

X xp [L,G] € kP, Let ¢: L — G(X) be a homomorphism. Its composite with the
homomorphism G(X) — G(Y) induced by the first projection Y — X is still denoted by
¢. The natural evaluation homomorphism L — G([L, G]) is denoted by ¢q. Therefore
©(a) for any a € L is a morphism X — G in kP and ¢ (a) is a morphism [L, G] — G
in P; Alg/k. The composite of ¢ with the homomorphism G([L,G]) = G(Y) induced
by the second projection Y — [L, G] is still denoted by ¢g. Set o1 = p—po: L — G(Y).
Since G € Pj Alg/k is faithfully flat of profinite presentation over k, the scheme Y is
faithfully flat of profinite presentation over X. We recall the following fact from [Suz13,
Lemma 3.6.2] to create sufficiently many pro-fppf covers of X:
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Proposition 6.1. Let Z; — Y be morphisms in k:perf/, 1 = 1,...,n, and let
Z =71 Xy - Xy Zy. Assume the following conditions for each i:

o 7, — Y is flat of profinite presentation,
o the morphism (Z;), — Y. on the fiber over any point x € X is dominant.

Then Z also satisfies these two conditions. In particular, Z/X is faithfully flat of

profinite presentation.

Proof. This follows from the fact that a flat base change of a dominant morphism
is dominant. U

Recall that h is not a morphism of sites (Proposition 3.9). We note the structures
of hizetG and hiZp|G).

Proposition 6.2.  Let h; (resp. ﬁlﬁset) be the pullback functors for presheaves of
abelian groups (resp. sets) by h.

(a) The presheaf ﬁ;setG on Spec k:gf;g)pf 15 the filtered union of finite sets of points of

G, which is a subpresheaf of G.

(b) The presheaf hiZp|G] on Spec gpert ¢ is the filtered union of Zp[x| over the finite

profpp
sets of points x of G, which is a subpresheaf of Zp|G].

Proof. This follows from Proposition 3.6. U

The following proposition and its proof are a variant of [Suz13, Lemma 3.6.3], with
the ind-rational étale site replaced by the perfect artinian étale site. The proposition
allows us to pro-fppf locally “generify” sections of G' (and G?).

Proposition 6.3. Leta € L.

(a) There exist a scheme Z € ket and a k-morphism Z — Y satisfying the two

conditions of Proposition 6.1 such that the natural images po(a), v1(a) € G(Z) are
contained in the subset (hSG)(Z).

(b) If p(a) € G(X) is contained in (RE*G)(X), then Z can be taken so that the natural
image (@o(a), ¢1(a)) € G2(Z) is contained in (h°(G?))(Z).

Proof. (a) The element ¢g(a) gives a morphism [L,G] — G in Pi Alg/k, whose
image Im(po(a)) is again in P Alg/k. Hence its generic point & (e, (q)) is an object of
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kPerar (Definition 3.13). Consider the following commutative diagram in kP’ with a

cartesian square:

Yo (Cl) - (glm(goo(a))) — gIrn(cpo (a))

wo(a)
lincl incll
L, G 2, Im(go(a)) —2 @,

The bottom arrow in the square is faithfully flat of profinite presentation since it is a
surjection of pro-algebraic groups. The right arrow is dominant flat of profinite pre-
sentation. Hence the left arrow is dominant flat of profinite presentation. We define
Z1 = X Xp ©0(@) " (Eim(po(a))). Then the natural morphism Z; — Y satisfies the
two conditions in Proposition 6.1 by the same reasoning as the proof of Proposition
6.1. The natural image ¢o(a) € G(Z1) is a morphism Z; — G that factors through
Emm(po(a)) C MG (Proposition 6.2). Hence ¢o(a) € (h'G)(Z1).

The morphism ¢: L — G(X) defines a morphism ¢: X — [L,G]. We have an
automorphism of the X-scheme Y = X Xy [L,G] given by (x,v) + (z,o(z) — ).
The composite of this with the morphism ¢o(a): Y — G is ¢(a) — pola) = p1(a).
We define Z; — Y to be the inverse image of the morphism Z; — Y by this X-
automorphism of Y. Then we have ¢;(a) € (h5°G)(Z,) by the previous paragraph
and Zs satisfies the two conditions of Proposition 6.1. We define Z = Z; xy Z5. Then
we have pg(a), p1(a) € (fzi'ésetG)(Z) and Z satisfies the two conditions of Proposition
6.1.

(b) Assume that p(a) € (leisetG) (X). Consider the automorphism (b, ¢) <> (b+c,b)
of the group G2, which maps (¢g(a), p1(a)) to (p(a),po(a)). Hence it is enough to
show that we can take Z so that (p(a),po(a)) € (ﬁ;set(Gz))(Z). The image Im(p(a))
of p(a): X — hiFeG C @ is an object of kP (Proposition 6.2). We have a faithfully
flat morphism ¢(a): X — Im(p(a)) of profinite presentation. Define W = Im(¢p(a)) Xk
Im(¢pp(a)), which is the finite disjoint union of the fibers Wy, € P{ Alg/k’ over the points
Speck’ of Im(p(a)). In particular, its generic point &y is an object of kP, We have
a faithfully flat morphism (p(a),po(a)): X X [L,G] — W of profinite presentation.
Consider the following commutative diagram with a cartesian square:

(¢(a), po(a) 1 éw) ————— &w

(p(a),p0(a))

lincl inclJ{

X Xk [L, G] (Lp(a),(po(a))} incl G2

We define Z = (p(a), vo(a)) " (éw). Then (¢(a), po(a)) € (At (G?))(Z) by the same
argument as above. The square in the above diagram can be split into the following
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two cartesian squares:

Z — X Xim(ep(a) W E— Ew
rojy

lincl lincl incll
Y (id,p0(a)) X X, Im(@()(a)) (¢(a),id) 1974

The bottom two arrows are faithfully flat of profinite presentation. The third vertical
arrow is dominant flat of profinite presentation. By pulling back the left square by a
point of X, we see that the morphism Z — Y satisfies the two conditions of Proposition
6.1. O

The above proposition extends to Z[G] and Z[G?] in the following manner.

Proposition 6.4.  Let t € Z[L].

(a) There exist a scheme Z € kP and a k-morphism Z — Y satisfying the two
conditions of Proposition 6.1 such that the natural images @o(t), ¢1(t) € Z|G(Z)] =
Zp|G)(Z) are contained in the subgroup (hZp|G))(Z).

