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Direct and ultrafast probing of quantum many-body interactions through coherent
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Nguyen Thanh Phuc *

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Pham Quang Trung
Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences,

Okazaki 444-8585, Japan

(Received 16 September 2020; revised 21 April 2021; accepted 25 August 2021; published 3 September 2021)

Interactions between particles in quantum many-body systems play a crucial role in determining the electric,
magnetic, optical, and thermal properties of the system. The recent progress in the laser-pulse technique has
enabled the manipulations and measurements of physical properties on ultrafast timescales. Here we propose a
method for the direct and ultrafast probing of quantum many-body interaction through coherent two-dimensional
(2D) spectroscopy. Using a two-band fermionic Hubbard model for the minimum two-site lattice system, we
find that the 2D spectrum of a noninteracting system contains only diagonal peaks; the interparticle interaction
manifests itself in the emergence of off-diagonal peaks in the 2D spectrum before all the peaks coalesce into a
single diagonal peak as the system approaches the strongly interacting limit. The evolution of the 2D spectrum
as a function of the time delay between the second and third laser pulses can provide important information on
the ultrafast time variation of the interaction.
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I. INTRODUCTION

Important physical systems and materials often consist of
a macroscopically large number of atoms, molecules, and
electrons. The interaction between constituent particles can
dictate various physical properties of the system, including,
for example, the electrical and thermal transports and the
magnetic and optical properties. However, in some metals
and semiconductors, owing to the screening of the Coulomb
interaction between electrons, their low-energy behaviors are
similar to those of a system of noninteracting particles. These
systems can be described by Landau’s Fermi liquid theory
[1]. In contrast, there also exist strongly correlated elec-
tronic systems beyond the Fermi liquid theory, in which the
interaction between electrons cannot be ignored. Examples
include the Luttinger liquid in one dimension [2,3], heavy
fermionic systems [4], and systems near critical points such
as the Mott-insulator phase transition [5,6]. The interparti-
cle interaction can also result in exotic phenomena such as
superfluidity and superconductivity [7]. Strong-interparticle
interactions and their effects on the static and dynamic prop-
erties of the system have also been investigated extensively
in ultracold atomic and molecular systems [8–12], where the
ratio of the interaction energy to the kinetic energy can be
varied under control. The superfluid-to-Mott-insulator phase
transition was also observed in the absorption spectra of ru-
bidium and ytterbium atoms [13,14]. However, time-resolved
spectroscopies, in comparison with conventional techniques

*nthanhphuc@moleng.kyoto-u.ac.jp

such as the time-of-flight and photoemission measurements,
are needed for studying ultrafast phenomena in electronic and
ultracold atomic systems.

Meanwhile, continual progress in the development of
laser-pulse techniques has enabled a faster manipulation and
measurement of the physical and chemical properties of elec-
tronic, atomic, and molecular systems [15]. This allowed us
to observe intriguing nonequilibrium phenomena, such as
light-induced superconductivity [16,17], ultrafast spintronics
[18,19], and the Floquet engineering of electronic band topol-
ogy [20,21]. In this work we propose a method to investigate
the effect of interaction between particles directly in quantum
many-body systems on an ultrafast timescale using coherent
two-dimensional (2D) spectroscopy. Coherent multidimen-
sional, especially 2D, spectroscopy has been widely used to
study electronic excitation (exciton) and vibration dynamics
in molecular and semiconductor systems [22–30]. More re-
cently, intersubband electronic excitations in quantum wells
[31], carrier dynamics in graphene [32], spin-wave [33] and
fractional excitations [34,35] in magnetic materials, marginal
Fermi glass [36], and high-temperature superconductors [37]
have been studied. In coherent 2D spectroscopy, a sequence
of three laser pulses is used to excite the system, and the
subsequent coherent light emission induced by the polariza-
tion of the system is measured. The 2D spectrum displays the
emitted optical signal as a function of the frequencies ω1 and
ω3, which is obtained by performing a Fourier transformation
with respect to the time interval t1 between the first two
pulses and the time interval t3 between the third pulse and
the emitted signal, respectively. Physically, ω1 and ω3 amount
to the excitation and emission frequencies, respectively. The
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FIG. 1. Coherent 2D spectroscopic measurement of an interact-
ing quantum many-body system. (a) System of spin-1/2 fermionic
particles moving in a lattice. The two parameters of the Hubbard
model are the hopping amplitude J between neighboring sites and the
on-site interaction U between two particles at the same site. (b) Setup
of the coherent 2D spectroscopic measurement. Three laser pulses
successively interact with the system, and the light-emission signal
induced by the polarization of the system is measured. (c) Variance
�n of the number of particles at a single site in the quantum many-
body ground state of the system. Here the number of lattice sites is
N = 6, the filling factor is one-half, i.e., the number of particles is
equal to the number of sites, the total magnetization is zero, and the
periodic boundary condition is applied. (d) Double-sided Feynman
diagrams for the light-matter interaction processes involved in the
rephasing (photon echo) signal.

