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Abstract

Humans use natural language to communicate with others about the events they

observe. In the form of news articles, blog posts, or even tweets, an overwhelm-

ingly large amount of texts are published every day. These natural language texts

encode the various events that happen around us, presenting a rich repository of

events from which we can mine invaluable knowledge about the rapidly changing

world. However, the large amount of data has gone far beyond human ability to

read and process manually. Thus, how to automatically extract and analyze the

events in natural language texts has become an important task.

Due to their importance in natural language, events have been studied per-

vasively from many aspects. Some works analyze individual events and aim to

identify their composing factors, such as event extraction, event coreference resolu-

tion, etc. Other works focus on the interactions and the various relations between

multiple events, such as script learning (narrative event knowledge acquisition),

discourse parsing, etc. In addition, many downstream tasks can benefit from

incorporating events into the task, such as automatic summarization, question

answering, etc.

In this thesis, we study the events in natural language texts. Specifically, we

focus on three representative event-related tasks: event coreference resolution,

narrative event relation knowledge acquisition, and automatic summarization.

We first tackle the task of event coreference resolution, which is an important

information extraction task. Event coreference resolution aims to identify and

cluster the event mentions that refer to the same real-world event. We focus on

the argument compatibility constraint of the task and propose a transfer learning

framework of event coreference resolution and learn argument compatibility from
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the abundant unannotated corpora available. We conducted experiments on the

benchmark KBP corpora and verified the effectiveness of our proposed method.

Second, we tackle the task of narrative event relation knowledge acquisition.

Narrative event relation is an important type of commonsense knowledge that

captures the stereotypical ordering of temporally and causally related events. We

adopt a 2-stage framework to extract narrative event relation knowledge from

a large Japanese corpus. In the first stage, we utilize association rule mining

algorithm to identify narrative-related events of statistic significance. In the sec-

ond stage, we manually constructed an annotated corpus to learn the patterns of

shared arguments between the event pairs. With the methods above, we collected

a large amount of narrative event relation knowledge (400,000 pairs of narrative

events) from the web corpus.

Last, we focus on the task of automatic summarization. We adopt the ex-

tractive summarization framework and extract salient elementary discourse units

(EDUs) as summaries. We formulate the task as an event saliency identification

problem and adopt a heterogeneous graph-based model for extractive summa-

rization. We propose a heterogeneous document graph to model the interactions

between text units of different granularity, including the coreference and discourse

relations. A graph attention (GAT) based graph encoder is used to capture the

structure of the heterogeneous document graph. We conducted experiments on

the benchmark CNN/Daily Mail corpus and verified the effectiveness of our pro-

posed method.
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Chapter 1

Introduction

1.1 Background

Events form the backbone of our daily communication. Every day, tens of millions

of events happen around the world. In order to communicate with others, humans

use natural language to encode the information of the events they observed.

In the past decades, the increasing popularity of the Internet and the rise of

the new media make it possible for everyone to express their thoughts effortlessly.

The widespread of the Internet gives everyone free access to abundant and diverse

sources of natural language texts, including news articles, blog posts, social media

posts, just to name a few. These natural language texts are a rich repository of

real-world events. By mining the events and studying the various interactions

between them, we can obtain knowledge of the real world and develop applications

that improve our everyday life in many aspects.

In this thesis, we study the events in natural language texts. An overwhelm-

ingly large amount of new information is published through different media every

day, which is far beyond human ability to read and process manually. Thus,

how to automatically extract events of interest from text has been a major re-

search problem in the information extraction (IE) and natural language processing

(NLP) fields. In addition to identifying the occurrence of an event, we also want

to know about the participants involved in the event and the different roles these

participants play. Also, the same real-world event may be described multiple

1



2 CHAPTER 1. INTRODUCTION

times throughout a document or even across multiple documents in vastly dif-

ferent contexts and narrative styles. Thus, the identification of coreferent event

mentions that describe the same real-world events is important for the purpose of

aggregating information about an event.

Instead of describing only a single event, humans usually connect multiple

events to form a complete story. Thus, recognizing how events interact with each

other in texts is critical for natural language understanding. There exist various

types of relations among events. For example, the temporal relation indicates the

relative ordering of the occurring time of events, and the causal relation specifies

the cause-effect relationship in which one event causes another event to occur.

Related events are often ordered in a temporally and causally reasonable way

in natural language text. The narrative event sequence is an important type

of commonsense knowledge that captures this stereotypical ordering of events.

Also, related events are connected through different rhetorical relations to form

a coherent text. Building upon the various rhetorical relations between events,

the discourse structure captures the high-level linguistic structure of a natural

language text. The understanding of discourse structure is especially important

for the NLP applications that operate on the scale of documents.

Due to the significant advance in deep learning and other machine learning

techniques, the NLP field has witnessed a gradual shift of interest from entity-

based tasks to event-based tasks in recent years. Some event-related tasks aim to

identify the composing elements and the various aspects of a given event. These

tasks are the major information extraction tasks, including event extraction, event

argument identification, event coreference resolution, etc. Other event-related

tasks focus on the interactions among multiple events. Tasks such as script

(narrative event sequence) learning and discourse analysis are also important for

modeling the global structure of events within natural language texts. The above

event-related tasks can benefit NLP tasks such as automatic summarization, ques-

tion answering, essay scoring, and many other tasks that require natural language

understanding.

In this chapter, we will give a detailed introduction to the basics of the events.

In Section 1.2, we first give the definition of event in natural language texts
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and then introduce the two basic event-related tasks: event extraction and event

coreference resolution. In Section 1.3, we study the interactions between events

from the following two aspects: narrative event sequence (script) and discourse

structure of documents. Finally, Section 1.4 includes the outline of the thesis.

1.2 Events in Natural Language Text

Events have always been one of the main focuses of research in the natural lan-

guage processing (NLP) field. In Section 1.2.1, we first introduce the common

definitions of events used in existing NLP researches. Then, we introduce the

event extraction task in Section 1.2.2. The task of event extraction aims to detect

the occurrences of events in natural language texts, and to identify the event type

and the participating arguments of them. Last, we introduce the task of event

coreference resolution in Section 1.2.3. The task of event coreference resolution

aims to identify coreferent event mentions that describe the same real-world event,

which is helpful in aggregating information about a given event.

1.2.1 Definitions of Event

The identification and analysis of events in natural language text have always

been a topic of interest in NLP. Different researches may represent and define

events differently depending on the specific purpose of the research topic. In the

following, we introduce several formulations of events that are used in previous

researches.

Syntactic Representation of Event

Some existing works adopted the syntactic representation of events by taking

predicate-argument structure (PAS) as the basic unit of events. A PAS consists

of a predicate, which is mostly a verbal expression, and its syntactic arguments,

such as the subject, the direct object, the indirect object, etc. Figure 1.1 illustrates

two events represented in PAS format.
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Figure 1.1: Syntactic representation of event: predicate-argument structure (PAS)

as the basic unit of events.

In Japanese studies, people often incorporate case markers and their corre-

sponding surface cases as the syntactic cases in predicate-argument structures

(Figure 1.2). Main surface cases include ga-case(が格), wo-case(を格), and ni-

case(に格), which roughly corresponds to the subjective (nominative), direct ob-

jective (accusative), and indirect objective (dative) cases.

Figure 1.2: In Japanese studies, surface case markers are used to construct PAS.

By representing events with PAS, the syntactic representation of events does

not require a specialized annotation corpus. Thus, adopting the syntactic repre-

sentation of events enables us to extract and manipulate events on a large scale.

For example, Chambers et al. [12] and Pichotta et al. [105] represent events as

PAS and learn narrative event sequences automatically from a large-scale corpus.
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Semantic Representation of Event

The semantic representations of events model the different participants of an event

semantically. The definition of event introduced by the Automatic Content Ex-

traction (ACE) [37] annotation scheme is the most representative of this category.

In ACE formulations, an event consists of a trigger phrase and its corresponding

arguments. The detailed definitions are summarized below:

• Event mention: the phrase or sentence within which an event is described.

• Event trigger: the word/phrase that most clearly expresses the occurrence

of the event, typically verb or noun.

• Event type: the semantic class of the event.

• Event argument: the entity that serves as a participant or an attribute

with a specific role in the event.

• Argument role: the relation between an argument and the event in which

it participates.

Figure 1.3 shows an example of an event with the ELECT event type. The trigger

is the word elected, and the explicit arguments are PERSON, POSITION, TIME,

LOCATION arguments. ELECT events can also hold ENTITY arguments, but we

keep the argument slot empty since the corresponding information is not present

in the context.

Figure 1.3: The example of an ELECT event.
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Different event types have different semantic argument roles. For example,

Figure 1.4 shows an ARREST-JAIL event with the trigger word jailed. Different

from the ELECT events, ARREST-JAILS events can take PERSON, AGENT,

CRIME, TIME, and PLACE arguments.

Figure 1.4: The example of an ARREST-JAIL event.

The semantic representation of events is very popular among researchers that

handle events of specific types of interest, such as closed-domain event extraction,

event coreference resolution, etc. Due to the popularity, manual efforts have been

put into the construction of annotated event corpus.

Elementary Discourse Unit

Discourse analysis studies how events are combined to form natural and coherent

texts. Being one of the most popular theories of discourse analysis, the Rhetoric

Structure Theory (RST) framework segments the article into Elementary Dis-

course Units (EDU), which is the minimal units of discourse (Figure 1.5). As can

be observed from Figure 1.5, the EDUs are typically clauses (consisting of a pred-

icate and its arguments) and can be considered as the pieces of events composing

the document.

Different from the syntactic and semantic representations of events, the EDUs

do not have explicit argument structures. The unstructured nature and natural
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language-like characteristic of EDUs provide the following advantages: (1) free

from error propagation of argument extraction components, and (2) straightfor-

ward for human eyes to examine. Representing events in the natural language-like

form such as EDUs is popular among research works that focus on the relations

and interactions between events.

Figure 1.5: Trigger and semantic arguments as an unit of event.

1.2.2 Event Extraction

Event extraction is an important yet challenging task that serves as a crucial

first step for various downstream NLP tasks, such as event coreference resolution,

event relation extraction, and any task that handles events.

The goal of event extraction is to detect occurrences of events in natural

language texts. Further, the detected events are classified into different event

types and the participating arguments and associated attributes are also identified.

The key idea of event extraction is to extract structured representations of events

from unstructured natural language texts. The structured representation of an

event should directly or indirectly help in answering the “5W1H” questions - who,

when, where, what, why, and how - about the given event.

The task of event extraction can be further classified into closed-domain and

open-domain event extraction, which differ in the existence of predefined event

types and require different extraction strategies. In the following, we introduce

the task formulations, annotated corpora, and the popular approaches of event

extraction.
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Closed-Domain Event Extraction

Closed-domain event extraction assumes the existence of predefined event types.

For each predefined event type, an event schema specifying the possible argument

roles is defined. Based on the predefined event schema, events of particular types

are extracted from text. Also, the arguments of the event need to be identified

and fill into the corresponding argument roles of the predefined event schema. For

example, Figure 1.3 and Figure 1.4 represent the event schema of ELECT and

ARREST-JAIL event types, respectively.

Closed-domain event extraction only focuses on specific types of events, and

would neglect events that are not of the predefined event types. The set of prede-

fined event types and their event schema varies across different research programs

and domains.

Open-Domain Event Extraction

Open-domain event extraction does not assume any predefined event structures.

The goal of open-domain event extraction is to identify previously undefined

events. Also, in most cases, similar events are further clustered based on the

keywords of the extracted events. Here, keywords refer to the words or phrases

that describe an event, which can be the trigger or arguments of the event.

Most works of this line focus on the detection and clustering of events, and the

identification of the arguments and argument roles are often omitted. However,

some works also work on the induction of event schemas by assigning the event

type label and attribute labels to each event cluster.

Open-domain event extraction is very useful for downstream applications that

require board-coverage, dynamically-evolving, or domain-specific event categories.

In addition to standard news articles, online social media posts are also popular

targets for open-domain event extraction.

Event Extraction Corpora

Information extraction from unstructured natural language text has attracted a

lot of interest among researchers in NLP. To encourage the research of information
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extraction, many public evaluation programs have proposed their own task defi-

nitions and annotation schemes as well as publicly available annotated corpora to

attract research interest. In the following, we introduce four important corpora

commonly used in event extraction research:

1. MUC corpus:

The Message Understanding Conference (MUC) program [122, 123] is the

first public evaluation program for information extraction. Organized by the

Defense Advanced Research Projects Agency (DARPA), the MUC confer-

ence was held seven times from 1987 to 1997. The MUC program introduced

the slot filling task that aims to identify the structured information from

natural language text, as can be seen as the first corpus for event extraction.

2. ACE corpora:

The Automatic Content Extraction (ACE) program [37] is so far the most

influential public evaluation program in this field, and most existing works of

closed-domain event extraction follow the formulations of the ACE program.

The ACE program covers various information extraction tasks, including the

extraction of entities, time expressions, values, events as well as relations.

For event extraction, the ACE 2005 benchmark corpus targets 8 event types,

which can be further divided into 33 event subtypes (Table 1.1). For each

event subtype, a specific set of argument roles are defined (like the ones in

Figure 1.3 and Figure 1.4). The ACE 2005 benchmark corpus contains 599

documents and about 6000 manually labeled events.

3. TDT Corpora:

The Topic Detection and Tracking (TDT) program [4] promotes open-domain

event extraction. The main target of the TDT program is the identification

and tracking of news events in series of news articles. The TDT corpora

(TDT-1 to TDT-5) contain millions of news stories annotated with hun-

dreds of topics (events) collected from multiple sources.

4. TAC-KBP Corpora:

The event track of the Text Analysis Conference Knowledge Base Population
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(TAC-KBP) program [40, 41, 44] contains several event-related tasks. The

TAC-KBP program not only covers the closed-domain event extraction task

(event nugget detection and event argument extraction), but also covers the

tasks of event and entity coreference resolution (Event coreference and event

argument linking).

Event Type Event Subtypes

Life Be-Born, Marry, Divorce, Injure, Die

Movement Transport

Conflict Attack Demonstrate

Business Merge-Org, Declare-Bankruptcy, Start-Org, End-Org

Transaction Transfer-Money, Transfer-Ownership

Personnel Elect, Start-Position, End-Position, Nominate

Justice Arrest-Jail, Execute, Pardon, Release-Parole, Fine, Convict,

Charge-Indict, Trail-Hearing, Acquite, Sentence, Sue, Extradite,

Appeal

Table 1.1: Predefined event (sub)types in ACE corpus.

Approaches

As one of the most important research subjects in NLP, event extraction has been

intensively studied in the past decades. In the following, we introduce major

existing approaches of event extraction:

Pattern Matching Pattern matching techniques are the earliest approaches of

event extraction. Event templates are constructed manually, and the input texts

which match such patterns are identified [112, 57]. Since the design of patterns is

very labor-intensive and suffers from low coverage problem, some research works

use weak supervision or bootstrapping to acquire patterns automatically by only

relying on a small set of seed patterns [113, 132].
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Supervised Learning Approaches Pattern matching techniques enjoy high

extraction accuracy by using high-quality event patterns manually designed by

domain experts. However, constructing a large number of event patterns of high

quality is difficult. Thus, the research focus of event extraction has shifted to su-

pervised machine learning based approaches that learn classifiers from annotated

data.

Event extraction can be divided into two subtasks: trigger extraction and ar-

gument extraction. Here, trigger extraction includes both trigger identification

and event type classification, and argument extraction includes both argument

identification and argument role classification. The two subtasks can be executed

in a pipelined manner, in which the classifiers for each subtask are trained in-

dependently [2, 53]. Since the pipeline execution suffers from error propagation

problem, joint classification approaches are also proposed [68, 14].

Traditional machine learning algorithms such as support vector machine (SVM)

or maximum entropy learning are based on manually designed linguistic features.

Commonly used features include lexical features such as word lemma and part-of-

speech (PoS) tag, syntactic features based on dependency parse tree, and semantic

features such as synonyms and event/entity types.

In recent years, deep learning based approaches have merged to remove the

need for feature engineering and increase model adaptability [96, 95, 70]. A deep

learning model consists of multiple layers of artificial neurons, which convert the

input features gradually into more and more abstract representations layer by

layer. Event extraction models based on various deep learning architecture has

been proposed, including convolutional neural networks (CNN), recurrent neural

networks (RNN), and graph neural networks (GCN), etc. Since the training of

deep learning models is very data-consuming, many works have explored semi-

supervised learning techniques and use automatically generated training data to

alleviate data deficiency problems.

Unsupervised Learning Approaches The unsupervised learning approaches

are commonly used for open-domain event extraction. Open-domain event extrac-

tion mainly focuses on detecting event keywords and cluster sentences or articles
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expressing similar events. Based on the keywords of an event, different clustering

algorithms are used to cluster similar events into latent event groups [13, 114].

1.2.3 Event Coreference Relation

An event may be mentioned multiple times within a document or even across

multiple documents. The coreference relation holds between two event mentions

that describes the same real-world event. Consider the following example:

The ruling KMT Party in Taiwan is scheduled to electe1 a new chair-

person in January 2012, it was decided at the top-level KMT meetinge2

on Wednesday. KMT chairman Ma Ying-jeou stressed fair play during

the electione3 at Wednesday’s meetinge4.

In the example above, we can see that the event mentions electe1 and electione3

refer to the same real-world ELECT event. In this case, we say that the event

mentions e1 and e3 are coreferent. Similarly, the event mentions e2 and e4 are

also coreferent, since they both refer to the same real-world MEET event.

The task of event coreference resolution aims to identify the coreference rela-

tions between event mentions and cluster them into groups of distinct real-world

events. Event coreference resolution is one of the main tasks of information ex-

traction. The task can be further categorized into within-document and cross-

document event coreference resolution. The majority of the existing works focus

on within-document event coreference, which takes a single document as

input and identifies the coreference relations between event mentions in the docu-

ment. Within a given document, a real-world event might be mentioned multiple

times from different perspectives. By identifying event mentions that correspond

to the same real-world event, we can collect the complete information related

to the specific event. On the other hand, there has been an increasing interest

in the task of cross-document event coreference resolution, which aims to

identify event coreference relations both within the same document and across dif-

ferent documents. Since important events tend to be reported in multiple different

media sources with different phrasings and narrative styles, the identification of

coreference relations across different documents is a challenging yet important
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problem.