(b) If o(t) € Z|G(X)] is contained in (hiZp|G])(X), then Z can be taken so that the
natural image (@o, 01)(t) € Z|G2(Z)] is contained in (hsZp|G?))(Z).

Proof. Write t = Y1, mi(a;), m; € Z, a; € L, where (a;) is the image of a; in
Z[L]. For any i, take Z; corresponding to a; € L given in the previous proposition (a).
Then ¢y (as), p1(a;) € Zp[hE*G)(Z;) = (htZp[G))(Z;). Let Z = Zy Xy - - Xy Zy,. Then
Z/X is faithfully flat of profinite presentation by Proposition 6.1, and we have ¢ (t) =
S mago(as) € (hZp[G))(Z) and similarly oy (t) € (h5Zp|G])(Z). The statement for
(po,01)(t) = > mi(po(asi), v1(a;)) is similar, using the previous proposition (b). O

Now we consider the homomorphisms V': @;,(L) = @Q;, ., (G(Y)) and T': Q;,(L) —
Q) (G(Y)) corresponding to ¢g, ¢1: L — G(Y) as defined in Definition 4.3, and similar
morphisms for Q and M. The above proposition on Z[ - | extends to Q’, Q, M using the
homomorphisms 7" and V':

Proposition 6.5. Let F be one of the functors Q', Q or M. Let n > 0 and
te F,(L).

(a) There exist a scheme Z € kPert and a k-morphism Z —'Y satisfying the two condi-
tions of Proposition 6.1 such that the natural image T'(t) € F,,(G(Z)) = Fp »(G)(Z)
is contained in the subgroup (iLl*ngm(G))(Z).

(b) If o(t) € Fn(G(X)) is contained in (hsFp,(G))(X), then Z can be taken so that
the natural image V(t) € F,,4+1(G(Z)) is contained in (fLi';Fpﬁ_i_l(G))(Z).
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Proof. First, let F = Q', s0o F,, = Z[( - )*"] (Proposition 4.2 (a)). Then t € Z[L?"].
Applying the previous proposition to L?" and G2 instead of L and G, we know that
©o(t),¢1(t) € ZIG*" (Z)] = Zp[G2")(Z) are contained in (h5Zp[G2"])(Z). So is their
sum T'(t). If p(t) € Z[G*" (X)] is contained in (h5Zp[G2"])(X), then the same method
shows that Z can be taken so that the natural image (vo, p1)(t) = V(1) € Z[GQWF1 (2)]
is contained in (h3Zp|G2"))(2).

Next let F' = Q. Let s,: Q, < Q) be the section to the quotient Q!, - @,, as
in Proposition 4.2 (c¢). The case of Q" above applied to s, (t) € Q),(L) gives a scheme
Z € kPt and a k-morphism Z — Y satisfying the two conditions of Proposition
6.1 such that the natural image T'(s,(t)) € @, (G(Z)) = @p,(G)(Z) is contained in
(fLngig’n(G))(Z). Taking the quotient, we know that T'(t) € Q,(G(Z )) Qpr.n(G)(Z)
is contained in (h5Qp.,(G))(Z). If o(t) € Q,(G(X)) is contained in (A5Qp.n(G))(X),
then s, (¢(t)) = ¢(sn(t)) € Q),(G(X)) is contained in (hf;QPm( ))(X). Hence the case
of Q' implies that Z can be taken so that the natural image V (s, (t)) € Qn+1( (2)) is
contained in (ﬁi’;thH(G))(Z). Thus V() € Qny1(G(Z)) is contained in (A5 Qp ni1(G))(Z).

Finally, let FF = M. For each m > 0, take a basis J,, of the free abelian group
B,, (Proposition 4.2 (e)) and write B,, = Z®/m. Then M, = @,,K Q% Tn=m since
M = @ ®z B as graded abelian groups. In this decomposition, 7" and V on M,, are
given by the term-wise applications of 7" and V' on the @,,. Hence the case of F' = @)
implies the case of F' = M. O

Proposition 6.6.  The complex h*M(G) in Ab(kzgfﬁppf) is a resolution of G.

Proof.  We know that h* M (G) is the pro-fppf sheafification of fl,l*)Mp(G). We want
to show that the complex

= W*Mp 1 (G) = h*Mp o(G) = G = 0

in Ab(k;greéﬁppf) sheafifies to an acyclic complex. Let n > —1 and X € kPt Let
u € (hsMp,,(G))(X) with du = 0 if n > 1; u € (b Mp o(G))(X) whose natural image
in G(X) is zero if n = 0; and v € G(X) if n = —1. Since M(G(X)) is a resolution of
G(X), there exists an element u’ € M,,11(G(X)) such that: du’ = u if n > 0; and the
natural image of v/ in G(X) is u if n = —1. Take a finitely generated free abelian group
L, a homomorphism ¢: L — G(X) and an element t' € M,,+1(L) such that p(t') = v’
Then ¢(0t') = u, where 0t' in the case n = —1 is understood to be the natural image
of t in L. Applying the previous proposition (a) to ¢ and (b) to 0t’, we know that
there exist a scheme Z € kP and a k-morphism Z — Y satisfying the two conditions
of Proposition 6.1 such that T'(t') € M,4+1(G(Z)) = Mp ,+1(G)(Z) is contained in
(ht Mp ., (G))(Z) and V(dt') € Mpy1(G(Z)) is contained in (h%Mp ,41(G))(Z). We
have T'(t') — o(t') = 9(V(¥')) + V(O(t')) in M,,+1(G(Z)). Hence u = (T (t') — V(dt"))
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if n > 0 and u is the image of T'(t') — V(0t') in G(Z) if n = —1. Since T'(t') — V(0t') €
(E;Mp,n+1(G))(Z ) and Z/X faithfully flat of profinite presentation, this proves the
result. O

Now we prove Theorem 3.15.

Proof of Theorem 3.15. Write G € & as an extension 0 - G' - G - G’ = 0
as in Definition 3.14. Since G — G” is surjective in the étale topology, this short exact
sequence remains exact in Ab(k2™) (after applying h.). Therefore we may assume that
G € IP{ Alg/k by Proposition 3.11. The functor L, h* for any n commutes with filtered
direct limits as we saw in the proof of Proposition 5.1. Hence we may furthermore
assume that G € P} Alg/k. We know that /.G as a sheaf of sets on Spec k2" is the
filtered union of finite sets of points of G by Proposition 3.6. Hence we may apply
Proposition 5.2 to GG. This implies, by the previous proposition, that Lh*G 5 G in

D(kgfggpf). This proves the theorem. O

8§ 7. Consequences of the derived pullback theorem

Theorem 3.15 together with the following finishes the proof of Theorem 1.1.