diagonal/off-diagonal peaks in the coherent 2D spectrum rep-
resent processes with equal/unequal excitation and emission
frequencies. Importantly, off-diagonal peaks can emerge only
if the two transitions associated with the optical excitation and
emission are coupled to each other [38–40]. However, notably,
this kind of coherent coupling between two transitions is
purely at the level of single-body physics, whereas the much
more complex quantum many-body physics is investigated in
this study.

The major challenge in the application of 2D spectroscopy
to complex quantum many-body systems is that the interpre-
tation of the spectrum typically relies on a detailed theoretical
investigation in order to disentangle various contributions. In
this work we aim to identify unique signatures that allow us
to characterize many-body interactions in correlated systems
over a broad range of interaction strength. We calculate the
coherent 2D spectrum of an interacting quantum many-body
system of spin-1/2 fermions [see Figs. 1(a) and 1(b)], which
can be, for example, electrons moving in a crystal lattice or
ultracold atoms/molecules moving in an artificial lattice. For
the minimum two-site system, we observe that a system of
noninteracting particles would display a 2D spectrum with
only peaks lying on the diagonal axis ω1 = −ω3. This is
attributed to the fact that the quasimomentum of the particles
is a good quantum number in the absence of interparticle
interaction. Moreover, because of the conservation of mo-
mentum in the light-matter interaction, two optical transitions
with different quasimomenta are not coupled to each other.
In contrast, if the interaction between particles is sufficiently

strong, off-diagonal peaks emerge in the 2D spectrum. In
an interacting quantum many-body system, quasimomentum
states are no longer energy eigenstates of the system. Conse-
quently, two transitions with different optical excitation and
emission frequencies can be effectively coupled to each other,
leading to the emergence of off-diagonal peaks. However, if
the interaction strength is increased further, when the system
approaches the strongly interacting limit, in which exactly
one particle is localized at each lattice site as the hopping
of particles between neighboring sites becomes energetically
unfavorable, all the peaks in the 2D spectrum coalesce into a
single diagonal peak at the frequency of the excitation band.
Consequently, coherent 2D spectroscopy can be used to inves-
tigate the entire range of interaction strength from weak- to
strong-interaction regimes. We also investigate the coherent
2D spectrum of the system when the ratio of the interaction
energy to the kinetic energy varies with time. The evolution
of the 2D spectrum as a function of the time delay t2 between
the second and third pulses can provide us with important
information on the ultrafast time variation of the interaction
and the accompanying dynamics of the system. Notably, in
contrast to other schemes [41,42], our proposed method to
probe the quantum many-body interaction does not require
single-site addressability, and thus can be suitable for studying
ultracold atoms and ions as well as electronic systems.

II. SYSTEM

Consider the Hubbard model of a system of spin-1/2
fermionic particles moving in a lattice, whose Hamiltonian for
the ground-state band is given by

Ĥg = − J
∑
〈i, j〉

∑
σ=↑,↓

(ĉ†
i,σ ĉ j,σ + H.c.) + U

∑
j

n̂ j,↑n̂ j,↓, (1)

where ĉ j,σ denotes the annihilation operator of a particle with
spin σ located at the jth site, and n̂ j,σ = ĉ†

j,σ ĉ j,σ is the par-
ticle number operator. The parameters J and U represent the
hopping amplitude of the particle between neighboring sites
and the on-site interaction between two particles located at the
same site, respectively. Here 〈· · · 〉 denotes a pair of nearest
neighboring sites, and H.c. stands for Hermitian conjugate.
Here we restrict our consideration to the case that the number
of particles is equal to the number of lattice sites. Furthermore,
the total magnetization of the system is zero, i.e., the number
of particles with spin-up is equal to that of particles with
spin-down.

