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Abstract 

 

 

Chapter 1 – Introduction 

 

 Although molecular dynamics (MD) simulations have proven to be invaluable tools for 

studying the structural dynamics of biomolecular systems, the time scale achievable by all-

atom MD simulations still presents a significant challenge for studying several biological 

phenomena. To address this constraint, coarse-grained (CG) modeling lowers the number of 

degrees of freedom by grouping atoms into CG beads, decreasing the computational cost of 

simulations while preserving as much as possible of the properties of interest. Since 

biomolecular structures are hierarchical, there are a variety of coarse-graining resolutions. 

Higher-resolution CG models are generally more reliable, but they are often more 

computationally expensive. Thus, depending on the target system, some models are more 

suitable than others. For example, when studying large systems, such as in biological 

membranes, implicit solvent models decrease enormously computational calculations by 

integrating the effect of the solvent into the interaction potentials. 

 This thesis presents the development of a new implicit solvent lipid model for 

performing coarse-grained MD simulations of biological membrane systems and is organized 

in the following way. In chapter 2, a CG implicit solvent lipid model is introduced. Then, in 

chapter 3, a way to combine the coarse-grained lipid model with 𝛼-carbon protein models is 

explained, followed by its application to various membrane proteins. Finally, in chapter 4, some 

concluding remarks are given. 
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Chapter 2 – Coarse-grained implicit solvent lipid force field with 

a compatible resolution to the Cα protein representation 

 

 MD simulations of biological membrane systems often need to consider both the lipids 

involved in the membrane and the proteins around it. This requires contemplating lipid and 

protein force fields not only as independent units but also as a unified model. However, 

combining different CG models is not a trivial task, and it requires a certain degree of 

compatibility between them. More specifically, it is desired that the different models to-be-

combined share a similar resolution, i.e., a similar mapping between all-atom particles to CG 

beads. In this chapter, a lipid model with a similar resolution to the widely-used Cα 

representation of proteins, iSoLF, is presented. 

 In iSoLF, two-tailed lipid molecules are mapped to single-chain molecules composed 

of five beads: two hydrophilic head beads (H1 and H2) and three hydrophobic tail beads (T1, 

T2, and T3). This mapping produces a similar resolution to the one in the C𝛼 representation of 

proteins, which is a feature that is desired. The interaction potential between different CG lipid 

molecules is composed of four terms: 𝑉𝐵𝑜𝑛𝑑, 𝑉𝐴𝑛𝑔𝑙𝑒, 𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛, and 𝑉𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. The two terms, 

𝑉𝐵𝑜𝑛𝑑 and 𝑉𝐴𝑛𝑔𝑙𝑒, represent the local bond and bond-angle interactions of lipid beads and are 

parameterized by inverting all-atom-sampled distributions using the Boltzmann Inversion 

method. In contrast, the other two terms, 𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛, and 𝑉𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, represent the non-local 

interactions and were modeled using the same interacting potential described previously by 

Cooke et al. [Phys. Rev. E (2005) 72]. The parameters for these non-local interactions were 

tuned for reproducing the area-per-lipid and the hydrophobic thickness of lipid bilayers made 

of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) or DPPC (1,2-dipalmitoyl-sn-

glycero-3-phosphatidylcholine). 
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 After obtaining an optimal set of parameters, different features of the model were tested. 

The first test consisted of the spontaneous formation of a membrane. In implicit solvent models, 

as is the case in iSoLF, the hydrophobic effect is encoded in the non-local interactions, and it 

is crucial that a bilayer conformation is favored. By starting from a random configuration of 

lipids, the simulations showed that the lipid model correctly assembled a lipid bilayer, as 

desired. The second test consisted of obtaining the right phase behavior of each lipid at 30 °C. 

The simulations showed that POPC lipids were in a liquid phase, whereas for DPPC, lipids 

adopted a gel phase. Contrasting these results with experimental measurements for these lipids, 

the model produced the expected behavior. Finally, the last test consisted of a simulation of a 

vesicle. Since vesicles behave locally as lipid bilayers, it was expected that the model could 

also stabilize these conformations. By making the local curvature of vesicles large enough, they 

could be simulated without any breakage. Altogether, this showed that iSoLF is a suitable 

model for performing CG MD simulations of biological membranes. 

 

Chapter 3 – Modeling lipid-protein interactions for coarse-

grained lipid and Cα protein models 

 

 Lipid-protein interactions are key components in the simulation of membrane proteins 

because they encompass each molecule's hydrophobic and hydrophilic nature, especially in 

implicit solvent systems. Therefore, the modeling of these interactions needs to be examined 

carefully. In this chapter, the modeling and parameterization of a Lennard-Jones-like energy 

function representing hydrophilic and hydrophobic interactions between lipids and proteins are 

presented. 

 One advantage of the Lennard-Jones potential is its separability into short- and long-

range interactions. This idea was used previously by Kim and Hummer [J. Mol. Bio. (2008) 
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375] in the context of protein-protein interaction. Here, a similar approach was followed by 

defining the lipid-proteins interactions as 𝑉𝐿𝑃𝐼 = 𝑉𝑟𝑒𝑝 + 𝑉𝐻𝑃 , where 𝑉𝑟𝑒𝑝 corresponds to the 

Weeks-Chandler-Andersen potential and 𝑉𝐻𝑃 to the hydrophilic-hydrophobic interactions.  

 In order to reduce the complexity of the parameterization of the 𝑉𝐿𝑃𝐼 , some 

simplifications were introduced. The coefficients of the repulsive term, 𝑉𝑟𝑒𝑝, were calculated 

using combination rules with the corresponding parameters from iSoLF (lipid model) and 

AICG2+ (protein model). On the contrary, the hydrophilic-hydrophobic interactions, 𝑉𝐻𝑃, were 

tuned against an experimental hydrophobicity scale for the twenty amino acids and free energy 

profiles for the insertion of amino acids inside a lipid bilayer calculated in all-atom simulations. 

 The parameterized interaction was tested by performing simulations of various proteins 

with different positionings inside lipid-containing systems. The first group of proteins 

consisted of transmembrane proteins with either 𝛼-helices or 𝛽-sheets spanning the membrane. 

The calculated tilt angle (orientation with respect to the normal to the lipid bilayer) and 

insertion depth (height relative to the center of mass of the lipid bilayer) for these proteins had 

good agreement with the reference values obtained from the OPM database. Importantly, 

during these tests, the need for special coefficients for the N and C termini of a protein was put 

into evidence because for single 𝛼-helix peptides, charged residues at both ends help stabilize 

their orientation. The second group of proteins consisted of water-soluble globular proteins. 

The expected behavior was observed for these proteins, i.e., they did not interact with the lipid 

bilayer. Lastly, the final group consisted of peripheral and other proteins. The binding of 

peripheral proteins into the membrane surface was observed, as expected. On the other hand, 

crambin, an initially classified peripheral protein, was inserted into the membrane, obtaining a 

stable configuration in the middle of the bilayer. This insertion agreed with previous reports in 

the literature. In general, the predicted behavior for various groups of proteins within/outside 

lipid environments could be reproduced by the lipid-protein interaction. 
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Chapter 4 – Conclusions 

 

 In this work, a novel force field for performing CG MD simulations of biological 

membranes is presented. In the first chapter, the current status of the field was examined. In 

chapter two, the details about the development of iSoLF, a CG lipid model for phospholipids, 

were explained. By defining an adequate mapping from lipid atoms to CG beads, a five-beads 

single-tailed lipid molecule was constructed for both POPC and DPPC lipids. Lastly, in chapter 

three, the iSoLF lipid force field was combined with a C𝛼 protein model, AICG2+, in order to 

perform MD simulations of proteins inside lipidic environments. In these systems, the 

hydrophobic/hydrophilic interactions are the main driving force. Furthermore, the 

parameterized lipid-protein interaction was tested by simulating various classes of proteins.  

 In conclusion, the iSoLF lipid force field, together with the lipid-protein interaction, 

represent a useful model for performing CG MD of large membrane systems. Currently, 

parameters for only two lipids, POPC and DPPC, are available. However, this will be addressed 

in the next iteration of the force field. 
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Chapter 1 

Introduction 

 

 

 Molecular dynamics (MD) has been a useful tool for performing simulations of various 

types of molecular systems. Since its early adoption around 1950, practitioners of this 

technique have been able to study in-silico molecular systems for which new insights could 

only be obtained indirectly from experiments (1). For this reason, together with the 

technological development of computing, MD has become one of the most popular simulation 

techniques (2), being used nowadays in various of the most powerful high-performance 

computing clusters around the globe (3-5). In classical MD, each atom is represented with one 

particle, and the Hamiltonian that describes the dynamics of the system can be defined in a 

quantum-mechanical or classical way, depending on the study. However, as with any method, 

MD also has limitations that constraint its applicability to arbitrarily any system of interest. 

Among these limitations, one of the most severe ones is related to the increase in the 

consumption of computational resources as the complexity of the system under study increases 

(6). Practically, this forbids us from performing MD simulations of highly complicated systems, 

such as those encountered usually in materials science or biology. Nevertheless, numerous 

alternatives that alleviate this problem have also been proposed (7,8). 

 

 When performing MD simulations of biomolecular systems, the complexity mentioned 

above arises not only from the many biomolecules usually involved but also due to the 

environment in which the biological phenomena take place. Even for small biomolecules, most 
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of the computational cost comes from the simulation of water molecules. Suppose one is 

interested in studying specific interactions between a small number of atom groups inside a 

determined context, for example, in the hydration protein pockets or the metal-protein 

interactions in a holo conformation. In that case, the presence of the solvent may not represent 

any limitation and, in fact, might be desired. However, if dynamic properties that operate at 

long distances and large time scales become the target of the study, unless some simplifications 

are made, MD simulations will not yield results in a sensible time. 

 

 One of the most widely-used methods for reducing the complexity of MD systems 

consists of decreasing the number of degrees of freedom by grouping atoms into coarse-grained 

(CG) beads (9). In CG methods, the way in which atoms are grouped defines a specific mapping, 

and the number of mapped atoms per CG bead defines a resolution. Both mapping and 

resolution are, in general, different for each CG model. In the literature, over time, several CG 

models targeting different biological systems have been developed. For example, for lipid 

bilayers, there are several CG representations of one phospholipid, ranging from highly coarse-

grained models that map one lipid molecule to a single CG bead (10) to quite more conservative 

coarse-grained models which use more than ten CG beads for representing one lipid molecule 

(11). For the latter, the MARTINI force field is the canonical example (12). In this force field, 

a four-to-one mapping is used. That is, four non-hydrogen atoms are grouped together into one 

single CG bead. Since it has CG representations for a large portion of the liposome, it has 

become the most popular force field used in the community for studying from middle to large 

biological membrane systems. However, simulations are still computationally demanding even 

at this resolution due to the inherently long equilibration times required by membrane systems, 

often requiring substantial computational resources. 
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 On the other side of the CG spectrum, there are models that opt for a coarser 

representation of lipids. For example, Cooke. Kremer and Deserno (13) developed a lipid force 

field in which each two-tailed phospholipid is mapped into a three-beads single-tailed CG 

molecule. Interestingly, this model still reproduces satisfactorily various properties of lipid 

bilayers despite its high degree of coarse-graining. Additionally, another advantage of this 

model is the treatment of the solvent. In highly CG models like this, solvent molecules, i.e., 

water and ions, are represented implicitly in the interaction potentials. In other words, the net 

effect coming from the lipid-water and lipid-ion interactions are captured in the lipid-lipid 

interactions. This level of coarse-graining, summed with an implicit representation of the 

solvent, decreases the computational cost of MD simulations enormously. Thus, these models 

are commonly used to study phenomena occurring at large scales, like the fusion of lipid 

vesicles or the invagination of lipid membranes (14). 