Proposition 7.1.  The functor & — Ab(KPT™) given by restriction of hy is
fully faithful.

Proof. Let G,H € &,. We have G~ G by Theorem 3.15. As we are denoting
fz*H as H, we have

Homyperar (G, H) = Hom, pere (h*G, H) = Hom ,or (G, H).

profppf profppf

O

We frequently identify &, with its image in Ab(k2&™). The functor Lh* behaves
well on &:

Proposition 7.2.  Any object of the triangulated subcategory (Ey) p(grerary of D(kge )

generated by & (see the notation section in Section 1) is ﬁ-compatible.

Proof. By Definition 2.5, the statement means that for G € &, the morphism
L(h|i)*(Glw) — (Lh*G)|s is an isomorphism for any k' € kP, To show this, we
may assume that G € P; Alg/k and £’ is a field. The restriction G| € Ab(k'P?") is
represented by the scheme-theoretic fiber product G xj k'. The restriction h] g is the
premorphism h with k replaced by k' by Proposition 3.10. Therefore the result follows
from Theorem 3.15 for G over k and G X k' over k’. O
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Theorem 3.15 and Proposition 7.1 are about a single object G € &;. In practice,
we need to treat an object of (&) p(krer>ry.  Then the corresponding statements are
slightly tricky to state since the expression “Lh*G = G” for G € (&) p(kperary does not
literally make sense (the both sides live in different categories). Also, the most practical
category is the full subcategory of D®(kE™™) of objects with cohomologies in &, which
is an additive subcategory of (&) p(kreary but is not triangulated. With these in mind,
we have the following version of Theorem 3.15 and Proposition 7.1 for these categories.

Proposition 7.3.

(a) The functor Lh*: D(KPC™) — D(kgfgi;pf) maps the subcategory (Ex) p(grerary to the

subcategory (é'k)D(kperﬁ/ -
proipp

(b) For any G € D°(kES™) whose cohomologies are in &y, the spectral sequence
EY = L_;h*HY(G) = H™ (Lh*G)
has zero terms for all i # 0, and hence induces an isomorphism
H™(G) =~ H"(Lh*G)

in Ek for all n.

Proof. The first statement follows from the second, which itself follows from The-
orem 3.15. O

The above does not claim that () prerary and (Ex) are equivalent via

f/
D (kgféfppf)

’

Lh*. The best we can say is the above somewhat clumsy statement.
We recall the ind-rational étale site Spec k9" and the ind-rational pro-étale site
Spec kindrat from [Suzl3, Definition 2.1.3] and [Suz20b, Section 2.1].

Definition 7.4.

(a) Define k™% to be the category of finite products of perfections of finitely generated
field extensions of k with k-algebra homomorphisms.

(b) Define k™93 to be its ind-category, whose objects may be identified with k-algebras
that is a filtered union of rational k-subalgebras.

(c) An étale covering of k' € kM4t is q finite family {k}} of étale k'-algebras (nec-
essarily in k- [Suz13, Proposition 2.1.2]) such that [] ki is faithfully flat over
K.

(d) Define the site Spec k93 to be the category k™9™ with this class of coverings.
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(e) A pro-étale covering of k' € k4t js g finite family {k.} of k'-algebras such that
each k} is a filtered direct limit of étale k'-algebras and [k} is faithfully flat over
K.

(f) Define the site Spec kindrat to be the category k™9™ with this class of coverings.

proet

(9) The cohomology functor for Spec l{:g}gg";‘t at the object k' € k™2t 4s denoted by
H™(K!

broet> * )» With derived categorical version RI'(k;

proets )

An object of k™' is the perfection of the ring of rational functions on a not-

necessarily-irreducible variety over k, whence “rat”. These sites are related to Spec kb ™"

kperf’

brofppt PY Premorphisms of sites:

and Spec

Definition 7.5.  Define

perf’ h indrat € indrat ¢ perar
SPeC K ofppt — SPEC Kproer — SPEC ki — Spec kg,

to be the premorphisms of sites defined by the inclusion functors on the underlying

categories. Note that their composite is h.

The composite £oh was denoted by k in [Suzl3, §3.5]. (To be precise, this reference
used the affine version Spec kPt ¢ of Spec kPt ) All the three premorphisms h, h

profpp profppf*
7 perf’ perf . .
and h are defined on Spec kpmfppf (or Spec k:profppf), and their primary usages are roughly

the same: to pin down pro-algebraic groups by perfect-field-valued points. The target
sites are different, though.

The premorphism ¢ is a morphism of sites, which is the change-of-topology mor-
phism on the category k"¥*a' between pro-étale and étale, so that €* is the pro-étale
sheafification functor. The premorphism « is a change-of-category premorphism, whose
pushforward (but not pullback) functor is exact. (The choice of the letter € comes
from the fact that some references use € to denote a change-of-topology morphism,
such as [BK86, paragraph before Theorem (6.7)] between étale and Zariski. On the
other hand, there might not exist a common convention for the choice of letters for

change-of-category premorphisms such as the above a.)
perf’

There are analogues of Theorem 3.15 and Proposition 7.1 for h: Spec K profppt —

Spec kindrat hasically proved in [Suz13] and [Suz20b]:

proet »

Proposition 7.6.  Let &, be the full subcategory of Ab(k:gfgrl)pf) consisting of

extensions of étale group schemes by objects of IP’Alg/k. For any G € &, denote its
image by h, by the same symbol G.

(a) G = Rh,G and Lh*G = G.