For a weakly interacting system with |J| � U , the motions
of particles are almost independent of one another (except for
the Pauli exclusive principle) and their wave functions are
delocalized over different sites in the lattice. In contrast, in
the strongly interacting limit |J| � U , the system would be in
the Mott insulating phase, where each lattice site is occupied
by exactly one particle as the hopping of particles between
neighboring sites is energetically unfavorable. This transition
is reflected by the change in the variance �n = 〈ψ0|n̂2

j |ψ0〉
of the number of particles at a single site for the quantum
many-body ground state |ψ0〉. Figure 1(c) shows �n as a
function of U/|J| for a system of N = 6 particles in a one-
dimensional lattice. Here n̂ j = n̂ j,↑ + n̂ j,↓. The variance is
maximum for U = 0, at which �n = 1.5; it decreases with
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increasing interaction strength and approaches �n = 1 for a
sufficiently strong interaction.

We consider a one-dimensional system with the periodic
boundary condition. As for the optical transitions caused by
the light-matter interactions with the laser pulses in coherent
2D spectroscopy, we consider a Hubbard model with two
energy bands: the ground-state and excited-state bands. The
total Hamiltonian of the system is given by

Ĥ = −
N−1∑
j=0

∑
σ=↑,↓

(
Jgĉ†

g, j+1,σ ĉg, j,σ + Jeĉ†
e, j+1,σ ĉe, j,σ + H.c.

)

+
N−1∑
j=0

∑
α �=β

Uαβ n̂ j,α n̂ j,β + εeg

N−1∑
j=0

∑
σ=↑,↓

ĉ†
e, j,σ ĉe, j,σ , (2)

where α, β = (g/e; ↑ / ↓). Here Jg and Je denote the hop-
ping amplitudes of particles between neighboring sites in the
ground and excited bands, respectively. Owing to the differ-
ence in the spatial confinement of the wave function of the
particle at the lattice sites between the two bands, Jg �= Je.
In general, the on-site interaction should also depend on the
spins of the particles and on whether they are in the ground
or excited band; however, for simplicity, we assume that the
on-site interaction is characterized by a single variable pa-
rameter, namely Uαβ = U . The periodic boundary condition
indicates that j = N is equivalent to j = 0. In the two-band
Hubbard-model Hamiltonian (2), we ignored the Hund-type
interaction, which is often included in the models of multior-
bital electronic systems but would vanish if the excited band
is the lowest-energy orbital of atoms in an electronic excited
state such as in the experiment of Ref. [14]. The neglect
of Hund-type interaction does not qualitatively change the
conclusions of this paper.

As the wavelengths of the laser pulses are typically much
larger than the lattice constant of the crystal lattice for
electrons, the lasers’ electric fields can be considered ho-
mogeneous over a large number of lattice sites. A similar
nanoscale artificial lattice for ultracold atoms can be realized
by using nanoplasmonic systems [43], photonic crystals [44],
time-periodic modulations [45], and superconductors [46]. In
this case, at a length scale that is small compared to the
wavelengths of the lasers but large compared to the lattice
constant, the phase eik·r of a laser can be considered constant,
corresponding to zero momentum of photon. The Goppert-
Mayer gauge transformation can then be applied to express the
light-matter interaction Hamiltonian in the form of E(t ) · D̂
[47], where the dipole moment operator D̂ is given in the
two-band Hubbard model, i.e., expanded in the Wannier or-
bital basis, as D̂ = ∑N−1

i, j=0

∑
l,l ′=g,e

∑
σ=↑,↓ ĉ†

l,i,σ μl,i;l ′, j ĉl ′, j,σ .

Here μl,i;l ′, j = 〈l, i|D̂|l ′, j〉 is the matrix element of the dipole
moment operator for the (l ′, j) → (l, i) transition. Note that
here we did not use the so-called multicenter Power-Zienau-
Woolley transformation [48], which is appropriate for the
more general case of a nonuniform electromagnetic field,
and for which the Peierls phase [49] emerges in addition to
the dipole interaction. It is also noteworthy that even though
the gauge invariance would break down by a truncation
of the full Hilbert space to a few lowest-energy bands, the
difference between results obtained by using different gauges

is only significant in the ultrastrong coupling regime, where
the light-matter interaction is comparable in magnitude with
the transition frequency of the system [50], as opposed to
the typically weak-coupling regime of spectroscopic measure-
ments under consideration. At larger length scales, the phases
of lasers are imprinted into the phase of the system’s nonlinear
polarization, leading to the phase matching condition which
can be interpreted as the conservation of momentum in the
coupled light-matter system [51]. The optical signal S(t ) mea-
sured via coherent 2D spectroscopy is proportional to iP(3)(t ),
where P(3)(t ) is the time-dependent third-order polarization
of the system. It can be expressed as a convolution of the
third-order response function R(3)(τ1, τ2, τ3) and the electric
fields of the lasers [22,28]