While seemingly similar, the task of event coreference resolution is quite dif-

ferent from the task of entity conference resolution. First, the diversity of event

mentions is larger than that of entity mentions. While the entity mentions are

mostly noun phrases, event mentions include more diverse syntactic objects, such

as noun phrases, verb phrases, clauses, and sentences. Second, the distribution

of coreferential event mentions is more sparse than coreferential entity mentions.

The main reason for this is that the linguistic motive behind event coreference

is different from that of entity coreference. In an article, the main entities (pro-

tagonists) are involved in many events and are referred to every time such events

are described. On the other hand, an event is mentioned multiple times only

when new aspects or information of the given event are introduced. Compared to

entity coreference, event coreference is a more complex phenomenon that involves

discourse motive to organize and consolidate the related contents of an event.

In the following, we introduce existing annotated corpora and popular ap-

proaches of event coreference resolution.

Event Coreference Corpora

1. ACE corpora:

The Automatic Content Extraction (ACE) program [37] provides annota-

tions of within-document event coreference resolution, which focus only on

specific events types (as in Table 1.1). The most widely used ACE 2005 cor-

pus contains around 600 English documents and 500 Chinese documents.

2. OntoNote corpus:

The OntoNote corpus [108] consists of 600 documents based on news articles

of Wall Street Journal and covers annotations of both entity and event

coreference relations. While being a standard benchmark corpus for entity

coreference resolution, the OntoNote corpus is not as popular for the task of

event coreference resolution due to its coverage issues. Also, the OntoNote

corpus covers both within-document and cross-document event coreference

relations, but only for events with nominal event mentions.
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3. ECB corpus:

The EventCorefBank (ECB) corpus [8] mainly focuses on the task of cross-

document event coreference resolution. Consisting of 1000 documents based

on Google news, the corpus is annotated with inter-document coreference

relations of 47 predefined event types. While ECB corpus also provides anno-

tations of within-document event coreference relations, these intra-document

links are only partially annotated. The ECB+ corpus [33] extends the orig-

inal ECB corpus with a revised annotation scheme and a larger number of

documents.

4. TAC-KBP corpora:

The TAC-KBP program [40, 41, 44] focus on within-document event coref-

erence task targeting 9 events types and 38 subtypes. The definitions of

tasks and terminologies follow that of the ACE program. Being the largest

existing corpus for within-document event coreference resolution, the TAC-

KBP corpora contain 1000 English, 800 Chinese, and 400 Spanish annotated

documents.

Approaches

In the following, we summarize the popular approaches and inference strategies

that have been proposed for event coreference resolution over the past decades:

Mention Pair Model The most simple strategy for event coreference resolu-

tion is to adopt a two-stage framework. In the first stage, a binary classifier is

used to calculate the likelihood of coreference between a pair of event mentions.

Classifiers such as SVM [16], decision trees [34], maximum entropy [22], and neural

networks [94] has been used. In the second stage, a separate clustering algorithm is

used to coordinate the pairwise decisions made in the first stage. Popular cluster-

ing algorithms include agglomerative clustering, closest-first clustering, best-first

clustering, etc.

Mention Ranking Model The pairwise decisions of mention pair models are

independent of other candidate antecedents. On the other hand, the mention
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ranking models consider the relative suitability of all candidate antecedents of

an event mention by ranking them. Work such as Lu et al. [78] belongs to this

category.

Easy-First Model Among all the coreference links in the document(s), some

of them are easier to resolve than others. The idea of the easy-first model is to

make decisions for the easier coreference links first, and utilize the results to help

narrowing down the choices of the more difficult coreference decisions. Works like

Liu et al. [72], Lu et al. [75], and Choubey et al. [26] belong to this category.

Joint Model Many event coreference models rely on the upstream event ex-

traction module in a pipeline fashion. In order to alleviate the error propagation

problem, several works have proposed systems that perform joint inference of

event coreference and upstream tasks. Works based on integer linear program-

ming (ILP) and Markov logic networks (MLN) have been proposed ([19], [80]).

1.3 Interactions between Events

Natural language can not only describe single events. Instead, humans usually

organize multiple events together to form a complete story. This naturally ac-

quired ability to construct and perceive such an organized sequence of events can

be explained by the theories of narrative and discourse, along with the various

relations between events. For the purpose of natural language understanding, it

is important to understand how events interact with each other in texts. In this

section, we will cover the narrative and discourse theories of natural language and

introduce important relations between events, such as temporal relation, causal

relation, discourse relation, etc.

1.3.1 Narrative Event Sequence

Human minds have the tendency to explain the events happening around us.

Driven by such an explanatory nature, we constantly and often subconsciously

mine the patterns in the past event sequences, make observations of the present
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events, and attempt to predict future events. From our experience, we develop

understanding of the world revolving around us and acquire the typical scenarios

which occurred repeatedly. For example, if we observe the event ‘John goes into a

restaurant’, we are likely to expect events such as ‘John takes the menu’ or ‘John

orders food’ to happen subsequently.

Narrative event sequences are used to model such a common scenario. A nar-

rative event sequence is a stereotypical sequence of events ordered in a temporally

and causally reasonable way. Narrative event sequences reflect the commonsense

knowledge of how we perceive and understand the world, or to be more specific,

what kinds of scenarios do we consider normal. Also, the concept of narrative

event sequences has a great influence on how we communicate. Based on the pre-

sumption of the commonsense knowledge of typical event sequences, it is possible

for our communication to be carried out smoothly and efficiently.

The research of narrative event sequence has a long history in NLP. In the

1970s, Schank et al. [117] first proposed the concept of scripts, which represent

the knowledge about the stereotypical event sequences under certain scenarios.

For example, Figure 1.6 shows a restaurant script that models the sequence of

events that about a common scenario that a customer enters a restaurant, orders

food, eat the food, and finally pay the bill and exit the restaurant. The script

involves four human participants, the CUSTOMER, the WAITER, the COOK,

and the CASHIER, along with other object arguments. Not only the ordering of

events, but the interactions of the participants (arguments) also serve as impor-

tant commonsense knowledge that is beneficial to other NLP tasks such as entity

coreference resolution, etc.

The analysis and modeling of narrative event sequences are beneficial for var-

ious applications that require natural language understanding, such as question

answering, summarization, dialogue generation, next event prediction, etc. In the

following, we introduce the various aspects of narrative event sequences, including

event co-occurrence, temporal relation, causal relation, and sub-event structure.

Also, we summarize the existing works on narrative event sequence acquisition

(script learning) in NLP.
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Figure 1.6: The restaurant script. Adapted from Schank et al. [117].

Event Co-occurrence

Some combinations of events appear together more often than would be expected

by chance, this phenomenon is called event collocation or event co-occurrence

in corpus linguistics. The textual co-occurrence of events is a measure of the

relatedness of the events. Thus, capturing the co-occurrence patterns of events

in text corpora is the most straightforward way to mine the narrative relations

between events.

Temporal Relation Component

Temporal relation defines the ordering of events with respect to their occurring

time. The topic of temporal reasoning has always been the main focus of many

NLP studies. The ability to reason about how events unfold in time is a core

aspect of how humans structure their knowledge about the world.

Typically when we talk about events, we often associate them with various

temporal cues. Natural language text contains an abundant amount of temporal

cues about the timing of the events. These temporal cues give information about

the start time, end time, the duration time of the event, and can either be specified

in absolute time or relative to other events or time expressions. The goal of

temporal reasoning is to identify the temporal cues in text and build a complete

overview of the temporal relations between the events within the given text.



18 CHAPTER 1. INTRODUCTION

The benchmark TimeBank corpus [109] (and the corpora following this line)

provides an annotation scheme to annotate the time expressions as well as the

temporal relations between events. While more fine-grained categorization is also

possible, the coarse categories of temporal relations include the following: before,

after, includes, included, simultaneous, vague.

Temporal relation depicts the ordering of how events unfold in time and serves

as an important aspect of event narrative relation.

Causal Relation Component

Causal relation describes the cause-effect relation between two events where one

event (cause event) is responsible for the occurrence of the other event (effect

event).

In some cases, causality is expressed via explicit causality markers. The causal-

ity markers include causal connectives (because, with the results that, since, ...),

causal verbs (cause, bring about, ...), etc. The presence of the causality marker is

a direct clue to the presence of the causality relation between events. However, in

some cases of causally related events, the causality markers do not exist. Without

the presence of the causal markers, the identification of the causal relations is

more challenging. Examples of explicit and implicit causal relations follows:

(a) [I went to the restaurant]effect because [one of my collegues rec-

ommended it.]cause.

(b) [Be careful.]effect [The floor is wet.]cause

The benchmark Causal TimeBank corpus [91] introduces three categories of

causality: Cause, Enable, and Prevent. Their representative verbal causality

markers are summarized below:

1. CAUSE: cause, prompt, force, ...

2. ENABLE: enable, allow, help, ...

3. PREVENT: prevent, block, restrain, ...
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Causality is a pervasive phenomenon in natural language text and an impor-

tant component of event narrative relation. Causal relations play an important

role of connecting events in a logical and meaningful way.

Sub-Event Relation

In natural language texts, event mentions describe events of different granularity.

An event of larger granularity may contain sub-events of smaller granularity. A

sub-event is an event that happens as part of its parent event both spatially and

temporally. For example, a parent event summit may include sub-events such as

conversation or encounter ; while a parent event attack may include sub-events

such as capture, killing, or wounding.

The knowledge of the internal structure of an event facilitates the reasoning

over events. The sub-event relations account for the hierarchy nature of the events.

Consider the following example:

Obama sparred with Vladimir Putin over how to end the war in Syria

on Monday during an icy encounter at a G8 summit. Speaking

after talks with Obama, Putin said they agreed the bloodshed must

end.

In the example above, the hierarchical structure of events characterized by the

sub-event relations is:

Figure 1.7: The hierarchical sub-event structure. Adapted from Glavaš et al. [45].

Unlike the temporal and causal relations which focused on the horizontal in-

ference of events, the sub-event relation aims to capture the vertical relations
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between events. Previous studies suggest that the sub-event structure is not only

crucial for event understanding but also helpful for the identification of the hori-

zontal relations between events.

Script Learning

Scripts encode the narrative event sequences, and the task of automatic script

learning (script learning) has always been a topic of interest in NLP. In the fol-

lowing, we summarize the existing works on script learning.

The studies on script knowledge date back to the 1970s [117]. Instead of

focusing on the automatic induction of script, the earliest works use manually

generated scripts on tasks such as question answering (QA) or inference. Since

the manually generated scripts are labor-intensive, they are limited in coverage

and do not generalize well.

Later works proposed statistical methods to learn script automatically, most

utilizing the co-occurrence statistics between events. Chambers et al. [12] used

Pointwise Mutual Information (PMI) as the measure of co-occurrence between

events and extract scripts (named narrative chains in this work) centering

around a specific actor (the protagonist). Other works like Jans et al. [52],

Pichotta et al. [105], Rudinger et al. [115] followed a similar paradigm.

With the popularity of neural network based methods in NLP, some works

used recurrent neural networks to model the event sequence in text and make

predictions about the next event [107, 106]. Granroth et al. [47] first introduced

embeddings to represent events and achieved good results on the task. After that,

embedding-based methods have been a dominant approach in this area. Other

neural network based methods learned event representations specialized for the

task of script learning [130, 63].

Some works explicitly incorporated external knowledge and considered event

relations beyond event co-occurrence. Lee et al. [64] considered the discourse

relations between events. Ding et al. [36] incorporated sentiment and intention

information of events. Lv et al. [84] directly integrated temporal and causal event

relations into script learning.
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1.3.2 Discourse Structure of Natural Language Documents

While narrative event sequences model the stereotypical ordering of events that

reflects standard scenarios, theory of discourse structure adopt a different point

of view and focus on the various rhetorical relations in a document. Suppose

that you have collected a handful of story-worthy events, how do you connect

them into coherent text? This is where the discourse theory comes to play. The

discourse theory aims to uncover the discourse structure of natural language texts

and answer the question of how smaller text units are combined to form larger

coherent texts such as paragraphs and articles.

The discourse structure of a document describes the high-level linguistic struc-

ture of a natural language text. Thus, identifying and incorporating discourse in-

formation is indispensable for achieving document-level language understanding.

Document-level machine translation, summarization, sentiment analysis, and es-

say scoring are among the many downstream tasks that can benefit from incorpo-

rating information about discourse structure. In the following, we first introduce

the theory of discourse structure and briefly discuss event saliency, which is a

related concept of discourse theory.

Discourse Structure Theory

The Rhetoric Structure Theory (RST) [85] is the most influential theory

of discourse analysis. Although other theories of document-level discourse struc-

ture have also been proposed, the majority of research works on document-level

discourse analysis are based on the formulations of RST.

RST models the discourse structure of each document with a continuous con-

stituency tree (also called RST tree, Figure 1.8). The leaf nodes of the RST tree

represent the Elementary Discourse Units (EDU), which are the minimal units

of discourse. EDUs are typically clauses (consisting of a predicate and its argu-

ments), which can be considered as the units of events comprising the document.

The adjacent EDUs are connected to each other through different rhetorical rela-

tions to form larger discourse units. By recursively connecting adjacent discourse

units, we can eventually obtain the RST discourse tree of the document. For



22 CHAPTER 1. INTRODUCTION

Figure 1.8: The constituency tree of RST. From Stede et al. [121] (Source: George

Packer: Suffering. The New Yorker 42, 2010 )

example, the text in Figure 1.8 consists of 6 EDUs. These EDUs are gradually

combined into larger discourse units 1-2, 4-5, 1-3, 4-6 and finally into the root

node covering the full range of text (1-6 ).

RST introduces various rhetorical relations (Table 1.2). Each rhetorical rela-

tion describes a distinct rhetorical function by which two adjacent discourse units

are connected. In addition, each discourse unit is categorized as either NUCLEUS

or SATELLITE to indicate their relative saliency (importance). Generally speak-

ing, NUCLEUS units describe more important information while SATELLITE

units contain supplementary information. The rhetorical relations can be di-

vided into two categories based on the relative saliency of the discourse units the

given relation connects. For the first category, mononuclear relations capture

the subordinate relation between a NUCLEUS unit of greater importance and

a SATELLITE unit of less importance. For the second category, multinuclear

relations capture the coordinate relation between two or more NUCLEUS units

of similar importance.

Most of the discourse relations in RST are mononuclear relations, while mult-

inuclear relations include Sequence, Contrast, and List, and Joint relations. In

Figure 1.8, we can see that the mononuclear relations such as Elaboration, Back-

ground, and Preparation are illustrated by a directed arrow going from the SATEL-
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Relation Type Nucleus Satellite

Antithesis ideas favored by the author ideas disfavored by the author

Background text whose understanding is being facilitated text for facilitating understanding

Circumstance text expressing the events or ideas occurring in

the interpretive context

an interpretive context of situation or time

Concession situation affirmed by author situation which is apparently inconsistent but

also affirmed by author

Condition action or situation whose occurrence results

from the occurrence of the conditioning situa-

tion

conditioning situation

Elaboration basic information additional information

Enablement an action information intended to aid the reader in per-

forming an action

Evaluation a situation an evaluative comment about the situation

Evidence a claim information intended to increase the reader’s

belief in the claim

Interpretation a situation an interpretation of the situation

Justify text information supporting the writer’s right to ex-

press the text

Motivation an action information intended to increase the reader’s

desire to perform the action

Cause a situation another situation which causes that one

Result a situation another situation which is caused by that one

Otherwise action or situation whose occurrence results

from the lack of occurrence of the conditioning

situation

conditioning situation

Purpose an intended situation the intent behind the situation

Restatement a situation a re-expression of the situation

Solutionhood a situation or method supporting full or partial

satisfaction of the need

a question, request, problem, or other expressed

need

Summary text a short summary of that text

Contrast one alternate -

Sequence an item -

List an item -

Joint (unconstrained) -

Table 1.2: Rhetorical relations in RST.

LITE node to the NUCLEUS node. On the other hand, the multinuclear Contract

relation is represented only with undirected edges in the RST tree.

Table 1.2 lists the rhetorical relations in RST [85] along with the descriptions

of their components. Based on the above set of rhetorical relations, more fine-

grained or coarse-grained categorizations have also been proposed.

Event Saliency and Main Events

Within a given text, some events are more salient than others, they provide key

information that is important for the progress of the story, and play a central

role in the discourse structure. The research on event saliency aims to measure
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the importance of events within a document, and to distinguish the salient events

that are most relevant to the main content of the document.

Event saliency is an important aspect of discourse analysis. RST uses the label

of NUCLEUS and SATELLITE to capture the relative saliency of rhetorically

related discourse units. In addition to the localized setting above, the concept of

event saliency can also be applied to a more global setting. The following are two

saliency tests that have been considered in existing works on event saliency:

1. Summarization test:

The summarization test of saliency is originally used in the entity saliency

research [39], buy has also been applied to event saliency research. According

to the definition, the events that are likely to be included in human written

summaries are considered to be salient events. Liu et al. [74] utilized the

summarization test of event saliency and built a large-scale event saliency

corpus.

2. Coherence test:

The coherence test of event salience considers an event to be salient if re-

moving it greatly harms the coherence of the text. Otake et al. [99] utilized

the coherence test of event saliency and proposed an unsupervised event

saliency detection model.

The salient events are also called main events in some literature. The main

events play an important role in the discourse structure of the article. For example,

according to Van Dijk’s theory of news discourse [125], the discourse structure of

a news article revolves around the main events. In Van Dijk’s theory, a news

article consists of one or more main events and relevant events that are related to

the main events in different manners, such as the background events that cause

the main event, similar historical events that happened in the past, etc. Figure

1.9 shows the complete hierarchical structure of discourse functions proposed by

[125].

The identification of main events is important for the analysis of various event

relations. Previous research has reported on the heavy involvement of main events
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Figure 1.9: Van Dijk’s theory of news discourse structure. From Yarlott et al.