(b) h, maps E; and & fully faithfully onto their essential images.
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(¢c) Rh, gives an equivalence from <c‘:’k>D(kperf/ to (k) p(ginaraty and an equivalence
P

rofppf) proet
fT’Om <(c:]<;> tO <Sk>D(k.1ndra€t).

proe

£/
l)(kif;fppf)

Proof. The isomorphism G = Rh,G follows from [Suz20b, Proposition (2.1.2)
(c) and (g)]. We show Lh*G 5 G. The case G € P’Alg/k follows from [Suzl3,
Proposition 3.7.3 and Remark 3.8.4] (see also [Suz20b, Appendix A]). This implies the
case G € IP’Alg/k since L,h* commutes with filtered direct limits as we saw in the
proof of Proposition 5.1. The case GG is an étale group scheme can be proven similarly
to Proposition 3.11. These imply the general case. O

We bring objects from D(kperf/ ) to D(kindrat)‘

profppf proet

Definition 7.7.  We define 4 = Rh,Lh*: D(KPE™) — D(kindrat),

proet

We think of this as an analogue of the pro-étale sheafification functor *. We
will denote the latter functor €* by a in Definition 10.1 below, since it is the usual
notation [AGV72, II, Définition 3.5] for the sheafification or “associated sheaf” functor.
Sheafification commutes with (derived) tensor products. For &, we still have a cup
product morphism under an ﬁ—compatibility assumption:

Proposition 7.8.  For any F,F' € D(kP&™) such that F is h-compatible, we
have a canonical morphism

4(F) @l 4(F') — 4(F oF F')

in D(kndraty functorial in F' and F'.

proet
Proof. By Propositions 2.4 and 2.9, we have canonical morphisms
Rh,Lh*F @ Rh,Lh*F" — Rh,(Lh*F @* Lh*F') + Rh,Lh*(F @' F'),

the latter of which is an isomorphism since F' is ﬁ-compatible. This gives the desired
morphism. O

We bring Proposition 7.6 to D(kindrat).

proet

Proposition 7.9.

(a) The functor &: D(kg™) — D(kpaw) maps the subcategory (Ex)pgrery to the

proet

subcategory (Ek) p(ginaraty .

proet

(b) For any G € D*(kES™) whose cohomologies are in &, we have a canonical isomor-
phism
H™(G) = H"(3(G))

in Ek for all n.



AN IMPROVEMENT OF THE DUALITY FORMALISM 315

Proof. This follows from Propositions 7.3 and 7.6. U

The presence of Lh* in the definition of & makes it difficult to calculate derived
sections RI(K],oei,8( - )) of objects &( - ) over each k' € k4rt, The situation is better
under an h-acyclicity assumption; see the proof of Proposition 8.5 below. Here are

criteria of fz—acyclicity:
Proposition 7.10.

(a) If {F\} is a filtered direct system in Ab(KEC™™) consisting of h-acyclic objects, then
its direct limit is fz-acyclic.

(b) If G € P'Alg/k can be written as hm G, with Gy, € Alg/k such that the transition
morphisms Gn+1 — G, are surjective with connected unipotent kernel, then G as
an object of D(KEE™™) is h-acyclic.

Proof. 'The first statement follows from the fact that L, h* commutes with filtered
direct limits and R™h, also commutes with filtered direct limits by [Suz20b, Proposition
(2.2.4) (b)]. For the second statement, the assumption implies that G € P{ Alg/k,
hence Lh*G = G by Theorem 3.15. By Proposition 7.6 (a), we have Rh,G =~ G.
Since Rh. = o, Re,Rh,, we have Rh,Lh*G =~ a,Re,G. Hence it is enough to show
that RI(k.,,G) = RT(k/

broet» @) for any perfect field extension & over k. This can be

proven in the same way as [Suz20b, Proposition (2.4.2) (b)] (or is reduced to it). O

8§ 8. A duality formalism for local fields

Let K be a complete discrete valuation field with perfect residue field k of charac-
teristic p > 0. Denote its ring of integers by Ok and maximal ideal by pgr. If K has
mixed characteristic, then O is a finite free W (k)-algebra. If K has equal characteris-
tic, then Ok is a pro-finite-length k-algebra, and hence a pro-finite-length W (k)-algebra
via the reduction map W (k) — k. As in [Suzl3, §2.3], we make the following definition.

Definition 8.1.  For k' € kP*™*, we define

Ok (k') = W(K') ®wy Ox = Um(Wa(K') ©@w, ) Ox/pk).

n

K(k/) = OK(k'/) ®o, K.

The functors k' — Ok (k') and K (k") commute with finite products, taking values
in the categories of O k-algebras and of K-algebras, respectively. If k' has only one direct
factor (hence a perfect field extension of k), then Ok (k') is a complete discrete valuation
ring with maximal ideal px Ok (k') and residue field &', and K (k') is its fraction field.

We consider the fppf sites of Ok and K. To be precise:



316 TAKASHI SUZUKI

Definition 8.2.

(a) Define Spec Ok sppt (Tesp. Spec Kippt) to be the category of Ok -algebras (resp. K-
algebras) endowed with the fppf topology.

(b) The sheaf-Hom functor for Spec Ok gppt (Tesp. Spec Kippt) is denoted by Homp
(resp. Homp ).

We have the following “structure morphisms of O and K over k”:

Proposition 8.3.

(a) The functors O, K define premorphisms of sites

perar perar

Tox : Spec Ok mppf — Specky, —, Tr: Spec Kgppr — Specky,
respectively.

(b) We have i = 7o, © j, where j: Spec Kgppr — Spec Ok ppt @5 the morphism
induced by the inclusion j: Spec K — Spec O .

Proof. Coverings in Spec kP™" are finite extensions of perfect field extensions of k
up to finite products. Let k" /k’ be a finite extension of perfect field extensions of k. Let
f(x) be the minimal polynomial of a generator of k” /k’. Then W (k") = W (k") [z]/(f(x))
by [Ser79, I, §6, Corollaries to Proposition 15; II, §5, Theorem 3], which is finite free
étale over W (k'), where f(z) is any lift of f(z). Taking the completed tensor product
with O, we know that O (k”)/Ok (k') is a finite free étale covering and hence an
fppf covering. Therefore Ok preserves covering families. For any other perfect field
extension k" of K/, the tensor product k” ®j k"’ is a finite product of finite extensions
of k”'. Hence W (k") ®@w sy W(E") is isomorphic to W (k" @ k). This implies
that Ok (k") ®o . (k) Ok (k") is isomorphic to O(E” @ k""). This shows that 7o, is a
premorphism of sites. We have 7 = 7o, 0j obviously. Hence 7k is also a premorphism
of sites. O

We will define “cohomology of Ok and K with an additional structure as a complex

perar

of sheaves on Spec kg;ggi‘t” using Spec ki, . We will use the very general theorem [KS06,

Theorem 14.3.1 (vi)] on existence of derived functors in Grothendieck categories.
Definition 8.4.
(a) Define
RL(Ok, -) =0 Rfoy .« D(Ok opt) = Dlkpout),
RU(K, - ) =40 Ritx .t D(Kpppt) — D(kindrat),

where T, «» = (Tox )s and T« = (Tk )«
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(b) Define
7',('32,* = [7',('(’);(,* — ﬁK,*]*][—l] Ch(oK,fppf) _ Ch(kj(}e)terar)7
where | -] denotes the mapping cone. We have its right derived functor
R7/TI7*: D(OK,fppf) — D(ké)terar)’
Define

RfCL‘(OK7 . ) ‘—3o0 Rﬁ'x’*: D(OK,fppf) RN D(kindrat).

proet

(¢c) We denote H*(Ok, - ) = H'"RY(Ok, - ) and use the similar notation H? (O, - ),
H"(K, -).