 

 Apart from the two levels of coarse-graining mentioned above, it is quite surprising that, 

in the literature, there are few models with an intermediate resolution for lipids. A model with 

an intermediate representation might, at first glance, appear to be of no use. However, there is 

a specific reason for requiring such a model. In the field of protein CG MD simulation, one of 

the preferred resolutions for modeling proteins consists of representing each amino acid with 

one CG bead centered at the C𝛼 position. If these models were to be applied to membrane 

proteins, a lipid model with a compatible resolution would be desired. In fact, this compatible 

resolution corresponds to mapping phospholipids to CG molecules composed of five or six 

beads. Having such a model would permit to expand the applicability of C𝛼 protein models to 

more realistic membrane environments. 
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 This thesis presents the development of a new implicit solvent lipid model for 

performing coarse-grained MD simulations of biological membrane systems and is organized 

in the following way. In Chapter 2, the development of the new implicit solvent lipid model is 

treated in detail. Then, in Chapter 3, a way to combine the coarse-grained lipid model with C𝛼 

protein models is presented, and the application to proteins with different orientations with 

respect to the membrane is shown. Finally, in Chapter 4, this work ends with some concluding 

remarks and future directions. 
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Chapter 2 

Coarse-grained implicit solvent lipid force field with a 

compatible resolution to the Cα protein representation 

 

 

2.1 Coarse-grained lipid force fields 

 

 Though molecular dynamics (MD) simulations have become invaluable for 

investigating the structural dynamics of biomolecular systems, the time scale required for 

study many biological phenomena is prohibitively large (15-17). To address this constraint, 

coarse-grained (CG) modeling decreases the number of degrees of freedom by grouping atoms 

into CG beads, lowering the computational cost of simulations while preserving as much of the 

properties of interest as possible (18-20). Since biomolecular systems are 

inherently hierarchical, there are a variety of coarse-graining resolutions. Higher-resolution CG 

models are generally more precise, but they are often more computationally demanding. Thus, 

depending on the target, a CG model may be more suitable than others. For example, explicit 

solvent CG models are more accurate, whereas implicit solvent CG models trade-off accuracy 

in favor of computation efficiency by average the effect of the solvent into the force field 

interactions (21). 

  

 CG MD simulations often target biological membrane systems, for which various 

types of CG lipid models have been produced over the last two decades. Goetz and Lipowsky 

created an explicit solvent CG amphiphile model in 1998 and effectively simulated lipid bilayer 
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self-assembly (22). Later, Noguchi and Takasu were the first to create an implicit solvent CG 

model of amphiphiles that exhibited the proper physical properties of a bilayer membrane (23). 

Then, Cooke et al. established a somewhat simplified implicit solvent CG model for lipids 

based on pairwise interactions (24). Both of these implicit solvent models employ three CG 

beads per lipid, making them simple and generic in essence since they do not need to be 

parameterized for any particular molecule. Numerous physical properties of membrane 

structures, such as the gel-liquid phase transfer, phase separation, membrane fusion, and 

budding, have been effectively investigated using these simple models. Several higher-

resolution CG lipid models have been established as a distinct class of models, including the 

pioneering work of MARTINI by Marrink et al. in 2004 (25-32). This class of models employs 

more than ten CG beads per lipid and specifically represents the two-alkyl-tail geometry, 

allowing the representation of particular phospholipids. Additionally, the MARTINI model, 

among others, has been successfully extended to a variety of biomolecules (33-36). It is worth 

mentioning that, with a few exceptions (27,31,37), the majority of these models employ explicit 

solvent molecules, making them more computationally demanding compared to the 

aforementioned implicit solvent models. 

 

 Notably, the majority of biological membrane structures are often composed of 

membrane proteins. Thus, compatibility with CG protein models is critical for applying CG 

lipid models to a large number of these biological systems. To model interactions between 

lipids and proteins, it is critical that both the CG lipid and protein representations have a 

reasonably similar resolution. For lipids, proteins, and other molecules, for example, the 

MARTINI force field consistently utilizes a mapping of one CG particle to approximately four 

non-hydrogen (heavy) atoms. Among the numerous CG representations for proteins, a widely-

used representation consists of assigning one CG particle to each amino acid, centered at the 
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C𝛼 position (38-42). Therefore, since there are on average 8.4 ± 2.4 non-hydrogen atoms per 

amino acid, the C𝛼 representation achieves a reduction in order of magnitude for the degrees 

of freedom. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-

dipalmitoyl-sn-glycero-3-phosphatidylcholine) are two representative phospholipids that 

include 52 and 50 non-hydrogen atoms, respectively. Consequently, using from five to six CG 

particles to represent each lipid molecule would produce a resolution consistent with the C𝛼 

protein model. In the literature, among several lipid models (43-49), there are just a handful of 

them with a resolution of 5-6 CG particles per lipid, but not necessarily design to be combined 

with or extended to membrane proteins. 

 

 The main objective of using five CG beads is not to model generic lipid molecules but 

to parameterize the model for various phospholipid molecules, d in particular,  POPC and 

DPPC. It is well established that pure POPC lipid membranes are in the liquid disordered 

process at physiological temperatures (30 °C, for example), while pure DPPC lipid membranes 

are in the gel phase (50,51). It is important to reproduce these two phases because biological 

membranes are composed of a combination of unsaturated and saturated phospholipids, as well 

as membrane proteins and others. Thus, a new implicit solvent CG model that reproduces the 

correct phase behavior around 30 °C and possesses a resolution that works well with existing 

C𝛼 protein models was developed. 

 

2.2 Lipid model 

 

 In the model, a two-tailed glycerophospholipid is mapped to a CG linear chain 

molecule (Figure 2.1a). Each CG lipid comprises five beads, two polar head beads (H1 and 

H2), and three hydrophobic tail beads (T1, T2, and T3). The H1 bead represents the 
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characteristic chemical group bounded to the phosphate. The H2 bead represents the phosphate, 

glycerol, and ester carbonyls. The T1, T2, and T3 beads correspond to the first five carbon 

atoms in each tail, the next five carbon atoms in each tail, and the remaining carbon atoms in 

each tail, respectively. As previously said, this five-bead mapping provides a resolution 

comparable to that of C𝛼 protein models. 

 

 

Figure 2.1. (a) Mapping of a lipid (POPC in the figure) to a five-beads CG molecule. H1 and 

H2 represent the polar head beads. T1, T2, and T3 represent the hydrophobic tail beads. (b) 

Diagram of the attractive interactions between tail beads. Notably, no attractive interaction is 

applied between T1 and T3 beads. (c) Interaction potential for the lipid tail beads. (I) 

correspond to the repulsive portion of the potential and (II) to the attractive part. 

 

 In the lipid model, the energy function is composed of four terms: 

𝑉 = 𝑉𝐵𝑜𝑛𝑑 + 𝑉𝐴𝑛𝑔𝑙𝑒 + 𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝑉𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (2.1) 

The first term of the potential, 𝑉𝐵𝑜𝑛𝑑, represents the bonding interaction between adjacent CG 

bead pairs of the same lipid molecule and is modeled as follows: 

𝑉𝐵𝑜𝑛𝑑 = ∑ 𝑘𝑏𝑜𝑛𝑑,𝑖(𝑏𝑖 − 𝑏0,𝑖)
2

𝑛𝑏𝑜𝑛𝑑𝑠

𝑖=1

(2.2) 
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Here, 𝑘𝑏𝑜𝑛𝑑,𝑖 is the force constant, 𝑏𝑖 is the i-th virtual bond length between consecutive CG 

beads, 𝑏0,𝑖 is the point of minimum energy for the virtual bond, and 𝑛𝑏𝑜𝑛𝑑𝑠  is the total number 

of virtual bonds. The next term, 𝑉𝐴𝑛𝑔𝑙𝑒, represents the virtual bond-angle interaction between 

two consecutive virtual bonds in the same lipid molecule: 

𝑉𝐴𝑛𝑔𝑙𝑒 = ∑ 𝑘𝑎𝑛𝑔𝑙𝑒,𝑖(𝜃𝑖 − 𝜃0,𝑖)
2

𝑛𝑎𝑛𝑔𝑙𝑒𝑠

𝑖=1

(2.3) 

Here, 𝑘𝑎𝑛𝑔𝑙𝑒,𝑖 is the force coefficient, 𝜃𝑖 is the i-th angle, 𝜃0,𝑖 is the equilibrium value for the i-

th angle, and 𝑛𝑎𝑛𝑔𝑙𝑒𝑠 is the total number of angles. 

 

 The two remaining terms of Eq. (2.1) represent the intermolecular interactions between 

different lipid molecules and have the same functional form as in reference 24. The repulsive 

term, 𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛, corresponds to the Weeks-Chandler-Andersen potential: 

𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = ∑ {
4𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

+
1

4
] , 𝑟𝑖𝑗 ≤ √2

6
𝜎𝑖𝑗

0, 𝑟𝑖𝑗 > √2
6
𝜎𝑖𝑗

𝑛𝑛𝑙−𝑝𝑎𝑖𝑟𝑠

𝑖<𝑗

(2.4) 

with 𝜀𝑖𝑗 representing the force scaling coefficient, 𝜎𝑖𝑗 the repulsive distance for the 𝑖𝑗 pair of 

beads, and 𝑛𝑛𝑙−𝑝𝑎𝑖𝑟𝑠 the total number of non-local pairs. This potential is applied to all the 

pairs of beads that do not participate in either a virtual bond or a bond-angle interaction. In 

order to reduce the complexity of the model, 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are defined with combination rules. 

On the one hand, 𝜎𝑖𝑗  is defined as (𝜎𝑖 + 𝜎𝑗)/2 where 𝜎𝑖  (𝜎𝑗 ) represents the van der Waals 

diameter of the i-th (j-th) CG particle. In each lipid molecule, there are two values for 𝜎𝑖: one 

for the head beads (𝜎𝐻) and one for the tail beads (𝜎𝑇) (Figure 2.1b). As it will be discussed 

later, these values are constraint by 𝜎𝐻 = 0.65𝜎𝑇 in order to prevent the formation of persistent 
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pores in the membrane. On the other hand, 𝜀𝑖𝑗  is defined as √𝜀𝑖𝜀𝑗 , where 𝜀𝑖  depends is 

characteristic for each lipid. 

 

 Finally, 𝑉𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 represents the interaction between the hydrophilic tail beads and has 

the following form: 

𝑉𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = ∑

{
 
 

 
 −𝜀𝑖𝑗, 𝑟𝑖𝑗 ≤ √2

6
𝜎𝑖𝑗

−𝜀𝑖𝑗𝑐𝑜𝑠
2 [

𝜋

2𝜔𝑖𝑗
(𝑟𝑖𝑗 − √2

6
𝜎𝑖𝑗)] , √2

6
𝜎𝑖𝑗 < 𝑟𝑖𝑗 ≤ √2

6
𝜎𝑖𝑗 + 𝜔𝑖𝑗

0, √2
6
𝜎𝑖𝑗 + 𝜔𝑖𝑗 < 𝑟𝑖𝑗

𝑛𝑛𝑙−𝑝𝑎𝑖𝑟𝑠

𝑖<𝑗

(5) 

The key feature of this potential is a tunable attraction width, which has been shown to 

represent the mid-range attractive hydrophobic interactions effectively (52). As for the 

coefficients 𝜀𝑖𝑗 and 𝜎𝑖𝑗, they have the same values of the repulsive potential. However, 𝜔𝑖𝑗 is 

defined as (𝜔𝑖 + 𝜔𝑗)/2 and represents the width of the pair potential well. This attractive 

interaction is only applied between tail beads of different lipid molecules except for T1-T3 

pairs (Figure 2.1b). The decision to exclude T1-T3 prevents the formation of unrealistic 

membrane conformations.  The total interaction between two lipid tail beads is depicted in 

Figure 2.1c. Hereafter, this implicit solvent lipid force field will be termed iSoLF. 