[137]

in causal relations within a document [43]. Also, main events are especially crit-

ical for the task of event coreference resolution [28]. Most of the (non-salient)

events and their coreference links only appear locally within the article. On the

other hand, the main events appear throughout the entire article and serve the

important discourse function of content organization.

1.4 Outline of the Thesis

Due to their importance in natural language, events have been studied pervasively

in previous research. The numerous event-related tasks have attracted a lot of

research interest in the NLP field. Some works focus on the analysis of a single

event, such as event extraction and event coreference resolution. Other works

study the interactions and the various relations between events, such as script

learning (narrative event knowledge acquisition), temporal/causal relation identi-

fication, discourse parsing, etc. In addition, downstream tasks such as automatic

summarization, question answering (QA), sentiment analysis can also benefit from

incorporating events into the main tasks.

In this thesis, we present three event-related tasks in NLP: event coreference

resolution, narrative event relation knowledge acquisition, and automatic summa-

rization. In Chapter 2, we introduce our work on event coreference resolution,
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which is an important task that identifies event mentions that correspond to the

same real-world event. We focus on the argument compatibility aspect of event

coreference resolution task, and propose a transfer learning framework to learn ar-

gument compatibility from large unannotated corpus. In Chapter 3, we introduce

our work on narrative event relation knowledge acquisition from large Japanese

corpus. Japanese is a language of abundant omitted arguments. Thus, we focus

on the improvement of shared argument identification of narrative-related event

pairs. In Chapter 4, we introduce our work on automatic summarization. In this

work, we perform extractive summarization on the EDU level. By viewing the

EDUs as events, we can reframe the extractive summarization task as an event

saliency identification problem. We propose a heterogeneous graph based method

that captures the discourse relations and coreference relations between events and

entities simultaneously. Finally, we present the conclusion of this thesis in Chapter

5.



Chapter 2

Transfer Learning Based Event

Coreference Resolution

In this chapter, we focus on the task of event coreference resolution. Event coref-

erence resolution is an important task of information extraction. By identifying

text mentions that refer to the same real-world event, we can consolidate the

information about a specific event.

In this work, we analyze the components of events and the two necessary

conditions of coreferential event mentions: trigger relatedness and argument com-

patibility. We focus on the argument compatibility condition, which is more

difficult to learn from the existing moderate-size labeled data. We propose a

transfer learning based framework for event coreference resolution and learn ar-

gument compatibility from a large unlabeled corpus. Experiments on the KBP

benchmark dataset confirm the effectiveness of our proposed method.

2.1 Introduction

As introduced in Section 1.2.3, event coreference resolution is a fundamental NLP

task that aims to identify event mentions that correspond to the same real-world

event. Here, we focus on within-document event coreference resolution and group

event mentions within a document into coreferent clusters. Figure 2.1 shows a

document consisting of three events described by six different event mentions.

27
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Figure 2.1: Event mentions and their coreferent clusters.

Among these event mentions, m1, m2, and m4 are coreferent, since they all cor-

respond to the same ELECT event of the KMT party electing a new party chief.

Similarly, m3 and m5 are also coreferent, while m6 is not coreferent with any other

event mention.

Adopting the semantic representation of events (introduced in Section 1.2.1),

we model an event mention as a trigger and zero or more corresponding arguments.

The trigger of an event mention is the word/phrase that is considered the most

representative of the event, such as the word meeting for m3 or the word elected

for m6 in Figure 2.1. Arguments are the participants of events, each having its

specific argument role. For example, KMT is the ENTITY-argument and new

party chief is the POSITION-argument of m1.

There are two necessary conditions for two event mentions to be coreferent:

trigger relatedness and argument compatibility.

Trigger relatedness Triggers of coreferent event mentions must be semanti-

cally related, that is, they should describe the same type of events. For example,

m1 and m3 cannot be coreferent, since their trigger words — elect and meeting

— are not semantically related. For corpora that incorporate event types, the

concept of trigger relatedness is closely related to the type agreement constraint,
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Argument role m1 m2 m4 m6

PERSON - - - Ma

ENTITY KMT the ruling Chinese

Kuomingtang

Party (KMT)

- -

POSITION new party chief new chairperson - party’s chairman

TIME - January 2012 - 2005 / 2009

Table 2.1: Event mentions of ELECT type and their arguments. m1, m2, and m4

are coreferent with each other; while m6 is not coreferent with any other event

mentions.

which states that coreferent events must have the same event type. However,

trigger relatedness is more strict than the type agreement constraint.

Argument compatibility Argument compatibility is an important linguistic

condition for determining the coreferent status between two event mentions. Two

arguments are incompatible if they do not correspond to the same real-world en-

tity when they are expressed in the same level of specificity; otherwise, they are

compatible. For example, a pair of TIME arguments — Wednesday and 2005 —

which are expressed in different levels of specificity, are considered as compati-

ble. In Table 2.1, we summarized the arguments of the ELECT event mentions

in the previous example (Figure 2.1). If two event mentions have incompatible

arguments in any argument role, they cannot be coreferent. For example, m2 and

m6 are not coreferent since their TIME-arguments — January 2012 and 2005 —

are incompatible. On the other hand, coreferent event mentions can only have

compatible arguments. For example, despite the difference in wording, m1 and

m2 have the same POSITION-arguments (new party chief and new chairperson).

Argument compatibility can serve as a hint suggesting that two event mentions

are coreferent. However, we also have to be careful that argument compatibility

is not a guarantee for coreference. Take m1 and m6 for example, although all the

argument roles are compatible, they are still not coreferent.

Coreferent event mentions must obey both trigger relatedness condition and

argument compatibility condition. It is relatively simple to model trigger relat-

edness between event mentions, which can be efficiently captured with even a
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moderate size of data. On the other hand, incorporating argument compatibility

into event coreference systems is challenging due to the lack of sufficient labeled

data. Many existing works relied on the preprocessing of upstream argument

extractors and designed heuristic argument features to capture argument com-

patibility in event coreference resolution systems. However, the error introduced

in the preprocessing steps propagates through the event coreference resolution

system and hinders the performance considerably.

In light of the aforementioned challenge, we propose a framework for trans-

ferring argument (in)compatibility knowledge to the event coreference resolution

system, specifically by adopting the interactive inference network [46] as our model

structure. The idea is as follows. First, we train a network to determine whether

the corresponding arguments of an event mention pair are compatible on auto-

matically labeled training instances collected from a large unlabeled news corpus.

Second, to transfer the knowledge of argument (in)compatibility to an event coref-

erence resolver, we employ the network pretrained in the previous step as a starting

point and train it to determine whether two event mentions are coreferent on man-

ually labeled event coreference corpora. Third, we iteratively repeat the above

two steps, where we use the learned coreference model to relabel the argument

compatibility instances, retrain the network to determine argument compatibility,

and use the resulting pretrained network to learn an event coreference resolver.

In essence, we mutually bootstrap the argument (in)compatibility determination

task and the event coreference resolution task.

Our contributions are three-fold. First, we leverage the argument (in)compatibility

knowledge acquired from a large unlabeled corpus for event coreference resolu-

tion. Second, we employ the interactive inference network as our model struc-

ture to iteratively learn argument compatibility and event coreference resolution.

Initially proposed for the task of natural language inference, the interactive in-

ference network is suitable for capturing the semantic relations between word

pairs. Experimental results on the KBP coreference dataset show that this net-

work architecture is suitable for capturing the argument compatibility between

event mentions. Third, our model achieves state-of-the-art results on the KBP

2017 English dataset [40, 41, 44], which confirms the effectiveness of our method.
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Figure 2.2: System overview.

2.2 Method

Our proposed transfer learning framework consists of two learning stages, the pre-

training stage of an argument compatibility classifier and the fine-tuning stage of

an event coreference resolver (Figure 2.2). In the pretraining stage, we heuristi-

cally extract training samples from large unlabeled corpus and train an argument

compatibility classifier (Section 2.2.1). In the fine-tuning stage, the argument

compatibility classifier is fine-tuned into a mention-pair event coreference

classifier with the labeled event coreference resolution corpus (Section 2.2.2). In

addition, an iterative relabeling strategy is used to combine the above two

training stages (Section 2.2.3). Last, we introduce the model structure of inter-

active inference network (IIN) used in both pretraining and fine-tuning stages

(Section 2.2.4).

2.2.1 Pretraining Stage: Argument Compatibility Learning

In the pretraining stage, we train a binary argument compatibility classifier which

determines whether the arguments between two event mentions are compatible.

We heuristically extract training samples from large unlabeled news corpus for

argument compatibility learning. In the following, we describe the task of argu-

ment compatibility learning and introduce the heuristic method of how we extract

training samples from an unlabeled corpus.
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Task Description

We define the argument compatibility learning task as follows:

Given a pair of event mentions (ma,mb) with related triggers, predict

whether their arguments are compatible or not.

Event Representation We do not identify arguments explicitly in this work.

In the task definition above, an event mention is represented by a trigger word

and the context words within a n-word window around the trigger.

Related trigger extraction Among the two necessary conditions of event

coreference resolution, we focus on the argument compatibility condition and as-

sume the input event mentions have related triggers.

We analyze the event coreference resolution corpus and extract trigger pairs

that are coreferent more than k times in the training data. We define these trigger

pairs to be related triggers in our experiment. Table 2.2 shows some examples of

related triggers and the number of times (counts) that the trigger pairs appear as

coreferent in the training set of KBP corpus.

trigger pair count

kill - death 86

attack - strike 61

address - explaination 72

shoot - shooting 35

retire - retire 34

demonstration - protest 30

arrest - custody 13

Table 2.2: Examples of related triggers.

If the triggers of an event mention pair are related, their coreferent status

cannot be determined by looking at the triggers alone, and this is the case in

which argument compatibility affects the coreferent status most directly. Thus,
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event mention DATE-compatibility with ma

ma The result of the election last October surprised everyone. -

m1 He was elected as president in 2005. no

m2 The presidential election took place on October 20th. yes

m3 The opposition party won the election. yes

Table 2.3: Examples of NER-based sample filtering. The phrases tagged as DATE

are underlined, and the trigger words are boldfaced.

we focus on the event mention pairs with related triggers in the pretraining stage

of argument compatibility learning.

Heuristic Training Sample Extraction

From a large unlabeled corpus, we heuristically extract training samples for argu-

ment compatibility learning. We collect positive (compatible) samples from event

mentions with related triggers in the same document, and apply NER-based filter-

ing to remove bad samples. On the other hand, negative (incompatible) samples

consist of event mentions with related triggers from different documents. The

details of training sample extraction are summarized in the following:

Compatible samples extraction To collect positive (compatible) samples, we

first extract event mention pairs with related triggers within the same document.

Further, we apply filtering rules to remove samples that are likely to be problem-

atic. Only event mention pairs that satisfy the following rules are extracted as

positive samples:

1. DATE-compatibility (Table 2.3):

First, we perform named entity recognition (NER) on the context words. If

both event mentions have phrases tagged as DATE in the context, these two

phrases must contain at least one overlapping word. If there are multiple

phrases tagged as DATE in the context, only the phrase closest to the trigger

word is considered.

2. PERSON-compatibility: Similar to 1.
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3. NUMBER-compatibility: Similar to 1.

4. LOCATION-compatibility: Similar to 1.

5. Apart from function words, the ratio of overlapping words in their contexts

must be under 0.3 for both event mentions. We add this constraint in order

to remove trivial samples of nearly identical sentences.

Conditions 1–4 are heuristic filtering rules based on NER tags, which aim

to remove samples with apparent incompatibilities. Here, we consider four NER

types — DATE, PERSON, NUMBER, and LOCATION — because these types

of phrases are the most salient types of incompatibility between event mentions.

Condition 5 aims to remove event mention pairs that are “too similar”. We

add this condition because we do not want our model to base its decisions on the

number of overlapping words between the event mentions.

Incompatible sample extraction To collect negative (incompatible) samples,

we extract event mentions with related triggers from different documents. Event

mention pairs extracted from different documents are almost guaranteed to be

not coreferent, and are likely to contain incompatible arguments. We apply the

following filtering rules to remove inappropriate negative samples:

1. The creation date of the two documents must be at least one month apart.

2. Apart from the trigger words and the function words, the context of the

event mentions must contain at least one overlapping word.

In the unlabeled news corpus, articles describing similar news events are some-

times present. Thus, we use condition 1 to roughly assure that the event mention

pairs extracted are not coreferent. Mention pairs extracted from the same docu-

ment tend to contain overlapping content words, so to prevent our model to make

decisions based on the existence of overlapping words, we add condition 2 as a

constraint.

We collect event mention pairs satisfying all the above conditions as our initial

set of incompatible samples.
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Argument compatibility classifier With the initial set of compatible and

incompatible samples acquired above, we train a binary classier to distinguish

between samples of the two sets.

2.2.2 Fine-tuning Stage: Event Coreference Learning

In the fine-tuning stage, we adapt the argument compatibility classifier on the

labeled event coreference data to a mention-pair event coreference model. In the

following, we describe the event mention detection method, the mention-pair event

coreference model training, and the clustering algorithm.

Event Mention Detection

Before proceeding to the task of event coreference resolution, we have to identify

the event mentions in the input documents. We train a separate event mention

detection model to identify event mentions along with their subtypes.

We model event mention detection as a multi-class classification problem.

Given a candidate word along with its context, we predict the subtype of the

event mention triggered by the word. If the given candidate word is not a trig-

ger, we label it as NULL. We select the words that have appeared as a trigger at

least once in the training data as candidate trigger words. We do not consider

multi-word triggers in this work.

Given an input sentence, we first represent each of its comprising words by the

concatenation of the word embedding and the character embedding of the word.

These representation vectors are fed into a bidirectional LSTM (biLSTM) layer

to obtain the hidden representation of each word.

For each candidate word in the sentence, its hidden representation is fed into

the inference layer to predict the class label. Since the class distribution is highly

unbalanced, with the NULL label significantly outnumbering all the other labels,

we use a weighted softmax at the inference layer to obtain the probability of each

class. In this work, we set the weight to 0.1 for the NULL class label and 1 for all

the other class labels.

Intuitively, candidate triggers with the same surface form in the same doc-

ument tend to have the same class label. However, it is difficult to model this
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consistency since our model operates at the sentence level. Thus, we account

for this consistency across sentences by the following post-processing step: If a

candidate word is assigned the NULL label but more than half of the candidates

sharing the same surface form is detected as triggers of a specific subtype, then

we change the label to this given subtype. Also, we disregard event mentions with

types contact, movement and transaction in this post-processing step, since the

subtypes under these three types do not have a good consistency across different

sentences in the same document.

Mention-Pair Event Coreference Model

With the argument compatibility classifier trained in the previous stage, we use

the labeled event coreference corpus to fine-tune the model into an event coref-

erence resolver. We design the event coreference resolver to be a mention-pair

model [120], which takes a pair of event mentions as the input and outputs the

likelihood of them being coreferent.

Clustering of Event Mentions

With the pairwise event coreference predictions, we further conduct best-first

clustering [93] on the pairwise results to build the event coreference clusters of each

document. Best-first clustering is an agglomerative clustering algorithm that links

each event mention to the antecedent event mention with the highest coreference

likelihood given the likelihood is above an empirically determined threshold.

2.2.3 Iterative Relabeling Strategy

Previously, we collected a set of compatible event mentions from the same doc-

ument with simple heuristic filtering. Despite this filtering step, the initial com-

patible set is noisy. Here, we introduce an iterative relabeling strategy to improve

the quality of the compatible set of event mentions.

First, we calculate the coreference likelihood of the event mentions in the initial

compatible set. Mention pairs with a coreference likelihood above threshold θM

are added to the new compatible set. On the other hand, mention pairs with a
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Figure 2.3: Interactive inference network model structure.

coreference likelihood below θm are added to the initial incompatible set to form

the new incompatible set. With the new compatible and incompatible sets, we

can start another iteration of transfer learning to train a coreference resolver with

improved quality. In this work, we set θM to 0.8 and θm to 0.2.

2.2.4 Model Structure

For both the pretraining and fine-tuning stage, we adopt the same interactive

inference network as the model structure of our proposed method (Figure 2.3). A

qualitative analysis of an interactive inference network shows that it is good at

capturing word overlaps, antonyms, and paraphrases between sentence pairs [46].

Thus, we believe this network is suitable for capturing the argument compatibility

between two event mentions. The model consists of the following components:

Model inputs The input to the model is a pair of event mentions (ma, mb),

with ma being the antecedent mention of mb:

ma = {w1
a, w

2
a, ..., w

N
a }

mb = {w1
b , w

2
b , ..., w

N
b }

(2.1)
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Each event mention is represented by a sequence of N tokens consisting of one

trigger word and its context. Here, we take the context to be the words within a

n-word window around the trigger.

Embedding layer We represent each input token by the concatenation of the

following components:

Word embedding The word representation of the given token. We use

pretrained word vectors to initialize the word embedding layer.

Character embedding To identify (in)compatibilities regarding person,

organization or location names, the handling of out-of-vocabulary (OOV) words

is critical.

Adding character-level embeddings can alleviate the OOV problem [136]. Thus,

we apply a convolutional neural network over the comprising characters of each

token to acquire the corresponding character embedding.

POS and NER one-hot vectors One-hot vectors of the part-of-speech

(POS) tag and NER tag.

Exact match A binary feature indicating whether a given token appears in

the context of both event mentions. This feature is proved useful for several NLP

tasks operating on pairs of texts [21, 46, 100].

Trigger position We encode the position of the trigger word by adding a

binary feature to indicate whether a given token is a trigger word.

Encoding layer We pass the sequence of embedding vectors into a biLSTM

layer [50], resulting in a sequence of hidden vectors of size |h|:

hia = biLSTM(emb(wi
a), h

i−1
a )

hib = biLSTM(emb(wi
b), h

i−1
b )

(2.2)

where emb(w) is the embedding vector of token w.
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Interaction layer The interaction layer captures the relations between two

event mentions based on the hidden vectors ha and hb. The interaction tensor I, a

3-D tensor of shape (N , N , |h|), is calculated by taking the pairwise multiplication

of the corresponding hidden vectors:

Iij = hia ◦ h
j
b (2.3)

Finally, we apply a multi-layer convolutional neural network to extract the event

pair representation vector fev.