The subscript x is meant to be the closed subscheme Spec k C Spec Ok, so Rf‘w((’)K, :
is the “cohomology of Spec Ok with support on x”. The restriction functor j* as above
will be frequently omitted by abuse of notation. By definition, we have a canonical
distinguished triangle

(8.1) RI,(Ok,F) — RI'(Ok,F) — RI(K, F)

in D(kindrat) functorial in F € D(Of tppt), which we call the localization triangle.

To understand these cohomology functors, we need to know their (derived) sections.
Under suitable ﬁ—acyclicity assumptions, this is given as follows.

Proposition 8.5.

(a) Let G € D(Ok gppt). Assume that Rio, «G is h-acyclic. Then there exists a
canonical isomorphism

RT (k!

proet>

RT(Ok,G)) = RT(O g (K )ppt, G)

in D(AD) for any k' € kP . In particular, if G is bounded below, then we have a
spectral sequence

EY = H' (Koo, H (O, G)) = H' (O (K )ppt, G),
and if moreover k' is an algebraically closed field, then we have an isomorphism
H"(Ok, G)(K') = H" (O (K )pps, G)
for any n.

(b) A similar statement to (a) holds with Og and Ok replaced by K and K, respectively.
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(¢c) Let G € D(Ok tppt). Assume that Rio, «G and Rig .j*G are both h-acyclic.
Then there exists a canonical isomorphism

RT (k!

proet>

Rf‘x((’)K, G)) = Rrgg(OK(k/)fppfa G)

in D(AD) for any k' € kP (where the right-hand side is the usual fppf cohomology
with support on the closed subscheme Speck’ C Spec O (k')). In particular, if G
1s bounded below, then we have a spectral sequence

EY = H' (k!

proet» I:Ii(OKv G)) = H:ic_'_j(OK(k/)fppf? G)’
and if moreover k' is an algebraically closed field, then we have an isomorphism
H} (O, G)(K') 2= H Ok (K )gppr, G)

for any n.

Proof. For (a), since Rftp, +G is h-acyclic, we have
R0, +G = Rh.Lh*Rito,, .G = a,Re a(Rito, «G) = a,Re, R (O, Q).

Taking RI'(kl,, - ), we get the result, noting that an algebraically closed field is w-
contractible [BS15, Definition 2.4.1] (see also the proof of [Suz20a, Proposition 2.5.2]).
Assertion (b) can be proven similarly. Assertion (c) follows from (a) and (b). O

These cohomology functors support a cup product formalism:
Proposition 8.6.
(a) There exists a canonical morphism
RI(K,G) " RT'(K,G') — RI'(K,G o G')
in D(kAat) functorial in G, G’ € D(Kgpps) such that Ritg .G is h-compatible.
(b) There exists a canonical morphism

ROk, G) @ RT',(0k,G") — RT',(Ok,G " @)

in D(kindraty functorial in G, G’ € D(Of tpps) such that Rito, G is h-compatible.

proet

Proof. (a) This follows from Proposition 2.4 applied to 7k and Proposition 7.8.
(b) It is enough to construct a canonical morphism

Rfto, +G @F Rty .G' — R, (G @ G')
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in D(kY™) functorial in (arbitrary) G,G’ € D(Ok gppf). By the same method as
the construction of the morphism (2.2) of Proposition 2.4, it is enough to construct a

canonical morphism
Rf, «RHomo, (G,G") = RHomypesr (Rito, «G, Rty .G")

in D(k5™) functorial in G, G” € D(Ok gpopt). By the same method as the construction
of the morphism (2.1) of Proposition 2.4, it is enough to construct a canonical morphism

frw’* HomoK (G, G//) — Homkstewr (ﬁoK’*G, ﬁx,*G//)

in Ch(kY™") functorial in G,G"” € Ch(Ok fppr). The construction is given by applying
the functoriality of mapping fibers to the commutative diagram

7’T(9K’* HomoK(G,G”) E— Homkgterar(ﬁoK’*G,froKy*G”)

J !

7'/"K,*j* HOm(QK <G7 GH) — Homk&cmr (ﬁOK,*G7 7-,‘—Kﬁkj*C’Y//)
in Ch(k2e™"). 0

The next proposition shows how the above cup product morphisms for Ox and K
are compatible to each other. It is a version of [Suz20b, Proposition (3.3.7)] for RT". This
type of compatibility is important in applications in order to deduce a duality result
for K from that of Ok ([Suz20b, Proposition (5.2.2.2)] for example) and, conversely
in some cases, a duality result for Ok from that of K ([Suz20a, Proposition 2.5.4] for
example).

Proposition 8.7.  Let G, F € D(Ok ppt). To simplify the notation, we denote

['7 ']OK:RHom(’)Ka ['7 ']K:RHOHIK, [', ']k:RHomkindrat,

RI, = RI',(Ok, -), Rlo, = RT'(Ok, -), RIx =RI(K, -).
Then we have a morphism of distinguished triangles

RI,[G, Flo, —— RIp,.[G Flo, ——  RIk[G,Flk

! l l

[RT»,.G, RT',F];, — [RI,G, RV, F], —— [RT'xG, RT',F]i[1]

in D(k2drat) where the horizontal triangles are the localization triangles (8.1), the left
two vertical morphisms are the morphism in Proposition 8.6 (b) translated by the derived
tensor-Hom adjunction, and the right vertical morphism is the morphism in Proposition
8.6 (a) translated similarly composed with the connecting morphism RI'xF — RL,F [1]

of the localization triangle.
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Note that there is a hidden square next to the right square in the diagram since we
are hiding the shifted terms of distinguished triangles from the notation.