 

2.3 Coarse-grained molecular dynamics simulations 

 

 All the CG MD simulations were performed using a modified version of CafeMol v3.1 

(53) and the standard underdamped Langevin equation. For each CG bead, the mass was set 

equal to the sum of the masses of individual atoms involved in the CG bead.  

 

 Periodic boundary conditions and a semi-isotropic pressure coupling in the xy-direction 

were used during the optimization of the force-field parameters, the estimation of the physical 
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properties of plane membranes, the evaluation of the temperature dependence of lipids, the 

observation of pore formation, and the observation of the phase behavior of POPC/DPPC 

membranes. To integrate the equations of motion, a method developed by Gao, Fang, and 

Wang (40) was used. The thermostat's friction coefficient was set to 0.1 (1/CafeMol-time) for 

the Langevin dynamics. In CafeMol v3.1, one CafeMol-time unit is approximately 49 fs. The 

friction coefficient for the barostat was set equal to 0.1 (1/CafeMol-time), and the 

compressibility of the box equal to 0.01 (Å3 ∙ 𝑚𝑜𝑙 𝑘𝑐𝑎𝑙⁄ ). MD time steps of 0.2 (CafeMol-

time) were used to simulate pure POPC systems and 0.1 for simulations involving DPPC and 

vesicles. With a time step of 0.2, DPPC-containing systems were unstable. This occurred 

because the equilibrium distance for the DPPC T2-T3 bond was larger than the other 

equilibrium lengths, enabling beads to pass through. Thus, by halving the integration step, 

repulsive interactions prevented beads from crossing virtual bonds. For the force field 

parameterization, each simulation was performed for 1 × 106 and 2 × 106 MD steps for POPC 

and DPPC, respectively. For the simulations of the temperature dependence, 1.2 × 106 and 

2.4 × 106 MD steps were used for POPC and DPPC systems, respectively. Here, only the first 

sixth of the data points was discarded (Figure A1). For the mixed POPC/DPPC system, three 

simulations were performed. For the separated system, one of 2 × 106 MD steps, and for the 

mixed systems, two of 3.4 × 106 MD steps. For these trajectories, the first 0.4 × 106 MD steps 

were discarded. 

 

 For the simulations corresponding to the spontaneous formation of a lipid bilayer and 

the vesicle equilibration, the default setup of CafeMol was used. Additionally, a fixed-size box 

with periodic boundary conditions, and the NVT ensemble were used.  For the lipid bilayer 

formation, the simulation was 2 × 106 MD steps long. Whereas for the vesicle simulations, an 
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initial heating was performed for 0.6 × 106 MD steps, followed by one long run of 3.4 × 106 

MD steps, and three short runs of 1 × 106 MD steps, all of them at constant temperature. 

 

 The initial configuration for the spontaneous lipid bilayer formation was built by 

sequentially placing lipid molecules in a box. First, the H1 bead was randomly placed, and then 

the rest of the molecule (beads H2, T1, T2, and T3) were added following a straight line 

randomly oriented. If while completing the lipid, any of its beads had a distance lower than 

1.3𝜎 from any other bead already placed, it was discarded, and the process started again (H1 

bead placement). 

 

 The initial configuration for the vesicle simulation was built following a simple 

geometric method that permits to distribute points on the surface of a sphere while keeping 

them separated as evenly as possible by mapping Fibonacci lattice (55).  Considering the 

physical dimensions of a POPC lipid, the prepared vesicle of radius 15 nm contained in the 

inner and outer leaflets 2976 and 4400 lipids, respectively. 

 

 Finally, the initial configuration for the self-assembly of lipids was prepared by 

randomly placing 5000 POPC lipids in a box of  500Å × 500Å × 500Å. Periodic boundary 

conditions were not used. Instead, each wall of the box had assigned a repulsive potential. This 

simulation was performed for 8 × 105 MD steps. 

 

2.4 All-atom molecular dynamics simulations 

 

 The bottom-up parameterization and the calculation of physical properties required all-

atom MD simulations. These simulations were performed using GROMACS (56) version 5.1.1, 
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the lipid force field Slipids (57,58), and the TIP3P water model (59). Pre-equilibrated bilayers 

of POPC and DPPC were downloaded from the Slipids website (60). The simulation protocol 

consisted of a short energy minimization phase using the steepest descent method, an NVT 

equilibration phase at a constant temperature of 303K for 200 𝑝𝑠 using the v-rescale thermostat, 

and an NPT equilibration phase at a constant pressure of 1.013 bar and a constant temperature 

of 303K for 5 𝑛𝑠 using the Parrinello-Rahman barostat. In these simulations, lipid and water 

molecules were coupled separately, using time constants of 0.5ps and 10ps for the thermostat 

and barostat, respectively. Then, after all the equilibration phases were completed, production 

runs were performed for 200 𝑛𝑠. 

 

 Finally, for comparing the running times of the CG and all-atom models, all-atom and 

CG membrane patches of POPC were equilibrated with the protocols mentioned above. Then, 

production runs were performed in order to estimate the 2D MSD using 1 CPU core of an Intel 

i7-5930K processor and no GPUs. 

 

2.5 Calculation of properties 

 

 For the planar membranes, the area per lipid (𝐴𝐿) , the order parameter (𝑆𝜃), the 

hydrophobic thickness, and the 2D diffusion coefficient were calculated. The formula 

employed for 𝐴𝐿 was: 

𝐴𝐿 = 2
𝐴𝑥𝑦

𝑛𝑙𝑖𝑝𝑖𝑑𝑠
(2.6) 

where  𝐴𝑥𝑦  is the cross-sectional area of the simulation box in the xy-plane and 𝑛𝑙𝑖𝑝𝑖𝑑𝑠 

corresponds to the total number of lipids in the box. 
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 The order parameter, 𝑆𝜃, was calculated by measuring the angle 𝜃𝑖  between the z-axis 

and the line joining the center of mass of the tail beads T1 and T3 (Figure 2.2a) by the 

following formula: 

〈𝑆𝜃(𝑡)〉 =
1

𝑛𝑙𝑖𝑝𝑖𝑑𝑠
∑

1

2
[3𝑐𝑜𝑠2(𝜃𝑖(𝑡)) − 1]

𝑛𝑙𝑖𝑝𝑖𝑑𝑠

𝑖=1

(2.7) 

where 𝑛𝑙𝑖𝑝𝑖𝑑𝑠 represents the total number of lipids in the system, and 〈⋯ 〉 means the average 

over all lipids. 

 

 

Figure 2.2. Order parameter and membrane thickness calculation. (a) A representation of the 

angle 𝜃 used for the calculation of the order parameter. It corresponds to the angle between the 

line joining beads T1 and T3, and the z-axis. (b) Local hydrophobic thickness for three lipids. 

In each lipid molecule in one leaflet, another lipid molecule in the opposite leaflet is found 

such that the distance in xy-plane between the two lipids is the smallest (blue dashed lines in 

the figure). The difference in the z-axis between the pair of lipids (indicated by red arrows in 

the figure) corresponds to the hydrophobic thickness at that point. 
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 The hydrophobic was calculated using a method similar to the one implemented in the 

GridMAT-MD Software (61). First, for each lipid molecule, the middle point between the H2 

and the T1 beads was calculated. Then, after finding the lipid with the closest distance in the 

xy-plane contained in the opposite leaflet, the difference in the z-axis is calculated, 

corresponding to the hydrophobic thickness at that lipid site. The membrane thickness is 

defined as the average over all the calculated hydrophobic thicknesses (Figure 2.2b).  

 

 Finally, in each simulated bilayer, the calculated physical properties were used to 

describe the phase behavior. A slow lateral diffusion was characteristic of a gel phase. In 

contrast, a fast lateral diffusion corresponded to the liquid phase. Furthermore, in the liquid 

phase, two subphases, liquid-ordered and liquid-disordered, were characterized by the lipid 

order parameter. For each lipid membrane, significant changes in the area per lipid, the order 

parameter, and the hydrophobic thickness occurred around the same temperature, which was 

identified as the phase transition temperature. 

 

2.6 Model parameterization 

 

 Force field parameters were determined for two target phospholipids, POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-

phosphatidylcholine). POPC and DPPC lipid membranes exhibit at near-physiological 

temperatures the liquid disordered and gel phases, respectively. In the parameter determination, 

a partly bottom-up and partly top-down approach was used. 

 

 The virtual-bond and bond-angle potential parameters were parameterized following a 

bottom-up approach. First, all-atom simulations of single-component lipid membranes of 
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POPC and DPPC were performed. Then, Eq. (2.2) and Eq. (2.3) were fitted by applying the 

standard Boltzmann inversion method to the calculated ensembles (63). The Boltzmann-

inverted potentials (Figure A2) were well approximated by harmonic potentials near the 

minima but deviated considerably far from it. Therefore, a non-linear least-square fitting near 

the minima was used for fitting. Table 2.1 lists the obtained parameters. It is important to 

mention that lipids forming a bilayer were used as reference structures for the parameterization. 

Thus, the behavior of lipids outside the membrane might not be correctly represented. 

 

Type Coefficient POPC DPPC 

Bond 

𝑘𝐻1−𝐻2 0.446 0.471 

𝑘𝐻2−𝑇1 1.073 1.320 

𝑘𝑇1−𝑇2 1.001 0.875 

𝑘𝑇2−𝑇3 0.443 0.280 

𝑏0,𝐻1−𝐻2 5.580 5.417 

𝑏0,𝐻2−𝑇1 5.452 5.824 

𝑏0,𝑇1−𝑇2 5.050 6.312 

𝑏0,𝑇2−𝑇3 5.095 6.299 

Angle 

𝑘𝐻1−𝐻2−𝑇1 0.600 0.582 

𝑘𝐻2−𝑇1−𝑇2 2.383 3.357 

𝑘𝑇1−𝑇2−𝑇3 0.880 4.823 

𝜃0,𝐻1−𝐻2−𝑇1 3.142 3.142 

𝜃0,𝐻2−𝑇1−𝑇2 3.142 3.142 

𝜃0,𝑇1−𝑇2−𝑇3 3.142 3.142 

Table 2.1. Parameters for the intramolecular interactions of POPC and DPPC. Force 

coefficients  𝑘 are in 𝑘𝑐𝑎𝑙/Å2𝑚𝑜𝑙 for the virtual bond, and in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 for the virtual bond-

angle. Equilibrium distances 𝑏0 are in Å, and equilibrium angles 𝜃0 are in radians. 

 

 The parameterization of the intermolecular repulsive and attractive potentials was 

performed following a top-down approach, in which the parameters were optimized so CG MD 
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simulations could reproduce three properties of lipid membranes. A cost function was also 

defined in order to apply optimization methods: 

𝐶𝑜𝑠𝑡(𝜀, 𝜎, 𝜔) =∑(
𝑝𝑖,𝑠𝑖𝑚(𝜀, 𝜎, 𝜔) − 𝑝𝑖,𝑟𝑒𝑓

𝑝𝑖,𝑟𝑒𝑓
)

23

𝑖=1

(2.8) 

with 𝑝𝑖,𝑟𝑒𝑓 being the reference value for the i-th property and 𝑝𝑖,𝑠𝑖𝑚 the i-th property calculated 

from CG MD simulations that depend on the force field parameters, ε, σ, and ω. The three 

properties selected for fitting were the area per lipid (APL), the hydrophobic thickness, and the 

order parameter in the bilayer membrane (Fig. 2.3a-2.3c). For POPC, the first two properties, 

the reference values, were taken from experimental measurements (64), and the last property, 

from all-atom simulations. In contrast, for DPPC, all the reference values were taken from all-

atom simulations. 