Inference layer In the pretraining stage, we feed fev to a fully-connected in-

ference layer to make a binary prediction of argument compatibility.

As for the fine-tuning stage, we concatenate an auxiliary feature vector faux

to fev before feeding it into the inference layer. faux consists of two features, a

one-hot vector that encodes the sentence distance between the two event mentions

and the difference of the word embedding vectors of the two triggers.

2.3 Evaluation

2.3.1 Experimental Setup

Corpora

We use the English Gigaword corpus [101] as the unlabeled corpus for argument

compatibility learning. This corpus consists of the news articles from five news

sources, each annotated with its creation date. We extracted 2 million positive

and negative samples for the pretraining stage.

As for event coreference resolution corpora, we use the English portion of the

KBP 2015 and 2016 datasets [40, 41] for training, and the KBP 2017 dataset

[44] for evaluation. The KBP datasets consist of news articles and discussion

forum threads. The KBP 2015, 2016, and 2017 corpora contain 648, 169, and

167 documents, respectively. Each document is annotated with event mentions

of 9 types and 38 subtypes, along with the coreference clusters of these event

mentions. 619,244 pairs of events are used to train the mention-pair coreference

model in the fine-tuning stage.
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Implementation Details

Preprocessing We use the Stanford CoreNLP toolkit [86] to perform prepro-

cessing on the input data. Each event mention is represented by a trigger word

and the context words within a 10-word window. Also, we acquire the list of

related triggers by extracting trigger pairs that are coreferent more than 10 times

in the training split of the KBP corpus.

Network structure Each word embedding is initialized with the 300-dimensional

pretrained GloVe embedding [103]. The character embedding layer is a combina-

tion of an 8-dimensional embedding layer and three 1D convolution layers with

a kernel size of 5 with 100 filters. The size of the biLSTM layer is 200. The

maximum length of a word is 16 characters; shorter words are padded with zero

and longer words are cropped. For the interaction layer, we use convolution layers

with a kernel size of 3 in combination with max-pooling layers. The size of the

inference layer is 128. Sigmoid activation is used for the inference layer, and all

other layers use ReLU as the activation function.

Event mention detection model For word embeddings, we use the concate-

nation of a 300-dimensional pretrained GloVe embedding and the 50-dimensional

embedding proposed by Turian et al. [124]. The character embedding layer is a

combination of an 8-dimensional embedding layer and three 1D convolution layers

with kernel sizes of 3, 4, 5 with 50 filters.

Evaluation Metrics

We follow the standard evaluation setup adopted in the official evaluation of the

KBP event nugget detection and coreference task. This evaluation setup is based

on four distinct evaluation measures — MUC [128] , B3 [7], CEAFe [83] and

BLANC [111] — and the unweighted average of their F-scores (AVG-F). We use

AVG-F as the main evaluation measure when comparing system performances.
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Model MUC B3 CEAFe BLANC AVG-F

biLSTM (standard) 29.49 43.15 39.91 24.15 34.18

biLSTM (transfer) 33.84 42.91 38.39 26.59 35.43

Interact (standard) 31.12 42.84 39.01 24.99 34.49

Interact (transfer) 34.28 42.93 39.95 32.12 36.24

Interact (transfer, 2nd iter) 35.66 43.20 40.02 32.43 36.75

Interact (transfer, 3rd iter) 36.05 43.07 39.69 28.06 36.72

Jiang et al. (2017) 30.63 43.84 39.86 26.97 35.33

Table 2.4: Event coreference resolution results of our proposed system, compared

with the biLSTM baseline model and the previous state-of-the-art system.

2.3.2 Results

We present the experimental results on the KBP 2017 corpus in Table 2.4. In

the following, we compare the performance of methods with different network

architectures and experimental settings.

Comparison of network architectures We compare the results of the inter-

active inference network (Interact) with the biLSTM baseline model (biLSTM).

The biLSTM baseline model does not have the interaction layer. Instead,

the last hidden vectors of the biLSTM layer are concatenated and fed into the

inference layer directly.

When trained solely on the event coreference corpus (standard), the model

with the interactive inference network performs slightly better than the biLSTM

baseline model, as shown in rows 1 and 3. However, with an additional pretraining

step of argument compatibility learning (transfer), the interact inference network

outperforms the biLSTM baseline model by a considerable margin, as shown in

rows 2 and 4. We conclude that the interactive inference network can better

capture the complex interactions between two event mentions, accounting for the

difference in performance.
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Effect of transfer learning We compare the results of the model trained only

on the event coreference resolution corpus (standard) and the model pretrained

with the argument compatibility learning task (transfer).

Regardless of the network structure, we observe a considerable improvement

in performance by pretraining the model as an argument compatibility classifier.

The biLSTM baseline model achieves an improvement of 1.25 points in AVG-F

by doing transfer learning, as can be seen in rows 1 and 2. As for the interactive

inference network, an improvement of 1.75 points in AVG-F is achieved, as can be

seen in rows 3 and 4. These results provide suggestive evidence that our proposed

transfer learning framework, which utilizes a large unlabeled corpus to perform

argument compatibility learning, is effective.

Effect of iterative relabeling We achieve another boost in performance by

using the trained event coreference resolver to relabel the training samples for

argument compatibility learning. The best result is achieved after two iterations

(Interact(transfer, 2nd iter), row 5) with an improvement of 2.26 points in

AVG-F compared to the standard interactive inference network (row 3). How-

ever, we are not able to obtain further gains with more iterations of relabeling

(Interact(transfer, 3rd iter), row 6). We speculate that the difference in event

coreference model predictions across different iterations is not big enough to have

a perceivable impact, but additional experiments are needed to determine the

reason.

Comparison with the state of the art Comparing row 5 and 7, we can

see that our method outperforms the previous state-of-the-art model [55] by 1.42

points in AVG-F.

2.4 Discussion

In this section, we conduct a qualitative analysis of our proposed event corefer-

ence resolution system. First, we analyze the event mentions pairs with related

triggers and categorize the argument (in)compatibilities between them into three

main categories (Section 2.4.1). Also, we conduct a case study and observe how
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our proposed models react to the change of arguments with a swap-argument

experiment, in order to verify the effectiveness of our proposed transfer learning

framework (Section 2.4.2).

2.4.1 Compatibility Categories

To get a better understanding of argument (in)compatibility, we analyze the event

mention pairs with related triggers having either compatible or incompatible ar-

guments. Based on our observations on these event mention pairs, we categorize

the argument (in)compatibilities into the following three main categories: explicit,

implicit and general-specific (in)compatibilities. Table 2.5 shows the examples of

the above (in)compatibility categories and the pairwise prediction results of our

best-performing system (the Interact (transfer, 2nd iter) system in Table 2.4). In

the following, we discuss the three categories of argument (in)compatibilities and

their corresponding examples.

Explicit argument compatibility A pair of event mentions is said to have an

explicit argument (in)compatibility if there exist identical/distinct time phrases,

numbers, location names, or person names in the contexts of them. Explicit

argument (in)compatibility is the most straightforward form of (in)compatibility

and is arguably the easiest one to identify.

For these event pairs, the existence of identical/distinct phrases with the same

NER type is a direct clue toward deciding their coreferent status. Making use of

this nature, we perform filtering on the set of compatible samples acquired from

the unlabeled corpus in order to remove samples with explicit incompatibility.

Our model can recognize this type of (in)compatibility with relatively high

accuracy. Both examples shown in Table 2.5 are classified correctly.

Implicit argument compatibility We said that a pair of event mentions have

implicit argument (in)compatibility if external knowledge is required to resolve

their compatible status.

Three examples of implicit argument (in)compatibility are shown in Table

2.5. In the first example, the knowledge that a woman in her 60s is generally not
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referred to as being young is required to determine the incompatibility. Similarly,

the knowledge that both brain hemorrhage and car accident are causes of people’s

death is required to classify the second example correctly. In the third example,

the compatibility of argument gay marriage and same-sex marriage is supported

by the hypernym-hyponym relation of them.

While the performance on samples with implicit (in)compatibility is not as

good as that on samples with explicit (in)compatibility, our system is able to

capture implicit (in)compatibility to some extent. We believe that this type

of (in)compatibility is difficult to be captured with the heuristically designed

argument features that are designed based on the outputs of argument extrac-

tors and entity coreference resolvers, and that the ability to resolve implicit

(in)compatibility contributes largely to our system’s performance improvements.

General-specific incompatibility Event mentions describing general events

pose special challenges to the task of event coreference resolution. A pair of

event mentions is said to have general-specific incompatibility if one event mention

describes a general event while the other event mentions describe a specific event.

In Table 2.5, we present two typical examples of this category. In the first

example, the second event mention does not refer to any specific shooting event

in the real world, in contrast to the first event mention, which describes a specific

school shooting event. Similarly, for the second example, where the first event

mention depicts a general event and the second event mention depicts a specific

one.

General event mentions typically have few or even no arguments and modifiers,

making the identification of non-coreference relations very challenging. Since we

cannot rely on argument compatibility, a deeper understanding of the semantics of

the event mentions is needed. General event mentions account for a considerable

fraction of our system’s error, since general events are quite pervasive in both

news articles and discussion forum threads.



46CHAPTER 2. TRANSFER LEARNING BASED EVENT COREFERENCE

E
ve
nt

M
en
ti
on

P
ai
r

T
yp

e
P
ro
p
os
ed

B
as
el
in
e

I

m
1
:
W

h
at

w
ou

ld
h
av
e
h
ap

p
en
ed

if
S
te
ve

Jo
b
s
h
ad

n
ev
er

le
ft

A
p
p
le

..
.

-
-

-

m
a 2
:
..
.i
n
th
e
st
at
e
th
at

is
to
d
ay

if
Jo

b
s
h
ad

n
’t

le
ft
.

E
xp

li
ci
t

co
re
f

co
re
f

m
b 2
:
..
.i
n
th
e
st
at
e
th
at

is
to
d
ay

if
Jo

h
n
h
ad

n
’t

le
ft
.

E
xp

li
ci
t

n
on

-c
or
ef

co
re
f

m
c 2
:
..
.i
n
th
e
st
at
e
th
at

is
to
d
ay

if
h
e
h
ad

n
’t

le
ft
.

Im
p
li
ci
t

co
re
f

co
re
f

m
d 2
:
..
.i
n
th
e
st
at
e
th
at

is
to
d
ay

if
sh
e
h
ad

n
’t

le
ft
.

Im
p
li
ci
t

n
on

-c
or
ef

co
re
f

II

m
1
:
P
ol
ic
e
ar
re
st

6
m
en

fo
r
g
a
n
g
ra

p
in
g
h
ou

se
w
if
e
in

n
or
th
er
n
In
d
ia
.

-
-

-

m
a 2
:
In
d
ia
n
p
ol
ic
e
h
av
e
ar
re
st
ed

si
x
m
en

fo
r
al
le
ge
d
ly

g
a
n
g
ra

p
in
g
a
29

-y
ea
r-
ol
d
h
ou

se
w
if
e
..
.

E
xp

li
ci
t

co
re
f

n
on

-c
or
ef

m
b 2
:
In
d
ia
n
p
ol
ic
e
h
av
e
ar
re
st
ed

si
x
m
en

fo
r
al
le
ge
d
ly

g
a
n
g
ra

p
in
g
a
w
om

an
..
.

Im
p
li
ci
t

co
re
f

n
on

-c
or
ef

m
c 2
:
In
d
ia
n
p
ol
ic
e
h
av
e
ar
re
st
ed

si
x
m
en

fo
r
al
le
ge
d
ly

g
a
n
g
ra

p
in
g
a
m
ed
ic
al

st
u
d
en
t
..
.

Im
p
li
ci
t

n
on

-c
or
ef

n
on

-c
or
ef

II
I

m
1
:
N
at
io
nw

id
e
d
em

on
st
ra
ti
on

s
in

F
ra
n
ce

to
p
ro

te
st

ga
y
m
ar
ri
ag

e.
-

-
-

m
a 2
:
..
.t
oo

k
to

th
e
st
re
et
s
ac
ro
ss

th
e
co
u
nt
ry

to
p
ro

te
st

ag
ai
n
st

th
e
co
u
nt
ry
’s

p
la
n
to

le
ga

li
ze

sa
m
e-
se
x
m
ar
ri
ag

e.
Im

p
li
ci
t

co
re
f

co
re
f

m
b 2
:
..
.t
oo

k
to

th
e
st
re
et
s
ac
ro
ss

th
e
co
u
nt
ry

to
p
ro

te
st

ag
ai
n
st

th
e
co
nt
en
ti
ou

s
ci
ti
ze
n
sh
ip

am
en
d
m
en
t
b
il
l.

Im
p
li
ci
t

n
on

-c
or
ef

co
re
f

T
ab

le
2.
6:

C
as
e
st
u
d
y
on

m
an

u
al
ly
-g
en
er
at
ed

ev
en
t
m
en
ti
on

p
ai
rs
.
T
ri
gg

er
w
or
d
s
ar
e
b
ol
d
fa
ce
d
,a

n
d
th
e
ta
rg
et

ar
gu

m
en
ts

ar
e
co
lo
re
d
in

b
lu
e.



2.4. DISCUSSION 47

2.4.2 Case Study

To better understand the behavior of our system, we perform a case study on

manually-generated event pairs. To be more specific, we conduct a ’swap-argument‘

experiment to verify the effectiveness of our proposed transfer learning framework.

For a given pair of event mentions, we first alter only one of the arguments and

keep the rest of the content fixed. We then observe the behavior of the system

across different variations of the altered argument. Table 2.6 shows three examples

of the swap-argument experiment. We also present the argument (in)compatibility

type and the system prediction of our best-performing system (the Proposed col-

umn) and the model without pretraining (the Baseline column).

Example I In this example, we pick the AGENT-argument as the target and

alter the AGENT-argument of the second event mention. The event pair (m1,

ma
2) is coreferent and the explicit argument compatibility between Steve Jobs and

Jobs also supports the coreferent status. Similarly, the event pair (m1, mb
2) is

non-coreferent due to the explicit incompatibility between Steve Jobs and John,

and the system’s prediction is also non-coreferent. Further, we alter the target

argument to he (mc
2), which is an implicit compatible argument with Steve Jobs.

Finally, we alter the target argument to the pronoun she (md
2), resulting in an

implicit incompatibility in the AGENT argument since the Steve Jobs is generally

not considered a feminine name.

As can be observed in Table 2.6, our proposed system classifies both the ex-

plicit and implicit (in)compatibilities correctly. On the other hand, the baseline

model without the pretraining process is not able to distinguish the difference

between the different arguments.

Example II In this example, we pick the PATIENT-argument as the target and

alter the PATIENT-argument of the second event mention. Our proposed system

classifies the event pair (m1, ma
2) as coreferent, which is reasonable considering the

presence of the explicit compatible arguments housewife and 29-year-old house-

wife. Further, when we alter the target argument to woman (mb
2), the output of

the proposed system is still coreferent. This is consistent with our prediction: the
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event mentions are likely to be coreferent judging only from the context of the

two event mentions. However, when we alter the target argument to medical stu-

dent (mc
2), the event pair would become non-coreferent due to the incompatibility

between medical student and housewife. Our proposed system classifies the event

pair correctly.

On the other hand, the baseline model without pretraining gives the same

prediction regardless of the difference of arguments.

Example III In this example, we pick the REASON-argument as the target

and alter the REASON-argument of the second event mention. The event pair

(m1, ma
2) has a pair of implicit compatible arguments in the REASON-argument

role and is likely to be coreferent. In contrast, altering the target argument to

contentious citizenship amendment bill (mb
2) would yield a pair of implicit incom-

patible arguments, and the resulting event pair would become non-coreferent.

Our system classifies both event pairs correctly. Comparing the prediction of

our proposed system and the baseline system without the pretraining process, we

can verify the effectiveness of our proposed transfer learning framework in learning

argument compatibility.

2.5 Related Work

Event Coreference Resolution Ablation experiments conducted by Chen et

al. [15] provide empirical support for the usefulness of event arguments for event

coreference resolution. Hence, it should not be surprising that, with just a few ex-

ceptions [116, 6, 77], argument features have been extensively exploited in event

coreference systems to capture the argument compatibility between two event

mentions. Basic features such as the number of overlapping arguments and the

number of unique arguments, and a binary feature encoding whether arguments

are conflicting have been proposed [24, 23, 20]. More sophisticated features based

on different kinds of similarity measures have also been considered, such as the

surface similarity based on Dice coefficient and the WuPalmer WordNet similarity

between argument heads [87, 32, 5, 73, 61]. However, these features are computed
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using either the outputs of event argument extractors and entity coreference re-

solvers [3, 17, 18, 76] or semantic parsers [9, 135, 102] and therefore suffer from

serious error propagation issues (see Lu et al. [79]). Several previous works pro-

posed joint models to address this problem [62, 81], while others utilized iterative

methods to propagate argument information [73, 27] in order to alleviate this is-

sue. However, all of these methods still rely on argument extractors to identify

arguments and their roles.

Transfer Learning Classical supervised learning methods train models only

for a single task using a single dataset. Although deep neural models have been

applied to many machine learning tasks successfully, training neural models from

scratch requires a large amount of task-specific data. Transfer learning is a promis-

ing approach to alleviate the scarcity of training data. The key idea of transfer

learning is to learn from some additional task(s) with abundant data, then transfer

the knowledge to the target task with less data.

Transfer learning has been applied successfully to many NLP tasks. Some

transfer learning frameworks utilize large unlabeled data for pretraining. Many

of them adopt a language modeling objective to learn distributional embeddings

of word, sentences, etc [89, 59, 104, 51, 35]. Due to the lack of a large labeled

corpus, transfer learning with labeled pretraining data is not as popular in NLP.

Low resource machine translation can benefit from transfer learning by pretrain-

ing on other high resource language pair(s) [141]. Min et al. [90] report improved

results on two benchmark question answering (QA) datasets by performing trans-

fer learning on a model trained on another large, span-supervised QA dataset.