Proof. Denote the total complex of the sheaf-Hom double complex functor Homop
by [+, - ]6,- Use the notation [ -, - |% similarly. Denote the total complex of the
sheaf-Hom double complex functor Homyperar for Speckgy — by [ -, - Ji. Let G = T
and F 5 J be quasi-isomorphisms to K-injective complexes. We can check that the

natural diagram

Toxll, JG, —— Tox«ll,J|6, — i1, J]%

! l l

[Tox sl Tp s Jlf —— [T, Ty IS —— [T L, Ty ][]

in Ch(kl™") is commutative up to homotopy (where again there is a hidden square

next to the right one). Applying the localization morphism [ -, - )¢ — [+, - |} (where
[+, - ], = RHomyperar) to the lower triangle, we have a morphism of distinguished
triangles

Rfv.|G, Flo, —— Ritog.G,Flo, —  Rig.G.Flx

! ! !

(R0, «G, Rty F), —— [Rity «G, Rty « F|), —— [Ritk G, Rty F1}.[1]
in D(kY™"). Applying 4 and using the morphism
(G Fy) — [3(G), 8(F)]k

for G', F' € D(k™") coming from Proposition 7.8, we get the result. O

§9. Trace morphisms and a finiteness property of cohomology

In this section, we prove two statements that are keys in order to apply the formal-
ism in the previous section and obtain duality results. The corresponding statements in
[Suz13] and [Suz20b] in the older formalism are proved using some exotic approximation
arguments. The proofs in this section are self-contained and much more standard.

The first statement is the existence of a trace (iso)morphism in this formalism. In
the older formalism, it is [Suz13, Proposition 2.4.4] and [Suz20b, (5.2.1.1)].

Proposition 9.1. There exists a canonical isomorphism

R, (Ok,Gn) = Z][-1],



AN IMPROVEMENT OF THE DUALITY FORMALISM 321

which we call the trace isomorphism. The composite
RI(K,G,,) = RT,(Ok,G,)[1] = Z

1s called the trace morphism.

Proof. We have 7g .G, = K* in Ab(kX™). For any perfect field extension
k' of k, the normalized valuation for the discrete valuation field K(k’) defines a split
surjection K(k")* — Z functorial in £’. This uniquely extends to a split surjection
K(K')* — Z(K") functorial in arbitrary k' € kP°'®" that commutes with finite products.
Hence we obtain a split surjection K* — Z in Ab(kl™™"). Its kernel is 7o, «Gm = O

For n > 1, let 1 + p% C Oj be the subsheaf that assigns k' — 1 + p%Og (k).
Then O} /(1+pk) = Gy, and (1+p%)/(1+pr') =2 G,, and O} is the inverse limit
of Ox/(1+ plk) over n > 1. Hence O € Pj Alg/k and it satisfies the condition of
Proposition 7.10 (b). Hence O is h-acyclic. So is K* 2 Oy X Z € &.

We show that R"7o, «Gy and R"7k G, are zero for any n > 1. They are étale
sheafifications of the presheaves

k' € kP s H™ (O (K'), G), H(K(K'), G).

~

Since Ok (k') is a finite product of complete discrete valuation rings, we have H™" (O g (k'), G,,) —
H™(K', G,,), which sheafifies to zero. To show that the second presheaf sheafifies to zero,
it is enough to show that for any perfect field extension &’ over k, we have
k%/ H"(K(K"),G,,) =0,

where the direct limit is over finite extensions of k' in a fixed algebraic closure of k'
The direct limit of K(k") over k”/k’ is the maximal unramified extension K(k')"" of
K(k'), which is an excellent henselian discrete valuation field with algebraically closed
residue field. Since the direct limit commutes with cohomology, the left-hand side is
isomorphic to H™(K(k")"", G,,). The vanishing of this cohomology is classical ([Ser79,
Chapter V, Section 4, Proposition 7 and Chapter X, Section 7, Proposition 11]).

Therefore Rrp, G = 0;2 and R7k .G, = K*. We apply 4 to them. By
Proposition 7.9 (b), we have

RT(Og,G,,) =23(0*) 20", RI'(K,G,)=23iK")=2K"*
and hence R, (Ok, G,,) = Z[—1]. O

The next one states that R"7 i .G is locally of finite presentation for n > 1 when-
ever it is representable and G is a smooth group scheme over K. In the older formulation,
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it is [Suz20b, Proposition (3.4.3) (a)]. As in [Suz20b, Proposition (3.4.3) (d)], this is a
key step to prove that H!(K, A) € TAlg/k (without a pro-algebraic part) for an abelian
variety A over K, though we do not explain the proof of this fact in this paper.

Proposition 9.2.  Let G be a smooth group scheme over K and n > 1. Then
R"7g «G is torsion and commutes with filtered direct limits as a functor kP<*" — Ab.

Proof. The sheaf R"7k .G is the étale sheafification of the presheaf
k' € kP H™(K(K'), G).

This is torsion since K (k') is a finite direct product of fields and Galois cohomology in
positive degrees is torsion. It is enough to show that

liy H" (K(k), G) 5 H"(K(K'), G)
A

for any k' € kP'®" that can be written as a direct limit of a filtered direct system {k) }
in kP2’ We may assume that the k) and k' are fields. The ring lim K(ky) is an
(excellent) henselian discrete valuation field with completion K(k’). Hence they have
isomorphic cohomology in positive degrees with coefficients in a smooth group scheme
by [GGMBI14, Proposition 2.5.3 (2) (3)]. This gives the result. O

§10. Comparison with the older formulation

Recall the morphism of sites €: Spec k:g}.gg%t — Spec k48t from Definition 7.5.

Definition 10.1.  Define a = ¢* (as Ab(khdrat) — Ab(kg;%g%t) or D(kindrat) —
D(kndraty ) “wphich is the pro-étale sheafification functor.

proet

We compare a and a applied to objects of &.

Proposition 10.2.  For any G € () p(ginarary, there exists a canonical isomor-
phism

(10.1) a(a.G) 2 a(Q)

in <(€k>k;r;g1éat1t. More precisely, the morphism

(10.2) Lh*a,G = Lh*e*La* o, G — Lh*e*G
defined by the counit for a is an isomorphism, the morphism
(10.3) e*G — Rh,Lh*c*G

defined by the unit for h is an isomorphism, and the isomorphism (10.1) is obtained by
applying Rh, to (10.2) and using (10.3) on the right-hand side.
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Proof. We may assume that G € &. Since G is a sheaf for the pro-fppf topology
and hence for any coarser topology, the morphism (10.2) is of the form Lh*G — Lh*G.
But we have Lb*G 3 G by Theorem 3.15 and Lh*G =5 G by Proposition 7.6. Therefore
(10.2) is an isomorphism. The same proposition shows that (10.3) is an isomorphism.