 

 POPC DPPC 

𝜀 0.416 0.464 

𝜎𝑇 7.111 6.900 

𝜔 9.867 10.318 

Table 2.2. Coefficients for the intermolecular interactions of POPC and DPPC. 𝜀 is in kcal/mol, 

and 𝜎 and 𝜔 are in Å. 

 

 Parameters that minimize the cost function are sought. Since calculating the derivatives 

of the cost function with respect to the force field parameters is computationally very expensive, 

the gradient-free Nelder-Mead method (65) was employed. In this method, up to the desired 

precision, a boundary enclosing a minimum in the parameter space is refined in each iteration 

step. With a suitable set of initial values, convergence was achieved within some tenths of 

iterations (Fig. 2.3d-2.3f). The optimized parameters for POPC and DPPC lipids are given in 

Table 2.2. 



 

25 

 

 

 

Figure 2.3. The parameter optimization process for POPC using the Nelder-Mead method. (a)-

(c) The best and the worst points for the target properties in each optimization step. (d)-(f) The 

best and the worst points for the force field coefficients in each optimization step.  
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2.7 Spontaneous membrane formation 

 

 With the optimized set of parameters, the spontaneous formation of lipid bilayer 

membranes with the CG force field was examined. A system containing 200 POPC lipid 

molecules randomly placed in a box was prepared. Fixing the size of the box, Lx, Ly, and Lz, 

to 64, 64, and 80 Å, produced the equilibrium APL for POPC at 30 °C. With this setup, the 

lipids acquired a lipid bilayer configuration within 104 MD steps (Fig. 2.4). After forming the 

membrane, no pore was formed, suggesting the membrane conformation is thermodynamically 

stable.  

 

 

Figure 2.4. Spontaneous lipid bilayer membrane formation. (a) Simulation for 200 POPC lipids 

at 30 °C, starting from a random configuration. (b) Lipids begin to form a membrane-like 

conformation after 0.5 × 104  md-time. (c) Lipids adopt a membrane conformation after 

1.0 × 104  md-time. Here, lipid head and tail beads are in dark-gray and white color, 

respectively. 

 

 In order to confirm that no artifact was introduced by the usage of the periodic boundary 

conditions, a larger scale simulation for the self-assembly of 5000 POPC lipids in a cubic box 

of 50 𝑛𝑚3 without periodic boundary conditions was performed (Figure A3). Starting from a 

random configuration (Figure A3a), the formation of many small clusters was observed. 

However, not a merged bilayer membrane nor vesicle (Figure A3b) was observed. Among 
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many clusters, relatively larger clusters formed bicelle-like structures were found Figure A3c). 

This might suggest that a much longer time is required in order to obtain a unified bilayer 

membrane.  

 

 Two findings in preliminary studies are worth mentioning. The first one is related to 

the stability of the CG simulations. When the ensemble of zero surface tension in the xy-

direction with variable box size was used, CG MD simulations starting from random 

conformations were highly unstable, making the system box expand indefinitely. Thus, to avoid 

this, the NVT ensemble was used in these cases. 

 

 The second one is related to the stability of the formed lipid bilayer membrane. By 

choosing 𝜎𝐻 = 0.85𝜎𝑇~1.00𝜎𝑇 pores started to appear spontaneously in the membranes (Fig. 

2.5a and Fig. A4). These pores were very stable, and the membranes were trapped in these 

conformations (Fig. 2.5a). Interestingly, this behavior was already reported by the original 

author group (66). When the system box size is allowed to change, it occasionally expands and 

creates a transient cavity in the membrane. Then, this transient cavity induces a tilt of the 

surrounding lipids, increasing the repulsive energy between head and tail beads. Thus, to 

reduce the repulsion, the system forms a pore. The stability of the pores depends on the ratio 

𝜎𝐻/𝜎𝑇 between the head and tail beads. This ratio has a transition point around 𝜎𝐻/𝜎𝑇~0.75 

(Fig. A4). Since the spontaneous pore formation is not desired, a ratio of 𝜎𝐻 = 0.65𝜎𝑇 was 

chosen. Furthermore, even after a pore was formed by using a ratio of 𝜎𝐻 = 0.85𝜎𝑇 , just 

changing the ratio to 𝜎𝐻 = 0.65𝜎𝑇 made the pore disappeared (Fig. 2.5b). Thus, to make lipid 

membranes stable, it is necessary a small ratio for the size of the head and tail beads. 



 

28 

 

 

Figure 2.5. Pore formation in lipid membranes. Pores depend on the ratio 𝜎𝐻/𝜎𝑇 . (a) A ratio 

of 𝜎𝐻 = 0.85𝜎𝑇 results in the spontaneous formation of a pore. (b) A ratio of 𝜎𝐻 = 0.65𝜎𝑇  

makes pore disappear. Here, lipid head and tail beads are in dark-gray and white color, 

respectively. 

 

2.8 Lateral diffusion 

 

 The lateral diffusion of POPC and DPPC was also evaluated. To quantify it, the MSD 

in 2D at 30 °C was computed (Fig. 2.6a). It was found that the MSD as a function of time 

differences fitted well a straight line, suggesting normal 2D diffusion. Comparing the slope of 

the MSD of the two lipids showed that, at 30 °C, the POPC membrane was in a liquid phase, 

whereas the pure DPPC membrane was in a gel phase. In order to confirm this, the diffusion 

coefficient of POPC and DPPC at different temperatures was calculated (Fig. 2.6b).  An 

apparent phase transition from gel to liquid phases around 25 °C was observed for POPC and 

around 95 °C for DPPC. Later, this was further confirmed by a similar behavior in the other 

properties around the same tested temperatures. 
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Figure 2.6. 2D diffusion of POPC and DPPC. (a) Mean square displacement (MSD) at a 

temperature of 30 °C for POPC (blue) and DPPC (orange). POPC membranes presented a 

liquid phase, whereas the DPPC membrane stayed in a gel phase. Red lines correspond to the 

fitted equation employed to calculate the diffusion coefficient. (b) 2D diffusion coefficient for 

POPC and DPPC as a function of temperature. An apparent phase transition occurs at around 

25 °C and 95 °C for POPC and DPPC, respectively. The subplot shows a zoomed-in version 

of the lower portion of the plot. 

 

 The 2D MSD was also used for comparing the running time of the coarse-grained lipid 

model against a standard all-atom model. Using only 1 CPU core for both simulations, the 

MSD was calculated (Fig. A5). From the all-atom simulation, an MSD of 0.174 𝑛𝑚2 was 

obtained in about 8 ℎ𝑜𝑢𝑟𝑠 47 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. On the other hand, an MSD of 36.7 𝑛𝑚2 was obtained 

in about 21 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 with the CG model. Assuming that the MSD increases linearly in time, 

the CG model achieved a speed-up factor of ~5000 relative to the all-atom model. In 

perspective, to get an MSD value from all-atom models comparable with the one obtained in 

CG simulations, about 2 months and 17 days would be needed if the same resources were used.  

 

2.9 Vesicle dynamics 

 

 Next, CG MD simulations of a vesicle made of POPC lipids were performed. For this, 

a small unilamellar vesicle (SUV) with a diameter of ~30 nm (Fig. 2.7a) was prepared. 

Preliminary tests suggested that, perhaps due to a poor setup of the initial structure, starting the 
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CG MD simulations at room temperature causes an unstable behavior of the vesicle. Thus, to 

avoid this instability, vesicles started at a temperature of 0K = - 273 °C, and then they were 

gradually heated until they reached 30 °C. During this process, some lipid in the outer leaflet 

of the vesicle diffused away without affecting the overall shape of the vesicle. However, by 

setting the integration time step to half its original value, i.e., 0.1 md-time, the number of 

escaping lipids considerably decreased. When the vesicle reached 30 °C (Fig. 2.7b), the lipids 

that were not forming part of the vesicle were removed, and then production runs were 

performed. All four trajectories showed a stable vesicle. Additionally, for one long trajectory, 

fluctuations in shape were observed, exhibiting an ellipsoid configuration (Fig. 2.7c). To 

further evaluate the stability of the vesicle, the average radius of the ellipsoid that best fitted 

the vesicle as a function of time was also monitored (Fig. 2.7d). 

 

2.10  Temperature dependence 

 

 The parameterization of the CG lipid force field was performed at 30 °C, reproducing 

well both the reference properties and the corresponding phases of POPC and DPPC (Fig. 2.3 

and Fig. 2.6b). Then, there is the question about the usability of the force field at different 

temperatures. After simulating POPC and DPPC lipid membranes at different temperatures 

from 0 °C to 110 °C, the area per lipid (APL), the hydrophobic thickness, the order parameter 

(Fig. 2.8), and the lateral diffusion coefficient (Fig. 2.6b) were calculated. 

 

 The area per lipid, the hydrophobic thickness, and the order parameter exhibited 

changes nearly at the same temperature as that in the lateral diffusion coefficient, both for 

POPC and DPPC (Fig. 2.8), supporting a phase transition from the gel phase to the liquid 

disordered phase (67-69). For the pure POPC membrane, both the area per lipid and the 
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hydrophobic thickness stayed correlated with the experimental values at temperatures within 

the range of 30 - 60 °C. However, a phase transition around 25 °C was observed in the CG 

model (Fig. 2.3 and Fig. 2.6b), whereas, experimentally, it is known to occur at around -2 °C. 

This shows that the current parameterization is not tuned for reproducing phase transitions. 

 

Figure 2.7. CG MD vesicle simulation. (a) Vesicle initial conformation. (b) Vesicle after 

reaching a temperature of 30 °C. (c) Snapshot of the final conformation adopted by the vesicle. 

(d) Average radius of the best fit ellipsoid during the heating process (the left of the red vertical 

line) and the production run. First, the vesicle was heated from 0 K = -273 °C to 30 °C and 

then kept at a constant temperature of 30 °C. Here, lipid head and tail beads are in dark-gray 

and white color, respectively. 
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Figure 2.8. Temperature dependence of membrane properties. Comparison of the temperature 

dependence for (a) the area per lipid (APL), (b) the hydrophobic thickness, (c) and the order 

parameter. Experimental data are available only in the liquid phase for POPC. Purple squares 

represent calculated values from all-atom MD simulations of DPPC membranes. The 

maximum errors are ±0.04 and ±0.009 for the APL, ±0.01 and ±0.004 for the hydrophobic 

thickness, and ±7.1 × 10−4  and ±0.006  for the order parameter of POPC and DPPC, 

respectively. 

 

 For DPPC lipid membranes, it has been experimentally determined that the gel-liquid 

phase transition occurs at a temperature of 41 °C. With the current parameters, a sharp gel-

liquid phase transition at around 95 °C (Fig. 2.6b) was observed in the simulations. Again, the 
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phase transition temperature could not be accurately reproduced. Also, at higher temperatures, 

the estimates of the area per lipid and the hydrophobic thickness deviate from experimental 

data (Fig. 2.8). 

 

 Overall, the parameterized lipid model reproduces well the physical properties of lipid 

bilayers at the calibrated temperature of 30 °C. However, phase transition temperatures can not 

be reproduced. 

 

2.11  Two-component membrane system 

 

 Finally, the behavior of a membrane composed of POPC and DPPC was tested. A 

membrane consisting of 256 POPCs and 256 DPPCs was simulated at 50 °C. The initial 

configuration had POPC lipid molecules localized in one half of the membrane and DPPC 

lipids in the other half (Fig. 2.9a). In an early stage of the simulation, two different phases were 

confirmed: a liquid phase composed of POPC lipids and a gel phase composed mainly of DPPC 

lipids (Fig. 2.10a). 