Conneau et al. [30] trained a universal sentence representation with a large nat-

ural language inference dataset and performs transfer learning on a wide range

of target tasks. In this work, we designed a heuristic method to extract train-

ing samples from large unlabeled corpus to learn argument compatibility between

event mentions.

After this work was published, Lu et al. [82] proposed an end-to-end event

coreference model based on pretrained BERT [35]. They showed that combining

the pretrained BERT model with the interactive inference network can produce
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superior performance. However, it remains an open question whether it is possible

to combine our proposed transfer learning framework with pretrained BERT and

give further performance gain, we will leave this as future work.

2.6 Conclusion

We proposed an iterative transfer learning framework for event coreference reso-

lution. Our method exploited a large unlabeled corpus to learn a wide range of

(in)compatibilities between arguments, which contributes to the improvement in

performance on the event coreference resolution task. We achieved state-of-the-

art results on the KBP 2017 English event coreference dataset, outperforming the

previous state-of-the-art system. In addition, a qualitative analysis of the system

output confirmed the ability of our system to capture (in)compatibilities between

two event mentions.



Chapter 3

Narrative Event Relation

Knowledge Acquisition from

Large Japanese Corpora

In this section, we focus on the task of narrative event relation knowledge acquisi-

tion. The narrative event relation knowledge is a type of commonsense knowledge

of critical importance which represents the typical co-occurring patterns of events

with causal or temporal relations.

In this work, we consider a narrative event pair with shared arguments as

a form of narrative event relation knowledge. The shared arguments are the

common participants of the narrative related events, and are helpful for NLP tasks

such as zero anaphora resolution. We adopt a two-stage framework for Japanese

narrative event relation knowledge acquisition. We first extract narrative related

event pairs from a large corpus with a statistical method, and then identify the

shared arguments between the event pairs. We manually constructed a dataset

of narrative related event pairs annotated with shared arguments. We use the

annotated corpus to learn and evaluate the share argument identification model.

51
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Figure 3.1: Narrative event pair with shared arguments.1

3.1 Introduction

As introduced in Section 1.3.1, narrative event relation is an important type of

commonsense knowledge that encodes how humans perceive the world around

them. Narrative event relation captures the stereotypical ordering of events and

covers several types of event relations such as temporal relations, causal relations,

etc.

Narrative Event Pairs In this section, we focus on the narrative related event

pairs. Figure 3.1 represents an example of narrative event pair, which consists of

two events, pas1 and pas2. Here, we adopt a statistical point of view of narrative

event relation. Event pairs that co-occur more often than expected by chance

are defined to be narrative event pairs. Thus, pas1 and pas2 are narrative event

pairs since we expect pas2 to follow pas1 with significant probability under normal

situations.

In this work, we adopt the syntactic representation of events (introduced in

Section 1.2.1) and define an event as a predicate-argument structure (PAS). An

event consists of a predicate and zero or more relevant arguments. Predicates are

mostly verbs or verbal phrases, such as paste and put in the above example. Each

1In this work we adopt the Japanese case marker, ga, wo, ni, and de, which roughly cor-

responds to nominative (NOM), accusative (ACC), dative (DAT), and instrumental/locative

(INS/LOC) cases.
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Figure 3.2: Narrative event relation knowledge.

argument is characterized by its syntactic relation with the predicate, and main

syntactic markers include nominative (NOM, subject) case, accusative case (ACC,

direct object), dative case (DAT, indirect object), and instrumental/locative cases

(INS/LOC). For example, I, stamp, and envelope are the nominative, accusative,

and dative arguments of pas1. For pas2, mailbox is the dative argument, I and

envelope are the omitted nominative and accusative arguments of it.

Narrative Event Relation Knowledge In this work, we aim to extract nar-

rative event relation knowledge from large unannotated corpora. A piece of nar-

rative event relation knowledge is in the form of a pair of narrative related events

with shared arguments (Figure 3.2). By observing the narrative event pairs in

the unannotated corpus, we can further make abstraction of their arguments to

represent the common patterns of the arguments. The common patterns of these

narrative event pairs are the narrative event relation knowledge we want to extract

in this work. Figure 3.2 shows an example of narrative event relation knowledge

pas1 ⇒ pas2.

Among the four arguments in pas1 ⇒ pas2, A1 and A3 are the shared argu-
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ments between the two events, while A2 and A4 are arguments that only appears

in pas1 and pas2, respectively. These shared arguments play an important role

in the application of narrative event knowledge since they encode the correspon-

dence relations between case slots within a piece of event relation knowledge.

For example, since argument A3 is shared between the dative case of pas1 and

the accusative case of pas2, it states the fact that when pas1 and pas2 appear

successively, the above two case slots should carry the same argument.

On the other hand, for arguments like A2 and A4, although these arguments do

not encode correspondence relations between case slots, they are also important

for specifying the meaning of the predicates. From the perspective of selectional

preferences, these arguments put a constraint on the arguments that other case

slots can take. For example, if the stamp argument (A2) is in the accusative case

of predicate paste, them we would expect to see arguments like letter or envelope

in the dative case.

Japanese Narrative Event Relation Knowledge Extraction In this work,

we aim to extract the narrative event relation knowledge from Japanese unanno-

tated corpus. Event relation knowledge acquisition in Japanese is a much more

challenging task than its counterpart of English, due to several linguistic proper-

ties of Japanese. For example:

(c) John attached a stamp to the letter, and he dropped it into the

mailbox.

(d) John attached a stamp to the letter, and (φhe) dropped (φletter)

into the mailbox.

In the above example, (c) is the Japanese correspondence of (d), directly

translated into English. We can observe that Japanese has an abundance of

omitted arguments. In addition, Japanese lacks linguistic clues regarding the

accordance in gender, number, etc., such as ‘he’ and ‘it’ in (c).

These linguistic properties hinder the performance of Japanese coreference

resolution systems, and make it unsuitable to apply coreference-based methods of

English event relation knowledge acquisition [12] directly to Japanese.
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Figure 3.3: Two-stage approach for Japanese event relation knowledge acquisition.

On the other hand, event relation knowledge can benefit the task of the coref-

erence resolution. The shared arguments of narrative event pairs provide direct

clues that the case slots sharing an argument should hold co-referring arguments.

These clues are particularly critical in cases in which selectional preference is not

helpful, such as coreference resolution problems presented in Winograd Schema

Challenge [66, 110]. Consider the following example:

(e) GoogleNOM acquired MotorolaACC, because theyNOM went bankrupt.

(f) A1NOM go bankrupt → A2NOM A1ACC acquire

In the example of (e), both precedents of ‘they’, ‘Google’, and ‘Motorola’, are of

the same category. While selectional preference is not helpful in this case, the

event relation knowledge in (f) can help us resolve (e) correctly.

Two-stage Framework In this work, we adopt the two-stage framework for

Japanese narrative event relation knowledge acquisition proposed in Shibata et al.
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[119]. Figure 3.3 shows the system structure of this two-stage approach. In the

first stage, narrative event pairs are extracted from large-scale Japanese corpora by

association rule mining. In the second stage, we extend the model of Kohama et al.

[60] to identify shared arguments of narrative event pairs extracted in the previous

stage. We design a richer feature representation for shared argument learning,

which considers the interaction between shared arguments and the mechanism of

argument omission in depth.

In addition, we manually construct a gold dataset for shared argument learn-

ing. With the help of linguistic experts, we established an annotation scheme

for shared argument. We train and evaluate our shared argument identification

model on the acquired gold dataset. By comparing our proposed methods with

several baseline models, we observe a significant improvement in shared argument

identification.

3.2 Narrative Event Pair Extraction

We adopt a two-stage framework of narrative event relation knowledge extraction

(Figure 3.3). We adopt the first stage of related event pair extraction proposed in

their work to obtain the related event pairs, which will be the input to our shared

argument identification model.

Starting from the raw web corpus, we extract the predicate-argument pairs

with syntactic dependency, and use the Apriori algorithm to pick out the related

event pairs efficiently. Also, an additional filtering step is applied to improve the

quality of the extracted event pairs, as suggested in Kohama et al..

3.2.1 Event Pair Extraction from Web Corpus

Strongly-related events often appear in the form where they are syntactically

dependent with some clause relation. Table 3.1 presents several related event

pairs with different clause relation types.

From the web corpus, we first extract all the PAS pairs with syntactic depen-

dency as candidate event pairs. For each PAS, we only keep the arguments of

the main surface cases. In this work, we focus on the four main surface cases in
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Clause Relation pas1 pas2 Example

Sequence 蜂に刺される 腫れる 蜂に刺されて腫れた。
Contradiction 蜂に刺される 腫れる 蜂に刺されたけど腫れなかった。

Cause 蜂に刺される 腫れる 蜂に刺されたので腫れた。
Condition 蜂に刺される 腫れる 蜂に刺されると腫れる。

Simultaneous シャワーを浴びる 歯を磨く シャワーを浴びながら歯を磨く。
Purpose 加熱する 水分を飛ばす 水分を飛ばすために加熱する。
Table 3.1: Narrative event pairs with different type of clause relations.

Japanese: が (ga), を (wo), に (ni), で (de), which roughly correspond to the nom-

inative, accusative, dative, and instrumental/locational cases. Also, attributes

such as negation, causative and passive are attached to the predicates.

We keep the order of the event pair (pas1 ⇒ pas2) as they appear in the

original text. Only for event pairs with a clause relation of purpose, we reverse

the order of them in order to indicate the causal relation of the events.

3.2.2 Narrative Event Pair Extraction by Association Rule Min-

ing

After collecting the PAS pairs with syntactic dependency as candidate event pairs,

we use the Apriori algorithm to pick out the related event pairs efficiently. Apriori

algorithm [11] is an algorithm frequently used for association rule mining. Given

a transactional database, along with manually defined thresholds of support-min,

confidence-min, lift-min and lift-max, the Apriori algorithm finds combinations

(rules) that satisfies the co-occurrence conditions.

In this work, we use the Apriori algorithm to extract narrative event pairs from

a web corpus of 1.5 billion sentences. By viewing each candidate event pair as a

transaction, and the predicates and arguments as items, we can identify narrative

event pairs which co-occur with each other with significant statistics. Table 3.2

shows some examples of the narrative event pairs acquired.
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Narrative event pair support(×107) conflict (×103) Lift

(休養,仮眠)を取る→抵抗力を高める 1.2 5.6 3170.31

(切手,印紙)を貼る→ (ポスト,応募箱)に入れる 1.2 21.4 858.19

(向上,実現)を目指す→ (研究,計画)に取り組む 0.8 1.4 221.63

(ウイルス,ノロウイルス)にやられる→ダウンする 0.3 13.8 249.01

Table 3.2: Narrative event pairs acquired by Apriori algorithm.

Type Narrative event pair Shared argument

Standard 切手を手紙に貼る→手紙をポストに入れる n-w

Quasi 牛を飼う→牛乳でチーズを作る w-d’

Multiple 観光客が町を/に訪れる→町が賑わう w/n-g

Table 3.3: Types of shared arguments.

3.3 Shared Argument Identification

3.3.1 Gold Dataset

We manually constructed a gold dataset for learning shared argument identifica-

tion model. In this work, we train and evaluate our proposed model on this gold

dataset.

This dataset contains 809 narrative event pairs, with each of the event pairs

annotated with its shared argument configuration. Three annotators with linguis-

tic backgrounds participated in the construction of this dataset.

Type of Shared Arguments

The gold dataset contains the following types of shared arguments (Table 3.3):

1. Standard Shared Argument:

The arguments are shared between one case slot of the first event and an-

other case slot of the second event. This type of shared argument represents

the fact that arguments of the two cases should correspond to an identical

real-world entity.
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In this work, we only consider the four main cases of が (nominative, ga),

を (accusative, w), に (dative, n), and で (instrumental/locational, d). From

now on, we use the shorthand notation of g, w, n, and d to represent these

four main cases. The first example in Table 3.3 has a standard shared

argument between the first に-case and the second を-case, which both cor-

respond to the entity ‘letter’. we use the notation n-w to represent it.

2. Quasi Shared Argument:

Quasi shared arguments consist of a pair of arguments that are closely re-

lated to each other in the context of the given event relation knowledge.

As can be seen from the example in Table 3.3, the arguments of the first

wo-case and the second de-case are ‘cow’ and ‘milk’, respectively. These two

arguments are considered to be closely related since the milk in the context

corresponds to the specific milk which is produced by the cow in the same

context.

We attached an apostrophe (’) to denote a quasi shared argument.

3. Multiple Shared Argument:

Multiple shared arguments occur when more than two case slots share the

same argument. As can be seen from the example in Table 3.3, the argument

‘town’ is shared between three cases: wo-case or ni-case of the first event,

and the ga-case of the second event.

We use the symbol ‘/’ to separate different case slots of the same predicate

which share arguments.

Preprocessing of Gold dataset

In this work, we only focus on the identification of standard shared arguments.

For utilizing the gold dataset with other shared argument types, we perform a

pre-processing to the gold annotation before model training. We transform each

shared argument configuration into its corresponding standard configuration set.

First, we define the corresponding standard shared argument set for each

shared argument in the following manner (Table 3.4):



60 CHAPTER 3. NARRATIVE EVENT KNOWLEDGE ACQUISITION

Type Shared argument Standard shared argument set

Standard n-w {n-w}
Quasi w-d’ {w-d, φ}

Multiple w/n-g {w-g, n-g}

Table 3.4: Transforming different types of shared arguments to their standard

shared argument sets.

Shared argument configuration Standard configuration set

(g-g) {(g-g)}
(g-g, w-d’) {(g-g, w-d), (g-g)}
(g-g, n-n/w) {(g-g, n-n), (g-g, n-w)}
(g-g, w-d’, n-n/w) {(g-g, n-n), (g-g, n-w), (g-g, n-n, w-d), (g-g, n-w, w-d)}

Table 3.5: Transforming shared argument configuration to corresponding standard

configuration set.

1. For each standard shared argument, we transform it into the standard shared

argument set containing only itself.

2. For each quasi shared argument, we transform it into the standard shared

argument set containing a null shared argument (φ) and its standard coun-

terpart in which all the apostrophe (’) mark is removed. See the second

example in Table 3.4.

3. For each multiple shared argument, we transform it into the standard shared

argument set containing all the shared arguments that could be entailed from

it. See the third example in Table 3.4.

For a given shared argument configuration, we first transform each of its con-

taining shared arguments into its corresponding standard shared argument set in

the above manner. By taking the product of these standard shared argument sets,

we obtain the corresponding standard configuration set of the shared argument

configuration. See Table 3.5 for examples.
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3.3.2 Case Frame Selection

Selectional preferences provide important clues for the task of share argument

identification. Case frames are good sources of selectional preference information,

and it handles the issue of predicate ambiguity by clustering the usage of each

predicate by their meanings. In turn, the meaning of a case frame is represented

by the argument distribution in each case slot of its corresponding case frame.

In this work, we consider wide-coverage case frames constructed automatically

from a huge raw corpus as the source of selectional preference information [48].

For each event pair R(pas1 ⇒ pas2), we select 10 relevant case frames for both

pas1 and pas2 by utilizing the supporting sentences S of R. Here, we describe the

method for selecting relevant case frames for each event pair, which are used in

our proposed models.

Given a case frame cf , we denote the bag-of-words (BoW) representation of

arguments within each case slot of cf as follows:

V g, V w, V n, V d

We denote the BoW representation of arguments appearing in the corresponding

case slots of the support sentences S as follows:

Ug, Uw, Un, Ud

We define the relevance score of cf with respect to R as follows:

rel(cf,R) =
∑

x={g,w,n,d}

cos(Ux, V x) (3.1)

which is the sum of cosine similarity scores between the BoW representation of

case slots in the four main cases.

Finally, we rank all the case frames in descending order with respect to rel-

evance score and take the top 10 of them as relevant case frames. Table 3.6

represents the first five relevant case frames of the predicate 訪れる (visit) of the

following event pair:

観光客が訪れる→賑わう
(tourist-ga visit → be crowded)
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Rank Case frame Relevant score

1 (観光客,人)が (地,日本)を (実際)に 訪れる 0.966

2 (数人,人)が (事務所,京都)を (激励,視察)に 訪れる 0.807

3 (観光客,大統領)が (中国,台湾)を (視察,見学)に 訪れる 0.760

4 (客,観光客)が (店,ショップ)を (目当て,実際)に 訪れる 0.748

5 (人,観光客)が (博物館,美術館)を (見学)に 訪れる 0.742

Table 3.6: Relevant case frames of 訪れる (visit).

3.3.3 Joint Prediction of Shared Argument and Case Frame

As mentioned in Section 3.3.2, case frames provide important information of selec-

tional preferences. However, the gold data does not provide the appropriate case

frame of each predicate. To tackle this problem, we propose a model of shared

argument identification that simultaneously predicts the appropriate case frame

for each predicate.

Model

We adopt a maximum entropy (MaxEnt) classifier model.

Given a narrative event pair R(pas1 → pas2) and its supporting sentences S,

the conditional probability of a shared argument configuration A and case frame

pair cf1, cf2 is modeled as:

P (A, cf1, cf2|R,S;w) =
exp{w · φ(A, cf1, cf2, R, S)}

Z
(3.2)

In the above equation, φ(A, cf1, cf2, R, S) is the feature representation of the

shared argument configuration, w is the model parameter, and Z is the nor-

malization constant. In Table 3.7 we summarized the features used, under the

example of shared argument n-w.
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Feature description

Configuration Binary feature indicating the existence of the shared argument n-w

Post-predicate Binary feature indicating the existence of argument in w case of

pas2

Core Binary feature indicating if n case of cf1 and w case of cf2 are core

cases. If a case slot takes argument in more than 10% of the time

in the selected case frame, we define it as a core case.

Case slot similarity The cosine similarity between the vocabulary distribution of n case

of cf1 and w case of cf2.

Normalized case slot similarity Case slot similarity of n-w normalized over the similarities of all

case slots of cf1. Same for cf2.