O

Recall the following definition from [Suz20b, Section 2.4].
Definition 10.3.
(a) A sheaf F € Ab(kndrat) js said to be P-acyclic if F = Re,e*F.

(b) An object F € DT (kndrat) js said to be P-acyclic if each cohomology object of F is
P-acyclic. This implies that F = Re,e*F.

The letter “’P’ means “pro”; see [Suz20b, Footnote 8] for more details. Here is the
relation to fz—acyclicity:

Proposition 10.4.  If G € (&) para is P-acyclic, then .G is h-acyclic.

Proof. By Proposition 10.2, we have

RhoLh*a,G = o, Re , Rh Lh* 0, G = v, Re 4(. G)

>~ q,Re "G = a,G.

We can compare cup products for & and a on &:

Proposition 10.5.  Let p: G @ G’ — G" be a morphism in D(kRaY) with
G,G",G" € (E)pmara. Consider the composite of the morphisms

4(0G) @ 4(aG") — 4(aG @" . G') — d(au(G @ G')) — (.G,

where the first morphism is given by Propositions 7.8 and 7.2, the second by Proposition
2.4 and the third by p. Also consider the composite of the morphisms

a(@) @ a(G") 2 a(G el G') — a(@"),

where the first isomorphism is the obvious isomorphism about sheafification and the
second . These two composite morphisms are compatible under the isomorphism (10.1).
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Proof. Arguing similarly to the proof of Proposition 7.2 using Proposition 7.6
instead of Theorem 3.15, we know that a(G) is h-compatible. The same is true for

a(G') and a(G"). Hence we have a canonical isomorphism
Lh* (a(G) o a(@")) = Lh*a(G) @ Lh*a(@")
by Proposition 2.9. Therefore we have a composite morphism
Rh.Lh*a(G) ®* Rh,Lh*a(G') — Rh.(Lh*a(G) ®" Lh*a(G"))
& Rh,Lh*a(G @F @)
— Rh,Lh*a(G").
Now one checks that the diagram

(0, G) @F 4(a.G") — 5 4(G")

Rh,Lh*a(G) ®" Rh,Lh*a(G') —— Rh,Lh*a(G")
[ |
a(G) @t a(@") e a(G")

is commutative. (Be careful that both the upper and middle horizontal morphisms are
actually defined as zigzags of the form e — e <~ e — e.) This gives the result. O

We recall some of the constructions in [Suz20a, Section 2.5].
Definition 10.6.
(a) Define Og (k') and K(k') for k' € k™43t by the same formulas as Definition 8.1.
(b) Define premorphisms of sites
indrat

indrat
Tox : Opec Ok fppt — Speckge ', Tt Spec Keppe — Spec ki

by the functors Ok, K, respectively (which are indeed premorphisms by [Suz20a,
Proposition 2.5.1]).

(¢) Define
I‘((’)K, . ) = A0 MO " Ab(OK,fppf) — Ab(k;gg?t),
'K, -)=aomk . Ab(Kfppr) — Ab(kgigé‘?),

where To, « = (Tox )« and T« = (TK)«. They naturally extend to the categories
of complexes. Define

I‘x(OK, . ) = [I‘(OK’ . ) - ]_"(K, . )] [_1]: Ch(OK,fppf) N Ch(kindrat)‘

proet
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(d) We have their right derived functors

RT(Ok, - ),RT4(Ok, - ): D(Ok sppt) = D(kinast),
RL(K, - ): D(Kgppt) = D(kna®).

(e) We denote H"(Ok, - ) = H"RI'(Ok, - ) and use the similar notation H} (Ok, - ),
H"(K, -).

In [Suz20b, Section 3.3], the functor 7o, . was denoted by I'(Og, - ) and the
functor T'(Ok, - ) was denoted by T'(Og, - ). Similar for their derived versions and for

K instead of Ok.
The relation between these 7o, , 7k and the previous 7o, , 7k is the following.

Proposition 10.7. The composite of
Spec Ok fppt "8 Spec kindrat % Qpec kP

18 To, - The same relation holds with O replaced by K.

Proof. Obvious. 0
We compare RI' and RT.

Proposition 10.8.

(a) Let G € D(Ok fppt). Assume that Rro, +G € (Ek) p(pmarary. Then there exists a
canonical isomorphism RE(Ok, G) = ROk, G) in (E) pinarar.

proet

(b) Let G € D(Kgppt). Assume that Rrg G € (Ek)pginarary. Then there exists a
canonical isomorphism RT'(K,G) = RT(K,G) in (Ek) D(kinaraty -

proet

(c) Let G € D(Ok ppt). Assume that G satisfies the assumption of (a) and that
J*G satisfies the assumption of (b). Then there exists a canonical isomorphism

RY,(Ok,G) = RT4(Ok, G) in (Ek) p(inaraty.

proet

Proof. 'This follows from Propositions 10.2 and 10.7. U

The sheaves RT(Ok, G), RT'(K,G), RT'(Ok,G), RT(K,G) for most of the groups
of interest GG satisfy appropriate acyclicity properties and have cohomologies in £, by

the following proposition:

Proposition 10.9.
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(a) If G is a finite flat group scheme or a smooth group scheme over Ok, then R"wo, G
is P-acyclic and in & for any n (in particular, Rro, +G € (Ek) p(xperary ). The ob-
ject Rto, «G is ﬁ—acyclz’c with cohomologies in Ej.

(b) If G is a finite flat group scheme, a lattice, an abelian variety or a torus over K, then
R G is P-acyclic and in & for any n (in particular, Ry .G € (Ek) pgperary ).
The object Rtk G is ﬁ—acyclz’c with cohomologies in Ej.

Proof. These follow from Proposition 10.4 and [Suz20b, Proposition (3.4.2), (3.4.3)]
except for a finite flat group scheme G = N over K. For this case, the only non-trivial
part is to check that R'mk N is in IP} Alg/k. But this follows from the proof of
[Suz20b, Proposition (3.4.3) (b)]. O

The above two propositions give some information about the structure of Rf‘((’) 5, G),
RIK,G) and RI',(Ok,G). For more detailed information, see [Suz20b, Propositions
(3.4.1), (3.4.2), (3.4.3), (3.4.6); Section 9], [Suz20a, Proposition 2.5.3], [Suz19, Proposi-
tion 6.2 and its proof].