 

 

Figure 9. Simulation of a POPC-DPPC system with a ratio of 1:1. (a) Initial configuration. 

Grey and red molecules represent POPC and DPPC lipids, respectively. (b) POPC lipids stayed 

in a gel phase when surrounded by DPPC lipids. On the other hand, DPPC lipids stayed in a 

liquid phase when diffused towards the POPC phase. 
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 As the system evolved, some exchanges of lipids around the interface between the 

DPPC and POPC phases were observed. It was found that the POPC lipids that moved to the 

gel phase had almost zero diffusion, whereas the DPPC lipids that moved to the liquid 

disordered phase presented a faster diffusion. Consistently, the order parameter calculation 

suggests that DPPC lipids exhibit liquid disordered-like behavior when surrounded by  POPC 

lipids, despite being at a temperature that favors the gel phase of DPPC (Fig. 2.10b). In the 

same way, POPC lipids exhibited a gel-like behavior when surrounded by DPPC lipids.  

 

 Another simulation with the same 1:1 ratio for POPC and DPPC but starting from a 

randomly mixed configuration at 50 °C (Fig. S6) was performed. However, in this case, only 

one phase was observed. The system stayed in the gel phase (Fig. S6a, c) and kept that 

configuration throughout the trajectory. This suggests that both the phase-separated and the 

fully mixed conformation are stable. 

 

 

Figure 10. Order parameters calculation for POPC and DPPC lipids in a membrane with a 1:1 ratio. (a) 

Average order parameter for POPC and DPPC lipids. (b) Order parameter of two specific lipids. The 

red curve shows the order parameter of a POPC lipid that diffuses into the DPPC gel phase, and the 

green curve the order parameter of a DPPC lipid that diffuses into the POPC liquid phase. 

 

 Finally, a membrane with an increased ratio of 2:1 for POPC and DPPC was also 

examined. In contrast to the 1:1 ratio membrane, it was found that the fully-mixed membrane 
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remained in a liquid phase (Fig. S6b, d), suggesting that by controlling the ratio of POPC to 

DPPC in the membrane, a liquid phase for both lipids can be achieved at near-physiological 

temperatures.  

 

2.12  Conclusions 

 

 In this chapter, an extension of the three-bead lipid model developed by Cooke, Kremer, 

and Deserno into a five-bead model was presented. The model was parametrized for two 

phospholipids, one unsaturated, POPC, and the other saturated, DPPC lipids. The developed 

model, iSoLF, could reproduce the area per lipid, the hydrophobic thickness, and the phase 

behaviors of the target phospholipids at 30 °C. Also, the model membranes of POPC and DPPC 

presented the correct phase behavior expected from experiments. The spontaneous formation 

of a lipid bilayer, the temperature dependence of physical properties, the vesicle dynamics, and 

the POPC/DPPC two-component membrane dynamics using the parameterized CG lipid model 

were also explored.  

 

 While the CG model membranes, both for POPC and DPPC lipids, could reproduce 

physical properties estimated from experiments or all-atom models at 30 °C, it did not correctly 

reproduce the gel-liquid phase transition temperature. Probably, a finer tuning of the 

parameters targeting the phase transition temperature for each target phospholipid might be 

necessary. These refinements are left for future studies.  

 

 There are two more advantages in the current five beads representations in addition to 

producing a mapping compatible with the Cα representation of proteins. First, compared to the 

three-bead representation, the five-bead representation approximates the ratio between the 
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width and the height of a lipid molecule more faithfully. This is of great importance for 

correctly reproduce the membrane thickness and the area per lipid of membranes. Second, one 

can naturally assign the negatively charged phosphate group to the H2 bead. This will help to 

incorporate electrostatic interactions when developing lipid-protein interactions.  
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Chapter 3 

Modeling lipid-protein interactions for coarse-grained 

lipid and Cα protein models 

 

 

3.1 Membrane proteins 

 

 Cell membranes are complex heterogeneous structures consisting primarily of a large 

number of membrane proteins and a diverse array of lipid molecules (70). Approximately one-

fourth of all proteins encoded in the genome correspond to membrane proteins (71). 

Additionally, these proteins are involved in a variety of biological processes, including cell 

signaling (72-74), molecule transport (75,76), and energy generation (77,78), and are one of 

the most frequently targeted classes for drugs (79,80). Also, the number of membrane protein 

structures registered in databases has increased significantly in recent years (81,82), allowing 

their study by computational methods such as molecular dynamics (MD) simulations, which 

enable permit to investigate spatiotemporal information not accessible through other 

techniques (83-85). However, as the size of the device increases, the computational cost of 

performing MD simulations rapidly increases, reducing the duration and time scales that can 

be achieved in a reasonable amount of time. This is important since cell membrane systems 

often need extended periods of equilibration (86). One possibility is to use coarse-grained (CG) 

models, in which multiple atoms are clustered into a single CG particle, effectively decreasing 

the computational cost by reducing the total number of degrees of freedom in the system (87-

89). By combining CG models, long simulations of complex membrane systems can be 



 

38 

 

achieved (90). However, it is necessary to characterize the interactions between these CG 

particles appropriately. 

 

 In the previous chapter, by extending a minimal CG lipid model (52), a new CG implicit 

solvent lipid force field named iSoLF (91) was developed. However, the lipid-protein 

interactions were not explicitly addressed. Therefore, in this chapter, a lipid-protein interaction 

model specialized for combining the CG lipid force field, iSoLF, and the CG protein force field, 

AICG2+ (92), will be presented.    

 

 Lipid-protein interactions operate at different levels. On the one hand, non-specific 

interactions represent the partitioning preference of each protein amino acid between water and 

lipid environments (93,94). For describing these non-specific interactions, both hydrophobicity 

scales and solvent accessible surface areas (SASA) have been largely used (95-97). In CG 

models, these scales can be used as targets for either parameterizing or testing 

parameterizations of lipid-protein interactions, as in the well-known MARTINI force field (98-

100). On the other hand, specific interactions between lipid atoms and local atomic groups of 

membrane proteins are often related to specific biological functions (101-102). These specific 

interactions have been studied experimentally by X-ray crystallography (103), fluorescent 

methods (104), cryo-electron microscopy (105), and nuclear magnetic resonance (106). While 

all-atom models are required to reproduce these specific interactions, CG models can be 

empirically tuned to represent them.  

 

 The lipid-protein interactions presented in this chapter are obtained by parameterizing 

a modified Lennard-Jones energy function capable of representing the hydrophobic and 

hydrophilic interactions between lipid CG particles and protein amino acids in implicit solvent 
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CG models. The parameters for these interactions are tuned against the experimental transfer 

free energy of each amino acid from aqueous solution to the hydrophobic layer of membrane 

and the theoretical estimate of the free energy profile normal to the membrane surface. Using 

the tilt angle and the distance of each protein to the center of the membrane, the placement of 

different proteins is evaluated and compared with reference structures obtained from the 

Orientation of Proteins in Membranes (OPM) database (107). 

 

3.2 Coarse-grained model of lipids and proteins 

 

 In this chapter, a lipid and a protein CG force field will be combined. Here, the iSoLF 

(91) model is used, and each lipid is represented as a molecule with five CG particles, in which 

two particles correspond to hydrophilic heads (H1 and H2) and the three particles represent 

hydrophobic tails (T1, T2, and T3) (Fig. 3.1a). The iSoLF force field is currently parametrized 

for the two lipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-

dipalmitoyl-sn-glycero-3-phosphatidylcholine). For proteins, each amino acid is approximated 

as one CG particle placed at its Cα position, employing the AICG2+ force field (Figure 3.a). 

The AICG2+ force field is structure-based. That is, potential parameters are constructed based 

on the atomic interactions of reference (native) structures and are calibrated to match the 

fluctuations around the native state (See the original articles for more details (92)). 

 

 The five-beads representation of a phospholipid and one bead representation of an 

amino acid in proteins have about the same resolution.  Specifically, one amino acid contains 

on average 8.4 ± 2.4 non-hydrogen atoms (the mean and the standard deviation from the 20 

amino acids), whereas each CG particle in iSoLF represents, on average, 10.4 non-hydrogen 
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atoms for POPC and 10.0 for DPPC. Having compatible resolutions between models is 

considered to be advantageous when combining them. 

 

 

Figure 3.1. Coarse-grained (CG) modeling of lipid-protein interactions. (a) Mapping for the 

POPC lipid and a representative transmembrane protein into CG beads (b) Modified Lennard-

Jones potential function used for the lipid-protein interactions. The force coefficient can be 

either positive or negative. 

 

3.3 Lipid-protein interactions 

 

 Now, the modeling of the lipid-protein interactions (LPI) with a modified Lennard-

Jones potential is presented, which is essentially the same as that introduced by Kim and 

Hummer (108). The energy function (𝑉𝐿𝑃𝐼) is composed of a short-range repulsive term (𝑉𝑟𝑒𝑝) 

and a middle-range hydrophobic-hydrophilic term (𝑉𝐻𝑃), 

𝑉𝐿𝑃𝐼 = 𝑉𝑟𝑒𝑝 + 𝑉𝐻𝑃 (3.1) 

 

The repulsive term is modeled by the Weeks-Chandler-Andersen potential,  
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𝑉𝑟𝑒𝑝 = ∑ {
4𝜀𝑟𝑒𝑝,𝑖𝑗 [(
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𝑖∈𝑙𝑖𝑝𝑖𝑑𝑠,𝑗∈𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠

(3.2) 

with 𝜎𝑖𝑗 representing the repulsive range, 𝜀𝑟𝑒𝑝,𝑖𝑗 representing the energy scaling factor for the 

interaction between the i-th lipid bead and the j-th protein residue, and 𝑛𝐿𝑃𝐼−𝑝𝑎𝑖𝑟𝑠 being equal 

to the total number of lipid-residue pairs of CG beads. The values of 𝜀𝑟𝑒𝑝,𝑖𝑗 and 𝜎𝑖𝑗 are defined 

with the following combination rules, 

𝜀𝑟𝑒𝑝,𝑖𝑗 = √𝜀𝑟𝑒𝑝,𝑖𝜀𝑟𝑒𝑝,𝑗 (3.3) 
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(3.4) 

where the 𝜀𝑟𝑒𝑝,𝑖  (𝜀𝑟𝑒𝑝,𝑗) and 𝜎𝑖  (𝜎𝑗 ) values are the corresponding coefficients in the iSoLF 

(AICG2+) force field. The combination rule in Eq. (4) makes σij closer to the larger value of 

𝜎𝑖 and 𝜎𝑗  , which is preferred to the arithmetic mean when the two particles' sizes are markedly 

different (109). In fact, as it will be discussed later, this combination rule was found to be 

important. 

 The hydrophobic-hydrophilic potential, 𝑉𝐻𝑃, is defined as 

𝑉𝐻𝑃 = ∑ {
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𝑖∈𝑙𝑖𝑝𝑖𝑑𝑠,𝑗∈𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠

(3.5) 

where σij is the same as above in Eq. (3.4), but the energy scale parameter 𝜀𝐻𝑃,𝑖𝑗 is different 

from Eq. (3.3).  𝜀𝐻𝑃,𝑖𝑗 takes a positive or negative value when the middle-range interaction is 

attractive or repulsive, respectively (Figure 3.b). Since there are five CG particles per one lipid 

and 20 kinds of natural amino acids, there can be as many as 5 x 20 = 100 energy scale 
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parameters. By a suitable parameterization of these 𝜀𝐻𝑃,𝑖𝑗 , the hydrophobic or hydrophilic 

nature of amino acids can be approximated inside lipidic environments. 