Conflict The ratio of support sentences in S that holds different arguments

in the first n case and the second w case.

Context We collect words that appear in Sbut not within the event pair as

context words. We calculate the relative probability of each context

word to appear in the first n case compared to other main cases,

and similar for the second w case. A tf-idf weighted sum of this

probability is added as feature.

Table 3.7: Features for shared argument n-w.

Prediction

During the prediction phase, the shared argument configuration Â and case frame

pair ˆcf1, ˆcf2 that gives the highest probability is chosen:

(Â, ˆcf1, ˆcf2) = argmax
A,cf1,cf2

P (A, cf1, cf2|R,S;w) (3.3)

For each event pair R, we choose 10 relevant case frames for each predicate of

concern as candidate of cf1 and cf2, as described in Section 3.3.2.

Model Training

In the training phase, the most probable case frame pair ( ˆcf1, ˆcf2) and the model

parameter w are updated alternatively. Also, the most probable gold configura-

tion ĝ among the standard configuration set is also updated along with the case

frame pair.

The training algorithm is summarized below:

1. Initialize model parameter w randomly.
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2. Use the current parameter w to update the most probable gold configuration

and the most probable case frame pair (ĝ, ˆcf1, ˆcf2):

ĝ, ˆcf1, ˆcf2 = argmax
g,cf1,cf2

P (g, cf1, cf2|R,S;w) (3.4)

3. Use (ĝ, ˆcf1, ˆcf2) to update model parameterw. The following is the objective

function, in which the superscripts of g, cf1, and cf2 denote the id of the

event pairs, and N is the total number of training objects:

L =
N∑

n=1

logP (g(n), cf (n)
1 , cf (n)

2 |R,S;w)

− α‖w‖2
(3.5)

ŵ = argmax
w

L (3.6)

(Hyper-parameter α is set to 1.0.)

4. Back to 2 until convergence. The convergence condition is that the most

probable (ĝ, ˆcf1, ˆcf2) for all event pairs are the same as the previous iter-

ation. If the convergence condition is not satisfied after 15 iterations, we

terminate the training process.

3.3.4 Shared Argument Learning with Combined Case Frame

Here, we introduce another model for learning shared arguments that use the

combined case frames.

The joint reference model (Section 3.3.3) picks exactly one case frame for

each predicate. On the other hand, the combined case frame model combines

the relevant case frames by taking the weighted sum of them by the relevance

scores with respect to the event pair. This method does not decide the most

appropriate case frame of each predicate. Instead, all of the relevant case frames

are considered, and case frames with higher relevance scores have a larger influence

on the feature representation.
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Combined Case Frame

A combined case frame is obtained by combining the relevant case frames accord-

ing to their relevance scores. The calculation of the relevance scores of each case

frame is described in Section 3.3.2.

Given a set of relevant case frames CF , we defined the combined case frame

c̃f as follows:

c̃f : Ṽ g, Ṽ w, Ṽ n, Ṽ d (3.7)

Ṽ x =
∑

cf∈CF

rel(cf,R)× V x
cf , ∀x ∈ {g, w, n, d} (3.8)

in which V x
cf is the vocabulary distribution vector of cf .

Model

Similar to the joint prediction model presented in Section 3.3.3, we adopt a Max-

Ent classifier model. Given an event pair R(pas1 ⇒ pas2) and its supporting

sentences S, we model the conditional probability of shared argument configura-

tion A as:

P (A|R,S;w) =
exp{w · φ(A, c̃f1, c̃f2, R, S)}

Z
(3.9)

In the above equation, φ is the feature representation as summarized in Table 3.7,

w is the model parameter, and Z is the normalization constant.

The training algorithm is similar to the one described in Section 3.3.3. In the

training phase, the most probable gold configuration ĝ and the model parameter

w are updated alternatively until convergence.

3.4 Experiments

3.4.1 Settings

The case frames used in the experiments are built from a web corpus of four billion

sentences, with the method proposed by Hayashibe et al. [48].

We use Classias [98] as the implementation of maximum entropy classifier and

L-BFGS [97] as the optimization algorithm for learning. We train and evaluate
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our proposed models by a 5-fold cross-validation test on the gold shared argument

dataset.

3.4.2 Evaluation and Result

We apply three evaluation metrics: precision, recall, and F-score (F1) for the

evaluation of our shared argument identification models.

Model Precision Recall F1

Baseline[g-g] 0.731 0.717 0.724

Baseline[Kohama+15] 0.729 0.733 0.731

Joint 0.747 0.786 0.766

Combined 0.753 0.748 0.750

Table 3.8: Evaluation result.

We compare our proposed models with two baseline models. The first baseline

model, denoted as Baseline[g-g] in Table 3.8, is the majority classifier which gives

the output of g-g regardless of the event pair given. The second baseline model,

denoted as Baseline[Kohama+15], is the model proposed by Kohama et al. [60].

The experiment results are summarized in Table 3.8. In addition, several event

relation knowledge acquired are shown in Table 3.9.

3.4.3 Discussion

Comparison with Baseline Models

As can be observed from Table 3.8, both of our proposed models outperformed

the baseline models by a large margin.

Compared to the model proposed by Kohama et al. [60], we use a richer fea-

ture representation for shared argument configuration. In their work, a shared

argument is represented by the vocabulary distribution similarity between two

case slots, such as the similarity between case frames, or the similarity between

arguments in the supporting sentences. However, by considering only the distribu-
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tional similarities between two case slots, their method overlooked two important

intrinsic properties of the shared argument identification task:

1. Interaction of shared arguments:

Different pieces of shared arguments are not independent, and shared ar-

guments that share a case slot have repulsive effects on each other. For

example, if a shared argument configuration already includes g-g, then it

would be unlikely that g-w also exists in the same configuration. We add

the normalized case slot similarity feature which considers not only the case

slot similarity of a pair of case slots, but also the relative similarity of them,

to account for this property.

2. The mechanism of argument omission in related event pairs:

High vocabulary distribution similarity indicates the existence of shared ar-

guments, but not vice versa. Consider the following example:

ジュースが安くなる → ジュースを買う
(juice-ga become cheaper → juice-wo buy)

Although there exists a shared argument of g-w, the vocabulary distribu-

tions of the two corresponding case slots are quite different. To address this

property, we add the context feature which considers each context word and

the relative probability of them to appear in each of the main case slots.

Comparison Between Proposed Models

The major difference between the two proposed models lies in how case frames

for feature construction are decided.

As can be observed from Table 3.8, the joint prediction model achieved a better

F-score than the combined case frame model. We conclude that deciding the best

case frame is a better way for modeling the selectional preference of a predicate,

compared to combining case frames with respect to the relevance scores. The

result also verified the effectiveness of the joint model of case frames and shared

arguments.
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Event Pair Gold Annotation System Output Error Type

熟成させる→出荷される
(ripen) (ship)

w-g w-g -

ジュースが安くなる→買う
(juice-ga become cheaper) (buy)

g-w g-w -

肌に与える→若返らせる
(skin-ni give) (rejuvenate)

w/g-g n-w g-g n-w -

切手を貼る→ポストに入れる
(stamp-wo paste) (mailbox-ni put)

g-g n-w g-g 1

迫害される→殺される
(suffer persecution) (be killed)

g-g n-n n-g 2

明るくなる→太陽が顔をだす
(become brighter) (sun-ga face-wo appear)

φ g-w 3

Table 3.9: Evaluation results of the proposed and baseline models for shared

argument identification.

Error Analysis

In the following are several patterns of error observed in the system output. Ex-

amples of each error type are presented in Table 3.9.

1. Error due to case frame granularity (Error Type 1):

Our proposed model jointly predicts the most appropriate case frame along

with the shared argument configuration. By selecting a single case frame

for each predicate, we are able to model the selectional preference of the

predicates accurately. However, the automatically constructed case frames

do not always provide the granularity suitable for our task. If a coarse-

grained case frame is selected during the prediction phase, the prediction of

shared argument will also be affected.

For the example shown in Table 3.9, an appropriate case frame of the second

predicate ‘put’ should contain words that support n-w shared argument in

the wo-case. Table 3.10 represents the most appropriate case frame of the

predicate ‘put’ among all the case frames of this predicate. It can be ob-

served that although the wo-case contains words relevant to the n-w shared
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Case Arguments

ga
私, 誰, 人, ママ, 夫, 自分, 母, ..

(I, who, people, mom, self, mother, ..)

wo
茶, 私, 子供, 花, 模様, .., 手紙, 封筒, ..

(tea, I, child, flower, pattern, .., letter, .., envelope, ..)

ni
中, 風呂, 部屋, 手, 家, ポスト, ..

(interior, bathroom, room, hand, house, mailbox)

de
¡数量¿+人, ¡時間¿, 急須, 白, 湯, 鉛筆, ..

(〈number〉+people, 〈time〉, teapot, white, hot water, pencil)

Table 3.10: Example of bad case frame

argument, such as ‘letter’ and ‘envelope’, there are other irrelevant words

dominating this case. These kinds of broad, somewhat noisy case frames

hinder the performance of our shared argument identification model.

2. Error due to event participants with similar characteristics (Error

Type 2):

Our method relies largely on the selectional preference information for iden-

tifying shared arguments. Thus, the prediction performance of our system

is not very good for event pairs containing multiple participants with similar

characteristics.

For the example shown in Table 3.9, our model wrongly identified the shared

argument n-g. Although both cases are expected to hold human partici-

pants, the entity in the first ni-case should correspond to the victim of both

actions ‘persecute’ and ‘kill’, while the second ga-case should hold the en-

tity of the perpetrator of the two actions. In the scenario of the above event

pair, there are two participants of similar characteristics, which are both

expected to be human. Since selectional preference cannot effectively dis-

tinguish between these similar participants, our model often has difficulty

dealing with event pairs with multiple similar participants.

3. Error due to fixed expression (Error Type 3)

In a fixed expression, an argument often takes on a different meaning than
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it usually does. Fixed expressions within events sometimes cause problems

in shared argument identification. For the example shown in Table 3.9, the

system output is as follows:

顔が明るくなる → 太陽が顔を出す (face-ga become brighter → sun-ga face-wo appear

Independently, both PASs shown above are plausible. However, the first

PAS, ‘face-ga become brighter’, means showing a cheerful look; while the

second PAS, ‘sun-ga face-wo appear’, means sun rising. Although both ex-

pressions contain the argument ‘face’, the shared argument of g-w does not

exist.

3.5 Related Work

As a resource-rich language, coreference resolution of English has achieved a sat-

isfying performance. Thus, several works which utilize coreference information

were proposed for English event relation knowledge acquisition.

Chambers et al. [12] introduced the concept of narrative event chains as

a representation of structured event relation knowledge. Their method utilizes

the coreference chains within the input text to collect events involving the same

entity, which they called the protagonist. Among the set of events involving the

same entity, event sequences that are observed a significant number of times are

extracted as typical event sequences.

Pichotta et al. [105] used a richer representation of event than in the work

of Chambers et al. and achieved an improvement in predicting performance. In-

stead of representing an event as a (predicate, dependency) pair, they considered

an event as a structure of a predicate and arguments with subject, object, direct

object relations with the predicate. With this multi-argument event representa-

tion, their model performs better in the cases of ambiguous verbs, and is more

capable of capturing complex interactions between multiple entities.

There are several works proposed for Japanese event relation knowledge ac-

quisition utilizing the co-occurrences of events. Abe et al. [1] proposed a pattern-

based method which utilized a predefined set of lexico-syntactic co-occurrence

patterns to perform bootstrapping for event relation learning. Their work fo-
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cused on the acquisition of related event pairs, but not the relations between the

arguments of the related events.

Shibata et al. [119] proposed a two-stage approach for Japanese event relation

knowledge acquisition (Figure 3.3). In the first stage, related event pairs are

extracted from large-scale corpora by association rule mining. In the second

stage, shared arguments of the event pairs are identified heuristically based on

case slot similarity scores.

Kohama et al. [60] improved the work of Shibata et al. [119] by utilizing crowd-

sourced data for shared argument learning. They proposed a joint model that

simultaneously predicts the shared argument configuration and disambiguates the

meaning of the predicates. However, their work failed to identify the shared

arguments accurately for two reasons. First, the crowd-sourced data they used

is very noisy and lacks a well-defined standard of labeling. Second, the features

used in their model are not sufficient for capturing the characteristics of shared

arguments.

3.6 Conclusion

In this work, we proposed a method for shared argument identification in event

relation knowledge acquisition. By addressing several problems of the previous

works, we improved the shared argument identification model significantly. We

proposed a richer feature representation of shared argument configuration which is

more suitable for model learning. In order to incorporate different types of shared

arguments in the gold dataset, we update the most appropriate gold configuration

along with case frames during the training process. We evaluated our model on

a manually annotated gold dataset, and our model outperformed the baseline

models by a large margin.

Our proposed model jointly predicts the shared argument configuration and

the appropriate case frames. By comparing the result of our proposed model with

the combined case frame model, we verified the effectiveness of this joint model

to predict the appropriate case frames.
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Heterogeneous Graph Based

Automatic Summarization

In this section, we focus on the task of automatic summarization and identify the

salient contents of a document. We adopt an extractive summarization framework

that extracts summary-worthy EDUs to form output summaries. Since EDUs are

typically clauses and can be considered as events, our EDU-based extractive sum-

marization framework is in essence identifying the salient events of a document.

For extractive summarization, modeling the relations between text spans in

a document is a crucial yet challenging problem. Various kinds of relations ex-

ist among text spans of different granularity, such as discourse relations between

EDUs and coreference relations between phrase mentions. In this work, we utilize

heterogeneous graph to model the various textual relations within a document.

The heterogeneous document graph contains three types of nodes, each corre-

sponds to text spans of different granularity. Also, we propose a graph neural

network based extractive summarization model that to capture the heterogeneous

document graph and the various textual relations in it. Experimental results

on benchmark summarization datasets verify the effectiveness of our proposed

method.

72
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4.1 Introduction

Automatic summarization is an important NLP task which aims to condense the

information of the input document into a shorter summary. The task has two

main paradigms: abstractive summarization and extractive summarization. Gen-

erating summary sentences from scratch, abstractive summarizers can generate

concise and flexible summaries. However, they also suffer from the problem of not

being able to reproduce factual details correctly [118]. On the other hand, extrac-

tive summarization aims to select salient text spans (mostly sentences) from the

input document as summary. Conceptually, extractive summarization is like high-

lighting the most important parts of the input document. Due to the above nature,

extractive summarizers have the advantage of being computationally efficient and

factually reliable. In this paper, we will focus on extractive summarization.

Most existing extractive summarization models operate on sentence level,

which identify salient sentences from the input document and concatenate them as

summary. However, even the extracted sentences may contain redundant details

that harm the conciseness of the summary. This kind of sentence-level redun-

dancies exist pervasively even in the salient sentences. Consider the following

examples:

(g) [Boston native Mark Wahlberg will star in a film about

the Boston Marathon bombing and the manhunt,]EDUa
1

[Deadline reported Wednesday.]EDUa
2

(h) [Yahya Rashid,]EDUb
1
[a UK national from northwest London,]EDUb

2

[was detained at Luton Airport on Tuesday]EDUb
3
[after he

arrived on a flight from Istanbul, ]EDUb
4
[police said.]EDUb

5

Both sentence (g) and sentence (h) contain important information that represents

the central idea of the events being described (highlighted in bold font in the

above example). However, they also include peripheral details that could safely

be excluded from the summary without harming the overall understanding of the

events (colored in gray in the above example).

To avoid sentence-level redundancies, we perform extraction on a smaller gran-

ularity of Elementary Discourse Unit (EDU) in this work. EDU is a sub-sentence
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unit that originated from discourse analysis [85]. For example, sentence (g) can

be further segmented into two EDUs and sentence (h) can be segmented into

five EDUs. Among them, only EDUa
1 , EDU b

1 , EDU b
3 and EDU b

4 present central

concept of the sentences. By operating on EDU level, our model can eliminate

unwanted trivial details like EDUa
2 , EDU b

2 , and EDU b
5 .

Figure 4.1: Hierarchy document structure.

The goal of extractive summarization is to identify salient text spans that

represent the main ideas of the input document. Thus, it is crucial to model

the overall document structure and the various relations between the text spans

across the document. Natural language documents have a hierarchical nature,

with each level corresponding to a different level of granularity: document, sen-

tences, EDUs, words, and phrases (Figure 4.1). Between text spans of different

granularity, there exist many different kinds of relations. For example, discourse

relations exist between EDUs within a document and coreference relations exist

between mention phrases that correspond to the same real-world entity (Fig-

ure 4.2). The discourse relations between EDUs provide important clues for the

extractive summarization task. The overall discourse structure of a document

captures the high-level linguistic structure of the composing events of the docu-

ment. Also, the nucleus and satellite discourse units directly represent the relative
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Figure 4.2: Discourse and coreference relations.

saliency of discourse units. Thus, discourse relations are helpful in identifying the

salient EDUs among an input document. On the other hand, the coreference rela-

tions between the phrase entities are also helpful for the extractive summarization

task. Since salient entities are often mentioned multiple times within different con-

texts in a given document, the coreference relations between the mention phrases

can implicitly capture the narrative structure of the document. Figure 4.3 shows a

document where the protagonist ‘Yahya Rashid’ is mentioned multiple times. By

observing each mention of the entity ‘Yahya Rashid’ as well as its context, we can

gather information about the narrative centered around the given protagonist.

Due to its complex nature, modeling the various relations among text spans

of a document remains an open challenge. Some recent works capture inter-

sentential relations by utilizing recurrent neural networks (RNNs) or Transformer

[126] based encoders on top of the acquired sentence representations [25, 92, 71].