We can compare the cup product morphisms for RI" and RT:

Proposition 10.10.

(a) Let o: GRLY' G' — G” be a morphism in D(Kgypt) such that all of G,G',G" satisfy
the assumption of Proposition 10.8 (b). Consider the composite of the morphisms

RIT(K,G) @* RT'(K,G') = RI(K,G @* G') 5 RIT'(K,G"),

where the first morphism is given by [Suz20a, (2.5.6)] (translated into a morphism
involving @ by the same method as the proof of Proposition 2.4). Also consider
the composite of the morphisms

RI(K,G) " RT'(K,G') — RI'(K,G ® G') % RI'(K,G"),

where the first morphism is given by Proposition 8.6 (a). These composite mor-
phisms are compatible under the isomorphism in Proposition 10.8 (b).

(b) Let o: GG — G" be a morphism in D(Of gppt) such that all of G, G, G" satisfy
the assumption of Proposition 10.8 (c). Consider the composite of the morphisms

RT(Ok,G) @ RT,(0Ok,G") — RT,(Ok,G @' G') % RT,(Ok,G"),

where the first morphism is given by [Suz20a, (2.5.4)] (translated as above). Also
consider the composite of the morphisms

RI(Ok,G) @ RT,(Ok,G") — RT,(Ok,G® G') 5 RI,(Ok,G"),
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where the first morphism is given by Proposition 8.6 (b). These composite mor-
phisms are compatible under the isomorphism in Proposition 10.8 (a) and (c).

Proof. (a) The composite morphism
o R .G @Y a R G — a (R oG @F R . G') — o R (G @7 GY)

and the morphism
RﬁK’*G ®L R?fl'K7*G/ — Rﬁ'[g*(G ®L G/)

are compatible by Proposition 10.7. The rest follows from Proposition 10.5.
(b) This can be proven similarly. O

§11. A duality statement in the new formulation

As in [Suz20b, Section 2.4], we define the Serre dual functor as follows.

Definition 11.1.  Define (- )5 = RHomyinart (- ,Z).

proet

See [Suz20b, Section 2.4, Footnote 4] for why it is called the Serre dual.

Now we state the duality for abelian varieties over K. In [Suz20b|, this duality is
stated using RT (i.e. using the functor k' € kndrat s H"(K(K'), - )). Here we state
it using R (i.e. using the functor k' € kPerar s H™(K(K'), - )). We here deduce the
statement from the result in [Suz20b] using the comparison statements in the previous

perar

section. But note that we have developed a duality formalism with Speckg, = in this
paper well enough so that a direct, simpler proof (using only RF) is possible.

Theorem 11.2. Let A and B be abelian varieties dual to each other over K.
Let A and B be their Néron models over O and B® the open subgroup scheme of B
with connected fibers. Consider the morphisms A @* B — Gp[1] in D(Kgppt) and
AL B = G,[1] in D(Ok gppt) given by the Poincaré bi-extension and its canonical
extension to Ok ([Gro72, IX, 1.4.3]). Consider the morphism

1

RI(K,A) ®" RT'(K, B) — RI(K, G,,)[1] "™° Z[1

R]f‘(OK7A) ®L Rf$(0K7 BO) — R].:‘a:(OKa Gm)[]-] ti)e 7
RY,(Ox, A) @ RE(Ox, B°) = RE, (O, Go)[1] 5° Z

induced by Propositions 8.6 and 9.1.
(a) The resulting five morphisms
RIK, B)SPSP s RIN(K, A)SP[1],
RI,(Ok,B%) = R, (Ok, B°)SPSP 5 RI'(Ok, A)SP
RI,(Ok, A) = RI,(Ok, A)SPSP — RI(Ok, BY)SP
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are all isomorphisms.

(b) They form an isomorphism of distinguished triangles

R (O, B%)SPSD 5 RIK,B)SPSP — 5 RI,(Ok,B%[1]
| | |
R, (Ok, AP — 5 RINK,A)SP[1] —— RI(Og, A)SP[1]

between the localization triangles (8.1).

Proof. (a) The morphisms

RI(K,A) @ RI(K,B) — RT(K,G,,),

RT(K,A) @ RT'(K, B) — RT'(K, G,,)
are compatible under the isomorphisms of the terms by Propositions 10.9 (b) and 10.10
(a). The trace morphism RI'(K, G,,) — Z in Proposition 9.1 and the trace morphism

RT'(K,G,,) — Z in [Suzl3, Proposition 2.4.4] are compatible since they both are the
valuation morphism K* — Z. Hence the morphisms

RI(K, B)SPSP s RINK, A)SP[1], RI(K,B)SPSP — RI(K, A)SP[1]

are compatible. The latter is an isomorphism by [Suz20b, Theorem (4.1.2)]. Therefore
so is the former. The statements for RI'(Ok, - ), R[4(Ok, - ) can be similarly proven.

(b) The stated diagram can be identified with the isomorphism of distinguished
triangles

RT(Og,B%)SPSP —_ RI(K,B)SPSP — RI',(Og,B%)[1]

& L K

RT,. (O, AP ——— RI(K,A)SP[1] —— RI(Ok, A)SP[1]

of [Suz20a, Proposition 2.5.4] by Proposition 10.8. O

The diagram in (b) can also be obtained directly without referring to [Suz20b]. By
Proposition 8.7, we obtain a morphism of distinguished triangles

RfoK [A, Gm]OK [1] E— RfK[A7 Gm]K[l] —_— wa [Aa Gm]oK [2]

| l !

[RT, A, RT .G, ]x[1]] —— [RF kA, RT,G,k[2] —— [RTo0, A, RT.G ]k [2].



AN IMPROVEMENT OF THE DUALITY FORMALISM 329

Applying the morphisms B® — [A, G,]ox[1] and B — [A, G,,]k[1] to the upper tri-
angle and the trace isomorphism RI';G,, = Z[—1] to the lower triangle, we obtain a

morphism of distinguished triangles

RINOg,B°) —— RI(K,B) ——— RI.(Ok,B%[1]

l l l

RI,(Ok, AP — RI(K,A)SP[1] —— RI(Ok, A)SP[1].

Applying SDSD and using (a), we obtain the desired diagram.

AGVT]

[Art62]
[BGA1S8]
[BKS86]
[BS15]
[EM51]
[GGMB14]

[GroT2]

[GS20]

[KS06]

[Lod98|

[ML57]
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