 

3.4 Coarse-grained molecular dynamics simulations 

  

 All the CGMD simulations in this work were performed with a modified version of 

CafeMol v3.1 (53) and the standard underdamped Langevin equation. The mass of each CG 

bead was set equal to the sum of the masses of atoms it represents, and the friction coefficient 

equal to 0.8435 1/CafeMol-time (one CafeMol-time unit approximately corresponds to ~49𝑓𝑠, 

although this mapping cannot be used to interpret the time-scale of the large-scale dynamics 

due to the use of low-friction coefficient, among other reasons). The default dynamics setup of 

CafeMol was used, a temperature of 303K, the NVT ensemble, and periodic boundary 

conditions. 

 

 For the umbrella sampling simulations, a system composed of 128 POPC lipids 

arranged in a square bilayer (64 in each leaflet) and one amino acid placed at a different position 

along the positive z-axis with respect to the middle of the membrane was prepared. The 

simulation box dimensions were set to 64Å × 64Å × 200Å and the lipid bilayer was placed in 

the center, perpendicular to the z-axis. The spring constant for the harmonic bias potential was 

1 𝑘𝑐𝑎𝑙 Å ∙ 𝑚𝑜𝑙⁄  and the umbrellas covered distances from 0 to 40Å from the center of the 

bilayer at constant intervals of 1Å. The simulations consisted of 6 × 106 MD steps, of which 

the first 1 × 106 MD steps were discarded before calculating free energies using Grossfield's 

implementation (110) of the Weighted Histogram Analysis Method (111) (WHAM) v2.0.10.1. 
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 For the test simulations, a system composed of 512 POPC lipids arranged in a square 

bilayer (256 in each leaflet) and one test target protein was prepared. The box dimensions for 

these simulations were 128Å × 128Å × 200Å, and as in the umbrella sampling simulations, 

the membrane was placed at the center of the box. For the transmembrane proteins, a lipid 

bilayer was superimposed on the structures obtained from the OPM database, and all the lipids 

molecules containing at least one bead at a distance less than or equal to 3.5Å of any of the 

protein beads were removed. In the case of peripheral and globular proteins, they were placed 

at a distance of at least 5Å above the lipid membrane. 

 

3.5 Parameter tuning 

 

 The energy scale coefficients for the hydrophobic-hydrophilic interaction εHP,ij 

between the i-th CG lipid bead and the j-th amino acid were tuned by comparing the free energy 

at 𝑧 = 0Å and 𝑧 = 20Å relative to the aqueous environment (𝑧 = ∞). Here, 𝑧 is the coordinate 

normal to the membrane surface, with 𝑧 = 0Å corresponding to the center of the membrane. A 

hybrid parameterization approach was employed, using experimental and theoretical data as 

target values for adjusting the interaction strength at 0 and 20Å, respectively. 

 

 During the tuning process, since each free energy value could be either below or above 

the target value, the bisection method by defining a simple difference cost function was applied. 

It is worth noticing that near the target values, the statistical error in the free energy calculation 

from CGMD simulations could make the bisection algorithm failed. Thus, for the final three 

iteration steps, the choice of the next iteration point was manually supervised. 
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3.6 Proteins 

 

 Tested proteins were categorized into three groups: 1) The membrane-spanning 

proteins with either α helices (the first three) or β sheets (the last two); WALP19 (protein data 

bank id, 2lcn), rhodopsin (5ax0), Zrt/Irt-like protein zinc transporter ZIP (5tsa), the outer 

membrane domain of intimin (4e1s), and the outer membrane protein OprG (2x27). 2) The 

water-soluble globular proteins; myoglobin (2spl), pepsin (1psn), and calmodulin (1rfj). 3) The 

peripheral and other proteins; acutohaemolysin (1mc2) and crambin (1ejg). 

 

3.7 Property calculation 

 

 To describe the orientation and positioning, calculation of the projection in the z-axis 

(𝑧) of the vector joining the center of mass (COM) of the membrane with the COM of the 

protein was performed, termed insertion depth in this study, and the tilt angle (𝜃). Even though 

the tilt angle is a simple concept, there are multiple definitions in the literature (112-113). In 

this work, it is defined as the angle between the z-axis perpendicular to the membrane and the 

vector joining two reference groups defined differently for each protein type. For the α helical 

transmembrane proteins, the centers of mass of the first three and last three Cα were set as the 

reference groups of each α helix, whereas for β sheet transmembrane proteins, only the first 

and last Cα's of each β strand were used. The mean of the tilt angles of all the transmembrane 

α helices or β strands were calculated. For the other proteins, the tile angle is not very important. 

While there is no unique way of defining the reference groups, two Cα's positioned at two 

opposite sites were used. Those atoms were selected as follows: Ser3 and Lys50 for myoglobin, 

Ser62 and Gly201 for pepsin, Asp24 and Ala102 for calmodulin, Lys1087 and Ser1116 for 
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acutohaemolysin, and Pro19 and Gly42 for crambin. Here, each number represents the residue 

ID in its corresponding PDB file. 

 

3.8 Model parameterization tuning 

 

 Here, the parameters in the lipid-protein interaction potential Eq. (3.1) are determined. 

First, the parameters in the repulsive potential (Eq. 3.2) are defined by simple combination 

rules (Eqs. 3.3 and 3.4), and thus no further parameter tuning is necessary. On the other hand, 

in the hydrophobic-hydrophilic potential (Eq. 3.5), the energy scale parameters, 𝜀𝐻𝑃,𝑖𝑗, need to 

be determined. These parameters play a central role in the model and thus need to be tuned 

carefully. In general, since each 𝜀𝐻𝑃,𝑖𝑗 depends on both the type of the lipid bead 𝑖, and the type 

of amino acid 𝑗, we can have a total of 100 different parameters for the interactions between 

the 20 natural amino acids and one lipid molecule (which in the model is represented with 5 

beads). To decrease the parameterization complexity, in this study, it was assumed that the 

three lipid tail beads (T1, T2, and T3) share the same value for 𝜀𝐻𝑃,𝑖𝑗, reducing the number of 

parameters to 60. 

 

 Next, the reference data for tuning the parameters were selected. A hydrophobicity 

scale for the 20 amino acids as a bottom line for the interaction was used. Hydrophobicity 

scales are suitable targets because they capture the partition preferences of amino acids between 

water and lipid-like solvents. In a recent survey (114) of 98 hydrophobicity scales that assessed 

the potential for the separation of protein/peptide pools into different classes, the classic scale 

by Engelman et al. (115) showed one of the top performances (scale id 28 in Table S6 of the 

survey). This hydrophobicity scale is based on experimentally determined transfer free energies 

that are theoretically adjusted to account for transmembrane α-helices. Since this scale aims to 
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predict transmembrane regions from its amino acid sequence, it is inherently suitable for the 

current purpose. However, these hydrophobicity scales could only be used to compare the free 

energy difference of each amino acid between aqueous solutions and the hydrophobic layer of 

the lipid membrane, not reflecting the interactions of amino acids with the hydrophilic layer of 

the lipid membrane where the lipid head beads (H1 and H2) mostly reside. Therefore, to 

complement the experiment-based data, the free energy profiles of each amino acid normal to 

the membrane surface calculated by all-atom MD simulations (116) were also used.  

 

 The MD-based free energy profiles show free energy minima or maxima at the 

hydrophilic layer, representing ideal target values for reproducing with the lipid-protein 

interaction. Interestingly, these free energy profiles also exhibit, for some amino acids, a 

characteristic behavior near the interface between hydrophobic and hydrophilic layers, but in 

this work, due to their over-complexity, it was ignored. In principle, the MD-based free energy 

at the center of the lipid bilayer could also be used in place of the experimental hydrophobicity 

scales. However, for better accuracy and robustness, it was decided to use the experiment-

based scale, i.e., Engelman's scale, for this purpose.  Lastly, for the residues which did not have 

available theoretical free energy profiles, the curve for the closest amino acid in the 

hydrophobicity scale was used as a proxy.  

 

 In summary, Engelman's hydrophobicity scale was used as target values for the free 

energy at the center of the lipid bilayer (𝑧 = 0 Å) relative to an aqueous solution and the all-

atom MD free energy estimate at 20 Å from the center of the membrane surface (𝑧 = 20 Å ) as 

the reference data in the parameterization (red crosses in Figure 2). 
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 To fit the model to the target data, the free energy profile of each amino acid between 

water and lipid environments was calculated by performing umbrella sampling simulations. In 

preliminary trials, it was found that a local minimum at the middle of the membrane 

independently from the chosen value of 𝜀𝐻𝑃,𝑖𝑗  when using the arithmetic mean as a 

combination rule for the repulsive range, σij = (𝜎𝑖 + 𝜎𝑗) 2⁄   (Fig. A7). Representing lipids as 

single-chain molecules requires tail beads to be significantly large compared to amino acid 

beads. This difference in size produced a small cavity between T3 beads where hydrophilic 

amino acids were stabilized. In contrast, with Eq. (3.4) as a combination rule, σij becomes 

closer to the largest of the two σ's, effectively destabilizing the artificial local minimum due to 

an increase in the size of the amino acid beads. 
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Figure 3.2. Free energy profiles for the 20 amino acids along the z-axis normal to the POPC 

membrane surface computed by CGMD with the tuned parameters. Here, 𝑧 = 0 and 𝑧 ≈ 25Å 

correspond to the center of the lipid bilayer and the surface of the membrane, respectively. Red 

crosses mark the target free energy values used for tuning. Based on the free energy profile, 

each amino acid is classified either as hydrophobic (green), polar (white), positively charged 

(blue), or negatively charged (red). 

 

RESIDUE H1 H2 T1, T2, T3 

ALA 0.000 -0.995 0.593 

ARG 0.000 2.581 -0.680 

ASN 0.000 0.571 0.030 

ASP 0.000 -0.735 -0.371 

CYS 0.000 -0.510 0.626 

GLN 0.000 0.650 0.093 
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GLU 0.000 -1.515 -0.280 

GLY 0.000 -0.995 0.539 

HIS 0.000 0.579 0.207 

ILE 0.000 0.130 0.723 

LEU 0.000 -1.050 0.692 

LYS 0.000 2.030 -0.335 

MET 0.000 -0.760 0.745 

PHE 0.000 -0.588 0.766 

PRO 0.000 0.302 0.436 

SER 0.000 -0.740 0.506 

THR 0.000 -0.780 0.560 

TRP 0.000 0.894 0.616 

TYR 0.000 0.330 0.394 

VAL 0.000 -1.148 0.677 

N-terminal 0.000 1.000 -0.500 

C-terminal 0.000 -1.000 -0.500 

Table 3.1. Tuned energy scale parameters εHP,ij for the hydrophobic-hydrophilic interactions between 

a lipid particle and a protein residue. All values are in kcal/mol. 

 

 In a preliminary examination, it was observed that varying 𝜀𝐻𝑃,𝑖𝑗 for the lipid tail bead 

changed the free energy value at 𝑧 = 0 Å, but not 𝑧 = 20 Å, whereas  𝜀𝐻𝑃,𝑖𝑗 for the lipid head 

bead changed the free energy value at 𝑧 = 20 Å, but not 𝑧 = 0 Å (Fig. A8). This pseudo-

independence allowed to set up an initial guess on the target parameters by performing a linear 

fitting for the head and tail separately. Furthermore, it was observed that the free energy at 𝑧 =

20 Å  could be modeled solely by the interaction with H2, and thus, to minimize the complexity, 

it was decided to turn off the interaction of H1 (this removal can be a major point for future 

improvement since at this stage proteins cannot recognize lipids with different head groups). 