However, empirical observations show that these sentence-level encoders do not

bring much performance gain [71]. Graph structure is an intuitive way to model

long-range relations among text spans throughout a document. Early works build

connectivity graphs based on content similarity between sentences [42, 88]. Some

recent works incorporate discourse or coreference relations into the graph structure

and utilize graph neural networks (GNNs) to obtain a high-level representation of
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Figure 4.3: Coreference relations around a given entity reflects the narrative struc-

ture in which the entity being the protagonist.

text spans [138, 133, 134]. Most of these works operate on homogeneous graphs

such as Approximate Discourse Graph (ADG) [29] or Rhetorical Structure Theory

(RST) [85] dependency graph. By definition, a homogeneous graph contains only

one type of node as well as only one type of edge. On the other hand, a het-

erogeneous graph consists of more than one type of node or more than one type

of edge. As illustrated in Figure 4.1, the various types of relations exist between

text spans of different granularity. To model the various text spans of different

granularity (nodes) as well as the various types of relations (edges) among them,

a heterogeneous graph is a more natural choice than homogeneous graphs.

In this paper, we propose a novel heterogeneous graph based model for ex-

tractive summarization. First, we model each input document as a heterogeneous

document graph. The heterogeneous graph contains three types of nodes of dif-

ferent granularity: sentence nodes, EDU nodes, and entity nodes. We simulta-

neously encode both discourse and coreference relations into the graph structure.

We encode the discourse relations with the edges between EDU nodes. As for the

coreference relations, edges between EDU nodes and entity nodes are introduced.

In addition, we model the hierarchical structure of the document by adding edges

between sentence nodes and their constituent EDU nodes. Further, we adopt a

Graph ATtention network (GAT) [127] based graph encoder to capture the var-

ious relations in the heterogeneous document graph. Different from the original
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Figure 4.4: An example of RST discourse parse tree. Based on the rhetorical

relations among the discourse units, we can derive the RST dependency graph.

GAT network, which is proposed for handling homogeneous graphs, our proposed

graph encoder considers the heterogeneous nature of the document graph and

applies separate processing for each node type. To the best of our knowledge, we

are the first to utilize heterogeneous graphs to incorporate multiple types of rela-

tions (discourse relations and coreference relations) simultaneously for extractive

summarization.

Our main contribution is threefold: (1) We propose to model the document

with a heterogeneous document graph that incorporates multiple types of relations

simultaneously for extractive summarization. (2) We propose a GAT-based graph

encoder that considers the heterogeneity of the document graph. (3) We conduct

experiments on summarization benchmark dataset CNN/DailyMail (CNNDM)

[49] and verify the effectiveness of our proposed method.

4.2 Heterogeneous Document Graph

In this section, we introduce the construction of heterogeneous document graphs.

Section 4.2.1 gives details of the pre-processing steps to obtain the discourse and

coreference information required for the construction of document graphs. Sec-

tion 4.2.1 gives a brief introduction of the homogeneous document graphs used

in previous works as well as their limitations. At last, Section 4.2.2 and 4.2.3

introduce two heterogeneous document graphs which tackle the limitations of the

homogeneous document graphs.



78 CHAPTER 4. HETEROGENEOUS GRAPH BASED SUMMARIZATION

4.2.1 Pre-processing

Both discourse information and coreference information are helpful in deciding the

content saliency, and have been incorporate as external knowledge into extractive

summarization systems.

Given an input document D, we first perform the following pre-processing

steps and construct the document graphs based on the discourse information and

coreference information acquired.

Discourse Parsing

Given document D with m sentences {s1, ..., sm}, we first segment the sentences

into n contiguous, adjacent and non-overlapping EDUs {d1, ..., dn}.
Further, we perform RST discourse parsing to identify the rhetorical relations

between the EDUs. In the RST framework, the discourse structure of D is rep-

resented in a tree format. For example, Figure 4.4 illustrates the RST parse tree

consisting of five EDUs. The RST parse tree is constructed by continuously merg-

ing adjacent discourse units to a larger discourse unit. In addition, the merged

discourse units are tagged as either nucleus(N) or satellite(S), which indicates

their relative nuclearity/saliency. Nucleus units are considered more salient, while

satellite units are less important in content. RST defines two types of rhetorical

relations between discourse units:

• Mononuclear relation that links a satellite unit to a nucleus unit. Such

as relation between EDU1 and EDU2.

• Multinuclear relation that links two nucleus units. Such as the relations

between EDU1−2 and EDU3−5.

Similar to Xu et al. [134], we convert the RST tree to the dependency form

based on the rhetorical relations in the RST tree. The RST dependency graph

consists of EDU nodes. In the case of mononuclear relations, the dependency

graph contains directed edges from satellite nodes to the corresponding nucleus

nodes. In the case of multinuclear relations, we link the nucleus nodes in both

directions.
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Coreference Resolution

In addition, we perform coreference resolution to identify coreferent relations

among mention phrases in the input document D. The goal is to identify mention

phrases that refer to the same real-world entity, such as the mentions ’Boston

native Mark Wahlberg‘ and ’Wahlberg‘ (highlighted in red) in Figure 4.1. The

mentions in D are clustered into k entities {e1, ..., ek}, with each entity ei repre-

senting a cluster of mentions among which coreference relations holds.

subsectionHomogeneous Document Graphs In many graph-based extractive

summarization researches, discourse information and coreference information are

used to build homogeneous document graphs with sentence/EDU nodes. By def-

inition, homogeneous graphs are graphs that contain only one type of nodes and

one type of edge.

For example, we can embed the discourse relations with the RST dependency

graph (Figure 4.4). Also, we can build a homogeneous coreference graph (Figure

4.5(a)) with EDU nodes and EDUs which contain a common entity are linked.

However, it is not straightforward to incorporate discourse relations and corefer-

ence relations together in a single homogeneous graph.

Some previous works like DiscoBERT [134] works use two different graphs to

embed discourse and coreference relations separately. However, this method ne-

glects the interaction between different relation types between EDUs. Some other

works use weighted graphs (4.5(b)) like ADG to embed multiple types of tex-

tual relations, with the edge weights represents the overall ’strength’ of relations

between text nodes [29]. Although it is possible to combine multiple different

relation types within the same graph in this manner, it is difficult to design the

proper edge weights.

4.2.2 Heterogeneous Document Graph with Multiple Edge Types

To tackle the limitations of homogeneous document graphs, we consider a hetero-

geneous document graph with multiple edge types. As shown in Figure 4.5(c), we

represent each input document D with a heterogeneous graph G1 = {V,E}, with
V and E being the set of nodes and edges, respectively.
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(a) Homogeneous coreference graph.

(b) Weighted homogeneous document graph.

(c) Heterogeneous document graph with multiple edge types (G1).

(d) Heterogeneous document graph with multiple node types (G2).

Figure 4.5: Homogeneous and heterogenous document graphs.
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In the pre-processing step, we perform discourse parsing and coreference reso-

lution on D (Section 4.2.1). We utilize the pre-processing results to construct the

heterogeneous document graph G1.

V = {d1, ..., dn} consists of the EDU nodes, with each node di representing

the ith EDU in the document D.

E consists of three types of edges:

• discourse edge: we add the RST dependency edges between EDU based on

the discourse parsing results.

• coreference edge: based on the coreference resolution results, the two EDUs

which contain mentions of the same entity are connected.

• same-sentence edge: we connect the EDU nodes that belong to the same

sentence.

In this work, we will use the above-mentioned document graph G1 as a baseline

to compare with our proposed heterogeneous document graph with multiple node

types (Section 4.2.3).

4.2.3 Heterogeneous Document Graph with Multiple Node Types

Although we can embed the coreference relations with the edges between EDU

nodes like in Figure 4.5(a) - (c), the important information of the coreference entity

is overlooked. For example, in Figure 4.5(c), a coreference edge only indicates that

the two EDUs share one or more common entities, but does not give information

regarding what entities actually connect the EDUs.

To tackle the above limitations, we propose a heterogeneous document graph

with multiple node types. As shown in Figure 4.5(d), each input document D

with a heterogeneous document graph G2 = {V,E}, where V and E are the set

of nodes and edges, respectively.

V contains three types of nodes:

• Vs = {s1, ..., sm}, with si representing the ith sentence in D.

• Vd = {d1, ..., dn}, with di representing the ith EDU in D.
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• Ve = {e1, ..., ek}, with each ei representing an unique entity in D.

In the pre-processing step, we perform discourse parsing and coreference res-

olution on D and build the heterogeneous document graph (Section 4.2.1). We

utilize the pre-processing results to construct the heterogeneous document graph

G2 as follows:

• Based on the discourse segmentation result, we connect each sentence node

to its constituent EDU nodes in G2.

• We add these RST dependency edges between EDU units to our document

graph G to model the discourse structure of the document.

• We use edges between EDU nodes and entity nodes to embed the corefer-

ence relations. If EDU di contains a mention of entity ej , then we add an

undirected edge (di, ej) to E. That is, each entity node indirectly connects

all EDUs with mentions of the entity. In this way, the subgraph around a

specific entity node implicitly models the narrative structure related to the

entity.

4.3 Proposed Method

4.3.1 Overview

Problem Formulation

Given an input documentD with n EDUs {d1, d2, ..., dn}, we formulate EDU based

extractive summarization as a sequence labeling problem. The model predicts a

sequence of binary labels Y = {y1, y2, ..., yn}, where yi = 1 indicates that the ith

EDU, di, should be included in the summary.

From the human-written summary, we heuristically obtain the oracle labels

{y∗1, y∗2, ..., y∗n}, which can be used to train our extractive summarization model.

Further details will be given in Section 4.4.1. In the inference stage, the model

predicts the binary labels for each EDU in the input document. The EDUs with

label yi = 1 will be concatenated as the summary.



4.3. PROPOSED METHOD 83

Figure 4.6: System overview.

Model Overview

Figure 4.6 provides an overview of our proposed model. First, the input document

D is feed into a Longformer [10] based document encoder. With the self-attention

based EDU and entity encoders, we acquire the initial node representation of the

heterogeneous document graph (Section 4.3.2). We then apply a heterogeneous

graph encoder to obtain high-level node representations (Section 4.3.3). Finally,

we make predictions based on the EDU node representation (Section 4.3.4).

4.3.2 Graph Node Initialization

Following the settings in Liu et al. [71], we utilize pretrained Longformer [10] to

encode the input document D. We insert the [CLS] and [SEP] special tokens to

the beginning and the end of each sentence si, respectively. The [CLS] special

token was originally used to aggregate features from one or a pair of sentences.

Same as Liu et al. [71], we use the [CLS] special token to get representation

vectors of the sentence following it. With the output vectors of Longformer, we

acquire the initial representations of each node in V as follows:
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Sentence Representations

For each sentence node si in Vs, we take the Longformer output vector of the

[CLS] token before si as the sentence node representation hsi .

EDU Representations

We use a self-attention based EDU encoder to encode each EDU node in Vd. Given

an EDU di consisting of tokens {w1
i , w

2
i , ..., w

N
i }, we obtain its node representation

hdi by taking self-attention on the Longformer output vectors {v1i , v2i , ..., vNi } of

the tokens:

αij = v2ReLU(W1v
j
i + b1) (4.1)

aij =
exp(αij)∑N
k=1 exp(αik)

(4.2)

hdi =
∑

j

aijv
j
i (4.3)

where W1, b1, v2 are trainable weights.

Entity Representations

The structure of the entity encoder is identical to the EDU encoder. For each

entity ei in Ve, we consider all mentions of it. By taking self-attention among the

Longformer output vectors which correspond to tokens of these mentions, we can

acquire the entity representation hei .

4.3.3 Heterogeneous Graph Encoder

We initialize the representation of each node in G with the sentence represen-

tations ({hsi}), EDU representations ({hdi }), and entity representations ({hei})
acquired in Section 4.3.2.

Figure 4.7 illustrates the structure of our heterogeneous graph encoder. Each

graph encoding layer Li consists of two Transformer sub-layers and a graph atten-

tion sub-layer. The Transformer sub-layers aim to model the interactions among

nodes with the same granularity. In the graph attention sub-layer, we apply graph

attention network (GAT) [127] to model the interactions among all types of nodes
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Figure 4.7: Structure of the heterogeneous graph encoder.

in G and update the node representations. The complete heterogeneous graph

encoder consists of N stacked graph encoding layer {L1, ..., LN}.

Transformer Sub-layers

We first feed the sentence vectors and EDU vectors to the sentence-level and the

EDU-level Transformer [126] sub-layers.

At the center of the Transformer sub-layer is a multi-head self-attention layer

follow by a feed-forward layer. The self-attention mechanism can be seen as a

fully-connected version of a graph attention network. To model the interactions

among nodes of the same granularity, we utilized two types of Transformer layers

[126], which operate on the sentence-level and the EDU-level, respectively.

Graph Attention Sub-layer

The graph attention sub-layer consists of a multi-head GAT network followed by

a feed-forward layer. Taking the document graph and the node representations as
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input, the purpose of the graph attention sub-layer is to learn a higher-level rep-

resentation of each node by aggregating information from its neighboring nodes.

Here, we introduce two types of GAT networks, the vanilla GAT network and

the heterogeneous GAT network. Similar to the one proposed in Veličković

et al. [127], the vanilla GAT network handles the document graph G as a homo-

geneous graph and treats all types of nodes in the same way. On the other hand,

our proposed heterogeneous GAT network considers the heterogeneity of G and

applies different processing to different node types.

Vanilla GAT network

We apply graph attention networks (GAT) [127] to update the node representa-

tions in G. For the ith node, we update the representation hi of node i with the

representations of its neighbors {hj}:

αij = LeakyReLU(Wa[Wqhi;Wkhj ]) (4.4)

aij =
exp(αij)∑
k exp(αik)

(4.5)

hi ←Wt(σ(
∑

j

aijWvhj) + hi) (4.6)

where Wa, Wq, Wk, Wv, Wk are trainable weights.

Figure 4.8 illustrates an example of graph attention mechanism. The subgraph

centering around node EDU1 is highlighted in Figure 4.8(a). EDU1 is connected

to a sentence node sent1, two EDU nodes EDU2 and EDU3, and two entity nodes

entity1 and entity2. With vanilla GAT network, we calculate the attention weight

across the five neighbors of EDU1 and updated the node representation of EDU1

(hd1) accordingly (4.8(b)).

Although a single GAT network only considers the first-degree neighbors, by

stacking several layers of GAT network, we can obtain a higher-level representation

for each node in G.

Heterogeneous GAT Network

The vanilla GAT network disregards the heterogeneity of the document graph and

treats different types of nodes identically. Figure 4.8(a) illustrates the subgraph
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(a) Subgraph around node EDU1.

(b) Vanilla GAT.
(c) Heterogeneous

GAT.

Figure 4.8: Graph attention sub-layer.

of node EDU1 and its neighbors. All three types of neighboring nodes (sentence,

EDU, and entity nodes) use the same equation for calculating attention scores α

(Figure 4.8(b)).

Considering the heterogeneous nature of the document graph G2, we introduce

a heterogeneous version of the GAT network (Figure 4.8(c)). To incorporate the

multiple node types of heterogeneous document graph G2, we introduce different

query and key matrices for each node type. For example, we use query matrix

W d
q and key matrix W d

k for EDU nodes, query matrix W e
q and key matrix W e

k for

entity nodes, and query matrix W s
q and key matrix W s

k for sentence nodes.

Different query ({W d
q ,W

e
q ,W

e
q }) and key matrices ({W d

k ,W
e
k ,W

e
k}) are used

during the attention calculation process for different types of nodes:

αij = LeakyReLU(Wa[W
ti
q hi;W

tj
k hj ]) (4.7)

aij =
exp(αij)∑
k exp(αik)

(4.8)

hi ←Wt(σ(
∑

j

aijWvhj) + hi) (4.9)

where ti indicates the type of node i, and Wa, {W d
q ,W

e
q ,W

e
q }, {W d

k ,W
e
k ,W

e
k},

Wv, Wk are trainable weights.
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For example, the attention score α between sent1 and EDU1 is calculated

with the key matrix for sentence nodes W s
k , while the attention score α between

entity1 and EDU1 is calculated with the key matrix for entity nodes W e
k .

As for the baseline document graph G1, we consider a heterogeneous GAT

network which considers the multiple edge types. We introduce binary variable

dij , cij and sij to indicate the existence of discourse edge, coreference edge and

same-sentence edge between node i and node j For example, if there is a discourse

edge between node i and node j, then dij = 1, otherwise, dij = 0. The attention

weight between node i and node j is calculated as follows:

αij = LeakyReLU(Wa[Wqhi; dijW
d
k hj ; cijW

c
khj ; sijW

s
khj ]) (4.10)

4.3.4 Prediction Layer

We feed the final representation of the EDU nodes (hdi ) to the prediction layer

with sigmoid activation to predict binary labels:

ŷi = σ(Wph
d
i + bp) (4.11)

The training loss of the model is the binary cross-entropy loss L against the oracle

extraction labels:

L = −
∑

i

y∗i log(ŷi) + (1− y∗i )log(1− ŷi) (4.12)

in which {y∗i } are the oracle labels and {ŷi} are the binary labels predicted by the

model.

4.4 Experiment

4.4.1 Experimental Settings

Dataset

We evaluated our proposed model on the benchmark CNN/DailyMail dataset

(non-anonymized version) [49]. We used the standard dataset split, which con-

tains 287,227 / 13,368 / 11,490 documents for training, validation, and test split,

respectively.
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Since the CNN/DailyMail dataset only contains abstractive gold summaries,

we have to construct oracle labels heuristically. Similar to Liu et al. [71], we

created the oracle labels on EDU-level by greedily selecting EDUs which maximize

the ROUGE scores [69]. We used the average of ROUGE1-F1 and ROUGE2-F1

as selection criteria. For each document, we selected up to 5 EDUs.

Pre-processing

We used the Stanford CoreNLP [86] to split sentences. Further, we used the RST

discourse parser proposed by Ji et al. [54] for both discourse segmentation and

discourse parsing. For coreference resolution, we used the spanBERT-based [56]

version of the end-to-end coreference resolver proposed by Lee et al. [65].

Hyper-parameter Settings

We used the ‘longformer-base-4096’ version of Longformer to encode the input

document. The length of each document is truncated to 1024 BPEs. The hidden

size of the EDU encoder and the entity encoder is 128. Based on the evaluation

losses on the validation set, we set the number of stacked graph encoding layers

to N = 2. For both Transformer sub-layers and the graph attention sub-layers,

the number of attention heads is set to 8, with each head having a hidden size of

96.