 

 Starting from an initial guess, the free energy profiles were iteratively calculated, 

comparing their values at 𝑧 = 0 Å  and 20 Å, and updating the corresponding values of  𝜀𝐻𝑃,𝑖𝑗 
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until the difference in free energy at each position was smaller than 0.1 kcal/mol. The 

parameters for all the residues converged after around ten iterations and are presented in Table 

3.1. Figure 3.2 shows the calculated free energy curves for the 20 residues, together with the 

reference data points used for the fitting (red crosses).  

 

 In Table 1, it was found that the tail beads (T1-T3) have negative values (namely, the 

repulsive interaction) of 𝜀𝐻𝑃,𝑖𝑗 only with the charged amino acids (Arg, Asp, Glu, and Lys), but 

not the polar ones (Asn, Gln, His, Pro, and Tyr), contrary to what was initially expected. Not 

surprisingly, the tail beads have positive 𝜀𝐻𝑃,𝑖𝑗  values (the attractive interaction) for all the 

hydrophobic amino acids. Since the H2 particle contains the phosphate group,  𝜀𝐻𝑃,𝑖𝑗  of the 

H2 particle is positive and large for the positively charged amino acids (Arg and Lys) and is 

negative for the negatively charged amino acids (Asp and Glu). The 𝜀𝐻𝑃,𝑖𝑗 values of the H2 

particle with other amino acids are either positive or negative. 

 

 Finally, an extra set of parameters for representing the interactions between the termini 

of the protein with the lipid was added. By treating the N- and C-terminus as positively and 

negatively charged amino acids, respectively, small transmembrane 𝛼-helical peptides could 

be stabilized, and their embedding inside the hydrophobic layer was prevented. This will be 

described more in detail in the next section. 

 

3.9 Transmembrane proteins 

 

 With the lipid-protein interaction parameterized, the behavior of proteins interacting 

with the membrane was tested. For this purpose, CGMD simulations of three classes of proteins 

were performed: transmembrane proteins, water-soluble proteins, and peripheral/others 
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proteins. This section will describe the first class, transmembrane proteins, composed of three 

α-helix containing proteins, WALP, Rhodopsin, and ZIP, and two β-barrel containing proteins, 

intimin's transmembrane domain and the outer membrane protein OprG.  

 

 WALP is a small peptide with only one transmembrane α-helix. It presents two 

tryptophan residues at each end, an alternating sequence of alanine and leucine residues in the 

middle section, and is a model peptide for representing the transmembrane α helix (117). In the 

developmental stage, when CGMD simulations were performed without the special treatment 

for the N- and C- terminal residues, it was found that the whole peptide was getting embedded 

into the central hydrophobic layer of the membrane despite its initial conformation (Fig. A9). 

The two terminal-residues, Gly1 and Ala19, are hydrophobic in the parameterization (Figure 

3.2). Thus, if their corresponding parameters are assigned, all the amino acids in the peptide 

(except Pro10) are hydrophobic. Not surprisingly, the most favorable position ended up being 

the center of the membrane. This motivated the introduction of the special parameters for N- 

and C-terminal residues. In principle, adding this special treatment to the termini would require 

40 extra parameters. However, in order to avoid increasing the complexity of the model, values 

for the parameters similar to the ones for positively and negatively charged residues were set. 

Equipped with these parameters for the termini, it was found that both ends of WALP stayed 

in the hydrophilic layer of the membrane, consistent with the previous knowledge. This 

phenomenon was not observed for other proteins with multiple transmembrane α helices, 

probably because the contribution of the terminals was smaller than the overall energy 

contribution from hydrophilic residues in the loop regions between helices. 

 

 Then, WALP positioning in the membrane (Fig. 3.3a, Table 3.2) was measured. In the 

CG MD ensemble, WALP's tilt angle and insertion depth were 15 ± 7.3°  and 1 ± 1.7Å , 
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respectively, compared to 13.9° and 2.9Å obtained from the reference structure. From these 

values, it was concluded that the WALP positioning in the CGMD simulations agrees with the 

suggested orientation from the OPM database. 

 

 Reference Simulation 

Protein 𝜃 (°) 𝑧(Å) 𝜃(°) 𝑧(Å) 

WALP 13.9 3.6 15 ± 7.3 1 ± 1.7 

Rhodopsin 13.8 0.6 13 ± 1.6 1 ± 1.3 

ZIP 
25.4 −1.1 

45 ± 5.5 −4 ± 1.5 

ZIP-charged* 24 ± 2.7° −4 ± 1.4Å 

Intimin 38.9 2.2 38 ± 0.6 5 ± 1.7 

OprG 38.9 11.5 39 ± 1.3 14 ± 1.7 

Table 3.2. Summary of the tilt angle 𝜃 (°) and insertion depth 𝑧(Å) for the transmembrane 

proteins. The reference values were calculated from the structures obtained in the OPM 

database, whereas the simulation values were calculated from the CGMD samples. (*) ZIP-

charged corresponds to the results of simulations that mimicked the divalent metal cation 

binding by a double mutation to positively charged residues.   

 

 In Figure 3.3a, a time series of the simulation for WALP is shown. A sudden transition 

was observed in the configuration of WALP at around 107 MD steps, where the C-terminus 

portion of the protein went inside the membrane, adopting a kinked conformation that rapidly 

returned into the original configuration (Figure 3.4). This transition is consistent with what 

was reported in a previous all-atom MD simulation by Ward et al. (117), where they observed 

a kinked conformation during WALP folding inside the membrane. Notably, this type of rare 

transition was not observed for the N-terminus. While both N- and C-terminal residues are 

unstable in the hydrophobic layer of the membrane, their interactions with the hydrophilic layer 

are distinct. The C-terminal residue has a negative charge, resulting in a repulsive interaction 

with the lipid head particle H2 and making the transmembrane placement only marginally 
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stable. On the other hand, the positively charged N-terminal residue is attracted to the H2 

particle and tends to keeps its position in the hydrophilic layer. 

 

 The second protein is the G-protein-coupled-receptor, rhodopsin, which consists of 

seven transmembrane α-helices, making them good candidates after testing a single membrane-

spanning α-helical peptide. For rhodopsin, a tilt angle of  13 ± 1.6° and an insertion depth of 

1 ± 1.3Å were calculated. These values have good agreement with the reference configuration 

(Fig. 3.3b, Table 3.2).  

 

 Third, a zinc-regulated, iron-regulated transporter-like protein (ZIP) was examined. 

With the same setup, markedly tilted configurations were observed, with the tilt angle 45 ±

5.5° and the insertion depth  −4 ± 1.5Å, which deviate considerably from 25.4° and −1.1Å in 

the reference configuration (Figure 3.3c, Table 3.2). By examining ZIP's reference structure, 

two points that could have affected the result were noticed. First, the reference structure lacks 

three flexible loops: one joining 𝛼-helices 3 and 4, one joining 𝛼-helices 7 and 8, and one at 

the N-terminal position. These loops contain strongly hydrophilic Arg, Gln, and His residues 

near their beginning and their end. The simulations did not include these residues in the missing 

loops. If they were explicitly included, they would have preferred to be positioned either at the 

membrane surface or outside the membrane. Furthermore, ZIP has multiple binding sites for 

heavy metal ions (Zn2+ or Cd2+), including one between 𝛼 -helices 2 and 3, which was 

embedded inside the membrane in the above simulation (118). The lack of these loops and a 

chelated metal ion in the CGMD simulation might explain why the deviation is greater than in 

the case of rhodopsin, in which all the loops joining the transmembrane α-helices are present, 

and there are no heavy metal-binding sites. To test this hypothesis, the two missing flexible 

loops mentioned above and the last 5 residues of the missing N-terminal flexible loop were 
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added using Modeller v10.1 (119). Additionally, a bound divalent ion was mimicked via an in 

silico double mutation to the residues in the coordination site, G120K and G122K (Fig. A10). 

With this modified setup, the tilt angle of 24 ± 2.7° and the insertion depth of −4 ± 1.4Å were 

obtained, agreeing with the reference configuration calculated from the OPM database. This 

might indicate some role for the flexible loops joining transmembrane helices and the bound 

ions contributing to the overall orientation of this protein. 

 

 The last two transmembrane proteins are the β-barrel containing proteins, intimin's 

transmembrane domain, and the outer membrane protein OprG. It was found that despite using 

a parameterization suited to α helical transmembrane proteins, the tilt angle and the insertion 

depth only differ slightly from the values calculated from the reference structures (Figure 

3.3(d)(e), Table 3.2). Since the SASA of each residue is different depending on the secondary 

structure, 𝛽-sheet forming residues have different contributions to the stabilizing effect in the 

lipid-protein interaction. In an implicit solvent model, the lipid-protein interaction becomes the 

main driving force acting on the orientation. Thus, having a more precise contribution for each 

residue considering its local spatial configuration might help reduce the difference observed 

for this class of proteins.  

 

3.10 Water-soluble and peripheral/other proteins 

 

 Next, CGMD simulations of five proteins classified either as water-soluble globular 

proteins or peripheral proteins were performed. These were important targets because a 

parameter set that not only stabilizes membrane proteins inside the bilayer but also destabilizes 

non-membrane proteins in the membrane relative to an aqueous solution is desired.  
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 The first sample of a water-soluble protein is myoglobin, an oxygen-binding protein 

found in skeletal muscle tissue (120). It was found that this protein presented a very weak 

interaction with the membrane (Figure 3.5a) but did not stay on the membrane surface despite 

having hydrophilic residues on its surface, thus showing the expected behavior. The second 

water-soluble protein examined is pepsin, an endopeptidase that digests proteins into smaller 

peptides. Compared to myoglobin, pepsin presented more hydrophobic residues on its surface, 

making it more suitable for interacting with lipid tails. However, it also presented several 

negatively charged residues distributed over the surface. These residues created a high energy 

barrier that prevented its insertion into the membrane (Figure 3.5b). The final of the water-

soluble proteins was the calcium-modulated protein, calmodulin. This protein presents many 

α-helices in its structure; however, they were formed mainly from hydrophilic residues. It was 

observed that it weakly interacted with the surface of the membrane (Figure 3.5c). Again, the 

distribution of these hydrophilic residues over the protein structure destabilizes a possible 

membrane-bound state. For these three proteins, it was also observed that when weakly 

interacting with the membrane, they explore different orientations. However, their topology 

and amino acid sequence composition were not designed to interact favorably with the lipid 

membrane, as expected. 

 

 The next protein that was tested is acutohaemolysin, a phospholipase from the venom 

of the snake Agkistrodum acutus, which is categorized as a peripheral protein, suggested to be 

tethered on the membrane surface. In the CGMD simulations, it was observed that this protein 

rapidly approached the membrane surface, where it remained interacting weakly (Figure 3.5d). 

While interacting, it explored different orientations for ~0.2 × 106 MD steps until it found its 

preferred orientation and bound to the membrane. It is important to notice that the protein 

surface in contact with the membrane mainly presented either hydrophobic or positively 
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charged residues. Positively charged residues have a favorable interaction with the lipid 

phosphates, represented in the H2 beads in the model. The hydrophobic residues interact with 

tail beads. These interactions together stabilized the binding on the membrane surface. Notably, 

it was also observed transient dissociations of the protein from the membrane after several 

million simulation steps. However, after each dissociation, acutohaemolysin quickly recovered 

its preferred orientation (~60° in the current definition) and bound back to the membrane.  