Training and Evaluation

During training, we used a batch size of 20. We used Adam optimizer with

β1 = 0.9 and β2 = 0.999 and followed the learning rate (lr) scheduling in Vaswani

et al. [126] with warm-up of 4000 steps (nwarmup):

lr = 2e−3min(nstep
−0.5, nstepnwarmup

−1.5)

All models are trained for 60000 steps. We selected the top-3 checkpoints based

on the evaluation losses on the validation set and report the average scores of them

on the test set. During the inference phase, the trained model is used to obtain a

likelihood score for each EDU. The top-5 EDUs with the highest likelihood scores
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Model R-1 R-2 R-L

LEAD-3 40.34 17.70 36.57

Oracle(Sentence-based) 52.59 31.24 48.87

Oracle(EDU-based) 55.96 34.64 53.26

(Sentence-based extraction)

BanditSum [38] 41.50 18.70 37.60

NEUSUM [140] 41.59 19.01 37.98

HIBERT [139] 42.37 19.95 38.83

HSG [129] 42.95 19.76 39.23

BertSum (sent) [71] 43.25 20.24 39.63

(EDU-based extraction)

BertSum (EDU) 42.73 20.03 40.16

DiscoBERT [134] 43.77 20.85 40.67

Proposed (vanillaGAT, 768) 43.33 20.55 40.74

Proposed (hetGAT, 768) 43.54 20.63 40.91

Proposed (vanillaGAT, 1024) 43.61 20.67 40.95

Proposed (hetGAT, 1024) 43.78 20.81 41.12

Table 4.1: Results on the test set of CNN/DailyMail dataset.

are concatenated to generate the final summary. We also perform trigram blocking

in the inference phase, which is a simple yet effective way to reduce redundancy

in extractive summarization.

We adopt ROUGE [69] as the evaluation metrics. We report the F1 scores of

the ROUGE1, ROUGE2, and ROUGEL metrics of our proposed models.

4.4.2 Results and Analysis

Results on CNN/DailyMail Dataset

Table 4.1 shows the results on CNN/DailyMail dataset. The first part contains

the LEAD-3 baseline and Oracle upper bounds. The second part of the table

includes the sentence-based extractive models, and the third part includes the
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EDU-based extractive models. In the third part of the table, we present the

evaluation scores of our proposed models with vanillaGAT and the hetGAT

version. heterogeneous document graph G2 (introduced in Section 4.2.3) is used

here. Also, we included results of maximum input sizes 1024 and 768. For the

input size 768, we use BERT [35] as the encoder instead of Longformer, which is

the same setting as DiscoBERT [134].

As Table 4.1 shows, all our proposed models outperform the LEAD-3 and

all sentence based extractive baseline models. Compared to the BertSum(sent)

baseline, our proposed model (hetGAT, 1024) achieved a higher ROUGE on

all three metrics (R-1/R-2/R-L). We conclude that EDU-based extraction is a

promising direction in extractive summarization.

Our proposed model (hetGAT) also outperform the BertSum(EDU) base-

line by a significant margin in all three metrics (R-1/R-2/R-L). This result shows

the effectiveness of our graph encoder module to capture the complex relations

among the text spans of the input documents.

Compared to the state-of-the-art EDU-extraction model DiscoBERT, our

proposed model (hetGAT, 1024) achieved comparable performance on R-1/R-2

metrics and outperformed it on the R-L metrics by 0.45 of F1 score. However,

the performance of the proposed model with 768 maximum input size (hetGAT,

768) has worse performance compare to DiscoBERT on R-1/R-2 metrics. Dis-

coBERT incorporates a strict RST-based rule during oracle construction and

post-processing to ensure discourse consistency. Since the purpose of this paper is

to propose a heterogeneous graph based method for modeling text span relations,

we will leave the question of discourse consistency to future work. 1

Compared to DiscoBERT, our proposed model can better adapt to long input

documents. First, the homogeneous structure of their work is not efficient in em-

bedding coreference relations. Take the example of an entity with k mentions, the

homogeneous coreference graph (like Figure 4(a)) needs to use k(k−1)
2 edges, while

our proposed heterogeneous graph only needs k edges to represent the coreference

1The SpanBERT based end-to-end coreference resolver (F1=0.77, OntoNote corpus) has a

better performance than the Stanford CoreNLP coreference resolver (F1=0.69, OntoNote corpus)

used in DiscoBERT.
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Model R-1 (∆R-1) R-2 (∆R-2) R-L (∆R-L)

Proposed (hetGAT) 43.78 20.81 41.12

- discourse 43.45(-0.33) 20.55(-0.26) 40.83(-0.29)

- coref 43.57(-0.21) 20.68(-0.13) 40.93(-0.19)

- sent 43.74(-0.04) 20.79(-0.02) 41.06(-0.06)

Proposed (vanillaGAT) 43.61 20.67 40.95

- discourse 43.42(-0.19) 20.54(-0.13) 40.77(-0.18)

- coref 43.51(-0.10) 20.61(-0.06) 40.85(-0.10)

- sent 43.57(-0.04) 20.66(-0.01) 40.90(-0.05)

Table 4.2: Ablation studies on CNN/DailyMail dataset.

relation. Since both GCN (used in DiscoBERT) and GAT have time complex-

ity O(|E|), the larger number of edges will make it difficult to adapt to longer

documents. Also, unlike their GCN-based method, the GAT-based method we

adopted is exempted from eigen-compositions and costly matrix operations.

Finally, for both types of input length (768 and 1024), we can observe that

the hetGAT model outperforms the vanillaGAT model. This shows the effec-

tiveness of our proposed heterogeneous GAT networks to captures and aggregates

the various text relations in the heterogeneous document graphs.

Ablation Study

We conduct ablation studies on the components of our proposed model (Table

4.2) with the heterogeneous document graph G2.

The first part shows the ablation study of the proposed (hetGAT) model.

First, we remove the RST dependency edges between EDU nodes (-discourse).

Next, we remove the coreferential edges between EDU nodes and entity nodes

(-coref). We can see that both discourse and coreference information contributes

significantly to the model performance, with discourse information being slightly

more important than the coreference information. We also try to remove the

edges between sentence nodes and their constituent EDU nodes (-sent). However,

linking the sentence and EDU nodes does not seem to have a significant impact
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Model R-1 R-2 R-L

Baseline (G1, vanillaGAT)* 43.43 20.58 40.77

Baseline (G1, hetGAT)* 43.53 20.64 40.85

Proposed (G2, vanillaGAT)* 43.61 20.67 40.95

Proposed (G2, hetGAT)* 43.78 20.81 41.12

Table 4.3: Results on different graph structure.

on model performance.

The second part of Table 4.2 shows the ablation study of the proposed (vanillaGAT)

model. The results of the ablation study show a similar tendency compared to the

hetGAT model. We can observe from the results that both discourse and corefer-

ence information contributes to the model performance separately, but these two

different types of information do not aggregate well compared to the case in the

hetGAT model. This result illustrates the effectiveness of our proposed hetero-

geneous GAT network in handling various types of text relations simultaneously,

compared to the vanilla GAT networks proposed for homogeneous graphs.

Results of Different Graph Structure

We perform experiments on different graph structures. We compare the system

performance on the baseline document graph G1 (Section 4.2.2) and our proposed

heterogeneous document graph G2 (Section 4.2.3).

As shown in Table 4.3, for both vanillaGAT and hetGAT, using document

graph G2 gives a better performance then using G1. Although both G1 and

G2 embeds the discourse, coreference and same-sentence information within the

document graph, G2 includes richer information of the coreferent entities and

sentences. The experimental results show the effectiveness of introducing extra

entity and sentence nodes in the document graph.

Results of Different Hyper-parameter Settings

We perform experiments on different hyper-parameter settings to observe how the

model performance changes under the changes of hyper-parameters.
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Figure 4.9: Result of different number of stacked graph encoding layers (N) on

validation set.

Same as ablation study, we use heterogeneous graph G2 in the following ex-

periments.

Number of stacked graph encoding layer We modify the number of stacked

graph encoding layers (N) and observe how it affects the performance. We report

the performance on the validation set from N = 1 to N = 3 in terms of validation

loss, ROUGE-1, ROUGE-2 and ROUGE-L in Figure 4.9.

As can be observed in Figure 4.9, we can see that there is a significant perfor-

mance gap between N = 1 and N = 2. On the other hand, there is no significant

difference in model performance from N = 2 to N = 3.

The phenomenon can be explained by the theory of meta-path of the document

graph. Meta path is a widely used concept proposed to model the various types of

relations between nodes in a heterogeneous graph. A meta path captures a specific

type of relations within the given graph. Figure 4.10 illustrates the various meta

paths in our proposed heterogeneous document graph:

(a) EDU-EDU meta path represents the discourse relation between discourse
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Figure 4.10: Meta paths in the heterogeneous document graph.

units.

(b) EDU-entity-EDU meta path connects two EDU nodes sharing a coref-

erent entity. This 2-hop meta path describes the coreference relation of the

entity in the center.

(c) entity-EDU-entity meta path describes the collocation relation between

two entities that appear in the same EDU unit.

(d) EDU-sent-EDU meta path represents the hierarchical structure of a sen-

tence and its consisting EDUs.

The N = 1 model cannot capture the 2-hop meta-paths like EDU-entity-EDU,

entity-EDU-entity and EDU-sent-EDU. We speculate that this could account for

the performance loss of the N = 1 model.

Maximum Input Length We modify the maximum input length (in BPEs)

and observe how it affects the performance. We report the ROUGE-1, ROUGE-2

and ROUGE-L scores on the validation set with the maximum input size set to

512, 768, 1024, 2048, 4096 BPEs in Figure 4.11.

Generally, we can observe a performance gain by increasing the maximum

input length. The performance gain is significant for the maximum input size

under 1024. However, the gain is less significant if we increase the input size

further.

The average document length of the CNN/DailyMail dataset is around 864

BPEs, with a standard deviation of 443 BPEs. Also, consider the fact that

summary-worthy, salient sentences tend to appear at the beginning of the docu-
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Figure 4.11: Relations among text spans of different granularity.

ment. The above two facts altogether support that setting the maximum input

length to 1024 BPEs should give satisfactory results.

Qualitative Analysis

We also conduct a qualitative analysis of the proposed model. The effectiveness

of discourse relations is more straightforward and widely studied in previous re-

search. Thus, we focus on the analysis of the role of coreference information in

our proposed summarization model.

In the heterogeneous document graph, EDUs containing the same entity phrase

are indirectly connected through the node of the given entity. By analyzing the

output of the full proposed model and the model without coreference informa-

tion (-coref), we found that the models rank the importance of coreferent EDUs

differently. Table 4.4 indicates a common pattern of the improved cases by incor-

porating coreference information. The table shows examples of coreferent EDUs

and the ranking of their likelihood scores to be included in the summary. Com-
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EDUs with coreferent entity Rankcoref Rankw/o coref Oracle Label

Mexican state oil company Pemex said 45 workers were injured ... 1 2 1

... two of them are in serious condition 2 1 0

Kim was accused of stabbing U.S. ambassador Mark Lippert ... 1 3 1

Before Lippert was supposed to give a speech, the attacker slashed him in the face a jaw 3 1 0

Kim stabbed Lippert with a 10-inch knife 2 2 0

Table 4.4: Qualitative studies on CNN/DailyMail dataset.

paring the EDU ranking of the full model (Rankcoref) and the model without

coreference information (Rankw/o coref), we argue that the model with corefer-

ence information is better in discriminating the important EDUs among all EDUs

sharing the same entity.

4.5 Related Work

Graph-based Summarization

Graph-based summarization models have been broadly explored. Early works

build connectivity document graphs based on inter-sentential similarity [42, 88].

With the promising results of graph neural networks (GNNs) [58, 127], some

recent works utilize GNN to incorporate external knowledge into the model. For

instance, Yasunaga et al. [138] utilizes a sentence-level ADG graph to model

discourse and coreference relations. Some works convert the RST tree of the

input document into dependency form in either sentence or EDU level [133, 134].

Most of these models operate on homogeneous graphs with only one type of node.

Fewer summarization models operate on heterogeneous graphs with different types

of nodes. Wei [131] introduces a heterogeneous graph of sentence, word, and topic

nodes, and Wang et al. [129] also utilizes a heterogeneous graph of sentence and

word nodes. However, neither of the above works incorporates external knowledge

into the graph.

Cui et al. [31] perform sentence-based extractive summarization based on the

heterogeneous sentence node and nodes representing latent topics.
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EDU-based Extractive Summarization

Li et al. [67] illustrate the potential of using EDU as the extraction unit for sum-

marization. Xu et al. [134] also introduce an end-to-end EDU-based extractive

summarization model. By using a heuristic based on RST dependency structure,

they enhanced the grammaticality and discourse consistency of the extracted sum-

mary.

4.6 Conclusion

In this work, we proposed a novel heterogeneous graph based model for extractive

summarization. By introducing nodes of different granularity, the heterogeneous

document graph has the capacity to embed various types of relations between

text spans. In addition, we proposed a heterogeneous GAT network that con-

siders the heterogeneous nature of the document graph. Experiments on the

CNN/DailyMail benchmark dataset illustrated the effectiveness of our proposed

method.



Chapter 5

Conclusion

5.1 Overview

In this thesis, we study the events in natural language texts. Among the numer-

ous event-related tasks, we focus on three tasks that analyze the different aspects

of events: event coreference resolution, narrative event relation knowledge acqui-

sition, and extractive summarization considering heterogeneous event graphs.

In Chapter 2, we focus on the task of event coreference resolution. Event

coreference resolution is an important subtask of information extraction (IE),

the task aims to identify and cluster the event mentions that refer to the same

real-world event. In this work, we adopt the semantic view of events by rep-

resenting events by a trigger and zero or more arguments of different semantic

roles. For event mentions to be coreferent, their triggers must be semantically

related and their arguments must be compatible. While argument compatibility

is an important aspect to determine the coreference status of event mentions,

it is difficult to learn argument compatibility due to the limited size of existing

annotated corpora. To tackle the above problem, we propose a transfer learning

framework of event coreference resolution and learn argument compatibility from

the abundant unannotated corpora available. We conducted experiments on the

benchmark KBP corpora and verified the effectiveness of our proposed method.

A further case study also illustrates the ability of our proposed model to capture

the (in)compatibilities of event arguments.

99
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In Chapter 3, we focus on the task of narrative event relation knowledge

acquisition. The narrative event relation captures the stereotypical ordering

of events that are temporally and causally related, which is an important type

of commonsense knowledge that reflects the way the human mind perceives the

world. In this work, we mine pairs of narratively related events from a large

Japanese unannotated corpus. In order to efficiently mine the underlying narra-

tively related events from large unannotated corpus, we take a syntactic view of

events by representing each event as a predicate-argument structure (PAS). We

first model the event pairs and their consisting predicate/arguments as transac-

tions and items, and utilize association rule mining algorithm to identify narra-

tively related events of statistical significance. Further, considering the abundance

of omitted arguments in Japanese texts, we manually constructed an annotated

corpus to learn the patterns of the shared arguments of the event pairs. With

the 2-stage method above, we collected a large amount of narrative event relation

knowledge (400,000 pairs of narrative events) from a large web corpus.

In Chapter 4, we focus on the task of extractive summarization. Extrac-

tive summarization is one of the main paradigms of the automatic summarization

task, which aims to identify the salient parts of a document as summary. In this

work, we consider the elementary discourse units (EDUs) as events and formu-

late extractive summarization as event saliency identification problem. In order

to identify the salient and summary-worthy EDUs of the input document, it is

critical to model the interactions between text units. First, discourse relations

between EDUs capture the high-level linguistic structure of the input document.

Also, the nucleus-satellite relations between rhetorically related discourse units

also give direct clues of event saliency. Second, coreference relations also play a

role to consolidate the information scattered across the input document. For in-

stance, the coreference relations between phrases mentions of a specific entity give

information about the narrative structure around the specific protagonist. We uti-

lize heterogeneous graph to model the input document and the textual relations

in it. Also, we propose a graph attention (GAT) based graph encoder to capture

the structure of the heterogeneous document graph. We conducted experiments

on the benchmark CNN/Daily Mail corpus and verified the effectiveness of our
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proposed method.

We believe the various event-related tasks presented in this thesis provide a

thorough study of the events in natural language texts from multiple aspects.

We hope that this thesis will invoke new research ideas for future event-related

research.

5.2 Future Work

5.2.1 Event Extraction and Event Coreference Resolution

Event extraction and event coreference resolution are fundamental tasks of in-

formation extraction. However, most works on event extraction focus on closed-

domain settings and rely on predefined event schemas. The domain-specific pre-

defined event schemas are not easily extended from one domain to other domains.

Thus, the development of domain-adaptive event extraction frameworks is an

important direction of future studies. Transfer learning and domain adaption

methods could be possible solutions.

Event coreference resolution is also a fundamental event-related task. Despite

its importance, the performance of the existing is still not good enough for prac-

tical use. One of the main problems is the data scarcity problem. In this thesis,

we proposed a transfer learning framework of event coreference resolution and

utilized the large unlabeled corpus to learn argument compatibility patterns. In

future studies, transfer learning or semi-supervised learning methods are likely

to remain a major way to tackle the data scarcity problem. Also, most of the

existing event coreference resolution frameworks are based on the pairwise/local

information and overlook the important overall structure of the document. Incor-

porating the idea of event saliency (such as main events) and document discourse

structure would be a promising future direction of event coreference resolution

research.

5.2.2 Global Structure of Events and Event Relations

Modeling the various event relations as well as the global structure of events in

natural language texts is a critical task. In Chapter 3, we studied the narrative
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event relation between pairs of events; in Chapter 4, we use heterogeneous graph

to capture the various relations between events within a document. How to model

the various textual relations is still an open question. Previous studies models the

narrative relations with typical sequences of events, the discourse theory RST

captures the discourse document structure with a tree. Graph is a promising

way to model the event structure in documents, which is capable of capturing the

complex linguistic structure of natural language texts. With the recent advance of

the graph neural network, we expect more future works to explore the possibility

of using graph structure to model complex event relations.
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