 

 The last protein of this group is crambin, a small protein of Abyssinian cabbage that 

presents a structure that has been well studied (121). It was found in the simulations that 

crambin, similar to acutohaemolysin, quickly interacted with the membrane, exploring 

different conformations before adopting its membrane-bound state after less than one million 

MD steps (Figure 3.5e). However, contrary to what was expected for a peripheral protein, this 

surface-bound state was followed by an insertion into the membrane core. That is, crambin 

positioned itself inside the membrane, adopting an orientation of around ~50° with the flexible 

loop joining its two alpha-helices facing outwards (Figure 3.6). The insertion of crambin into 

the membrane with the loop facing outwards is consistent with a previous study by Ahn et al. 

(122). Lastly, in the simulations, no transition of crambin going outside the membrane could 

be found during ~40 × 106 MD steps, suggesting high stability for the inserted conformation. 
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Figure 3.3. Time series for the CGMD simulation of five transmembrane proteins inside the 

lipid bilayer. The title angles (left column), the insertion depth (central column), and a 

representative snapshot (right column) are shown for (a) WALP, (b), rhodopsin, (c) zinc-

regulated iron-regulated transporter-like protein (ZIP), (d) intimin's transmembrane domain, 

and (e) the outer membrane protein OprG. In the left and central columns, light blue curves 

represent the raw data, red curves the moving average over 200 data points, and dashed straight 
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lines the corresponding values for the configuration calculated from the reference structures 

from the OPM database. The bar graph on the right side is the histogram of the raw data. In the 

right column, amino acids of proteins are colored by the scheme defined in Figure 2. The 

membrane is located roughly in the range of −25Å ≤ z ≤ 25Å.  

 

 

 

Figure 3.4. The conformational transition of WALP in CGMD simulations. It was observed a 

rare large-scale transition exemplified in Figure 3(a) after ~1.0 × 107 CafeMol-time units. (a) 

A typical configuration before the transition. The C-terminus is at the top here. (b) A kinked 

configuration after the transition. The C-terminus jumped from the top to the bottom of the 

hydrophilic layers.   
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Figure 3.5. Placement of water-soluble, peripheral, and other proteins relative to the lipid 

bilayer plane in CGMD simulations. The title angles (left column), the insertion depth (central 

column), and a representative snapshot (right column) are shown for three water-soluble 

proteins; (a) myoglobin, (b), pepsin, and (c) calmodulin, and two peripheral and other proteins; 

(d) acutohaemolysin and (e) crambin. In the left and central columns, light blue curves 

represent the raw data, red curves the moving average over 200 data points. The bar graph on 
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the right side is the histogram of the raw data. In the right column, amino acids of proteins are 

colored by the scheme defined in Figure 2. The angle 𝜃 (°) is merely defined by the angle 

between a representative vector that connects two distant amino acids and the z-axis. The 

membrane is located roughly in the range of −25Å ≤ z ≤ 25Å  

 

 

 

 

Figure 3.6. The two placements of crambin in CGMD simulations. Two oppositely-oriented 

placements were observed. The characteristic solvent-exposed residues Gly20 and Thr21 are 

facing to the bottom (a) and the top (b) of the lipid membrane. 
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3.11 Discussion and conclusions 

 

 In this study, based on two previously developed CG force fields, iSoLF for lipids and 

AICG2+ for proteins, lipid-protein interaction potential using a modified Lennard-Jones 

energy function was developed and parameterized. The middle-range hydrophobic-hydrophilic 

interaction energy scale parameters were tunned by using an experiment-based hydrophobicity 

scale and an all-atom MD-based free energy profile along the normal to the membrane surface. 

Additionally, a pair of parameters for the N- and C- terminal residues was also defined. The 

parametrized lipid-protein interactions were tested for 10 proteins, including five 

transmembrane proteins, three water-soluble proteins, and two peripheral/other proteins. 

Overall, the lipid-protein interaction could reproduce the expected behavior for different 

classes of proteins inside/outside lipid environments.  

 

 However, some points need to be further improved. Firstly, the parameterization of the 

lipid-protein interaction was performed with a hydrophobicity scale optimized for α helical 

structures. Although the test simulations for β barrel proteins were successful, refining 

parameters against transmembrane β proteins may increase the accuracy. Secondly, the 

interface between the lipid heads and the lipid tails is recognized by some amino acids, such as 

tryptophan, due to their amphipathic nature (123). Probably, refining the parameter for the tail 

residue T1 could mimic these interactions. Lastly, the model would greatly increase its 

applicability if a specific interaction with the lipid head beads H1 is defined. It was found that 

the expected behavior for peripheral and globular proteins could be reproduced despite not 

having a specific interaction between lipid beads H1 and amino acids. However, for example, 

there are known proteins that recognize sphingomyelin (SM) or lipids containing 

phosphatidylserine (PS), in which electrostatic interactions play a major role. Representing 
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these interactions is not trivial due to the nature of the system and the CG representation. The 

dielectric constant changes rapidly across the membrane and represents a major drawback 

when calculating the electrostatic interactions among particles (124). Additionally, in this 

model, water is treated implicitly, representing the net effect of the electrostatic interactions in 

the different energy functions of the force fields. Therefore, electrostatic interactions need to 

be considered carefully in order to avoid artifacts in the model. All these limitations can be 

overcome in the next round of the force field development. 
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Chapter 4 

Conclusions 

 

 

 In this work, a new implicit solvent coarse-grained model for the simulation of 

biological membranes has been developed by extending a previous work from Cooke, Kremer, 

and Deserno (52). This force field was created in need of a lipid model with a resolution suitable 

for combination with C𝛼 protein models. Thus, this required mapping lipids into five-bead CG 

molecules. For the parameterization, a hybrid approach was employed. Intramolecular 

interactions were fitted against statistical distributions from all-atom simulations. In contrast, 

intermolecular interactions were tuned to reproduce experimental measurements. Despite 

representing two-tailed phospholipids as single-tailed linear molecules, the lipid model could 

capture key properties of biological membranes. Namely, the spontaneous formation for 

membranes and the stabilization vesicle conformations could be observed. On top of that, the 

correct area-per-lipid and hydrophobic thickness for POPC and DPPC at 30 °C were 

reproduced, as well as the correct phase behavior. 

  

 In the next stage of this work, the developed lipid model was combined with the 

AICG2+ protein model. For this purpose, a lipid-protein interaction was parameterized in order 

to represent membrane proteins interacting inside lipidic environments. Since hydrophobicity 

scales capture well the chemical nature of amino acids inside different environments, they were 

used as target data for tuning the lipid-protein interaction. Additionally, free energy profiles 

for the insertion of amino acids into lipid bilayers were also used as complementary data. 
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Finally, to test the lipid-protein interaction, simulations of various proteins were performed. It 

was found that in all the cases, the proteins adopted the expected configuration calculated from 

the OPM database. 

 

 Regardless of the ability of the model to successfully simulate biological membrane 

environments by capturing the hydrophobic effect into its interaction potentials, there are still 

improvements to be made. First, the phase behavior of lipid membranes at temperatures 

different from 30 °C is still not well represented. This can be addressed by fine-tuning the lipid-

lipid interaction in a more detailed way, assigning specific parameters for the interaction of 

each pair of beads. In fact, this might also help reproduce the phase separation of 

multicomponent membranes, an important feature of lipid bilayers. Second, there are no 

specific interactions between the different amino acids and the lipid H1 head beads at this stage. 

Representing these interactions is important because there are many proteins for which it is 

known they recognize specific lipids on the membrane through their characteristic head groups. 

Even though it is possible to calibrate this interaction to reproduce experimentally calculated 

protein-membrane binding coefficients, a general parameterization will favor its applicability 

for cases where such a binding coefficient is not accessible yet. Finally, the last point of 

improvement is related to the available parameters. Currently, the iSoLF force field has 

parameters for performing simulations with POPC or DPPC lipids. However, lipid membranes 

are heterogeneous systems that contain several types of lipids. In order to have a more faithful 

representation of these systems, more lipids need to be parameterized. 

 

 In conclusion, this new force field, despite its current shortcomings, opens the 

possibility to apply structure-based CG protein models to membrane protein systems, 

contributing to the MD field. 
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Appendix 

 

 

 

Figure A1. Time series for POPC and DPPC lipids. The area-per-lipid (APL), hydrophobic 

thickness, and order parameter are shown in the left column for POPC (a-c) and in the right 

column for DPPC (d-f). In each plot, the red zone indicates the section for the time series that 

was not used, the blue shadow represents the raw data, and the green line shows the running 

average over the last 10 data points. 
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Figure A2. Boltzmann Inversion for POPC virtual bonds. (a-d) In each plot, the green lines 

represent the inverted potential obtained using the Boltzmann-inversion method for the four 

POPC virtual bonds. The red lines represent a fitting around the minima using a quadratic 

potential. 

 

 

Figure A3. POPC self-assembly at 30°C. (a) The initial configuration of 5000 POPC lipids 

randomly placed in a box of 500Å × 500Å × 500Å without periodic boundary conditions. 

Each wall has an associated repulsive potential to prevent lipids from diffusing away. (b) 

Configuration obtained after 1.6 × 105 MD-time. (c) Clusters formed during the simulation (I 

and II in b).   
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Figure A4. Pore formation probability for POPC. Each point was calculated as the ratio of 

membranes containing a hole over 20 trajectories. For a sigma ratio, 𝜎𝐻 𝜎𝑇⁄ , lower or equal to 

0.75, no pore was observed. However, for ratios bigger than 0.75, pores started to form. 

 

 

Figure A5. Comparison of lateral diffusion for POPC. (a) All-atom simulation of the MSD, 

using the SLipids force field. (b) Coarse-grained simulation of the MSD, using the developed 

lipid model, iSoLF. 
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Figure A6. Two-component membrane simulation. (a) Last snapshot of the 1:1 POPC:DPPC 

ratio membrane. (b) Last snapshot of the 2:1 POPC:DPPC ratio membrane. (c) Order parameter 

time series for the 1:1 ratio system. It stayed in the gel phase. (d) Order parameter time series 

for the 2:1 ratio system. POPC presented a fluid phase while DPPC stayed in a gel phase. In 

(a) and (b), POPC and DPPC lipids are assigned the colors grey and red, respectively. 
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Figure A7. Free energy profile with local minima at the center of the membrane. By using as 

combination rule the arithmetic mean, 𝜎𝑖𝑗 = (𝜎𝑖 + 𝜎𝑗) 2⁄ , a local minimum appeared at the 

center of the bilayer. This happened because the difference in size between amino acids CG 

beads and the lipid tail beads T3 permitted the formation of a small cavity that stabilized 

hydrophilic residues. 

 

 

Figure A8. Free energy as a function of 𝜀𝐻𝑃. (a) Free energy profiles obtained by varying the 

force coefficient for tail beads (T1, T2, and T3) while setting the force coefficient for the head 

beads (H1 and H2) equal to 0 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. (b) Free energy profiles obtained by varying the force 

coefficient for head beads (H1 and H2) while setting the force coefficient for the tail beads (T1, 

T2, and T3) equal to 0.448 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. This show that the parameterization of amino acids for 

the interactions with the lipid head and tail beads can be performed almost independently. 
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Figure A9. WALP embedded into the membrane. For small peptides, the terminal residues 

play a major role since they contribute to the overall stabilization through electrostatic 

interactions with the hydrophilic region of the lipid membrane. By including special treatment 

for the N- and C- terminal, the embedded configuration of WALP is destabilized. 

 

 

Figure A10. Orientation for the mutated ZIP. The figures show the (a) tilt angle and (b) 

insertion depth for the artificially mutated ZIP. By mimicking a divalent cation bound to the 

protein and filling the missing flexible loops, the correct orientation of ZIP was obtained. In 

the snapshot (c), blue arrows indicate the filled flexible loops, and red arrows indicate the 

mutated residues. 

 