P(3)(t ) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

0
dτ3R(3)(τ1, τ2, τ3)

× E (t − τ3)E (t − τ3 − τ2)E (t − τ3 − τ2 − τ1).
(3)

In the impulsive limit of the laser pulses, where the electric
field is given by a sum of three Dirac’s delta functions, the
polarization is proportional to the nonlinear response func-
tion R(3)(t1, t2, t3), where t1, t2, and t3 are the time intervals
between the laser pulses and the emitted signal (see Fig. 1).
The nonlinear response function and emitted signal are gen-
erated by various processes, each of which involves four
interactions between light and matter. These processes can
be grouped into three categories according to the direction
of the emitted signal: rephasing, nonrephasing, and double
quantum coherence. The three types of signals can generally
provide different types of information about the energy levels
and dynamics of the system. The double quantum coherence
signal relies on the difference in energy between the transition
from zero to one excitation and that from one to two exci-
tations, and has been used to detect interaction between two
specific transitions such as excitons in semiconductors [52]
and transition lines in atomic vapors [53,54]. Note, however,
that for the system of interacting particles moving in a lat-
tice under consideration, the 2D spectra involves an infinite
number of transitions, and therefore might make an inter-
pretation of double quantum coherence signal much more
difficult. In this study we investigate the rephasing signal as
we concentrate on the effective coupling between transitions
induced by the quantum many-body interaction. The rephas-
ing or photon-echo signal is detected in the direction given
by the vector kr = −k1 + k2 + k3. The light-matter interac-
tions for the processes included in the rephasing signal are
illustrated by the double-sided Feynman diagram [Fig. 1(d)].
The corresponding rephasing third-order response function
R(3)

r (t1, t2, t3) can be expressed in terms of the Liouville-space
operators as [22]

R(3)
r (t1, t2, t3)

=
( i

h̄

)3

Tr{μ̂←G(t3)μ̂×
→G(t2)μ̂×

→G(t1)μ̂×
←ρ̂0}, (4)
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FIG. 2. Coherent 2D rephasing spectra of a system of noninteracting spin-1/2 fermionic particles with different lattice sizes. The number
of lattice sites is N = 2 in (a), N = 10 in (b), and N = 18 in (c). The spectral intensity is normalized by its maximum value and represented
by the color scale. The frequencies ω1 and ω3 are normalized by the hopping amplitude Jg between neighboring sites of particles moving in
the ground-state band. Here the origin of the 2D spectrum was shifted by the energy gap εeg between the ground-state and excited-state bands.
The diagonal axis ω3 = −ω1 is shown as a guide for the eye.

where ρ̂0 = |ψ0〉〈ψ0| is the density operator for the quantum
many-body ground state of the system, and the transition
dipole moment operators μ̂←/→ are given by

μ̂← =
N−1∑
j=0

∑
σ=↑,↓

μgeĉ†
g, j,σ ĉe, j,σ , (5)

μ̂→ =
N−1∑
j=0

∑
σ=↑,↓

μegĉ†
e, j,σ ĉg, j,σ . (6)

Here μeg is the transition dipole moment between the ground
and excited bands, namely the interband transition, and μge =
μ∗

eg [51]. The intraband transition was neglected as the laser
pulses are assumed to be far off resonant with that transition.
The superoperators in Liouville space are defined as μ̂×ρ̂ =
μ̂ρ̂ − ρ̂μ̂ and G(t )ρ̂ = e−iĤt/h̄ρ̂eiĤt/h̄, where Ĥ is the quan-
tum many-body Hamiltonian of the system given in Eq. (2).
A small dephasing rate κ is introduced to account for the
dephasing of the quantum coherence between the ground and
excited states during the time intervals t1 and t3. The coherent
2D rephasing spectrum is obtained by making a Fourier trans-
formation of the emitted signal S(t1, t2, t3) with respect to the
time intervals t1 and t3,

S(ω1, t2, ω3) =
∫ ∞

0
dt1

∫ ∞

0
dt3ei(ω1t1+ω3t3 )S(t1, t2, t3). (7)

In the following 2D spectra, the real part of S(ω1, t2, ω3) is
plotted as a function of −ω1 and ω3.

We first consider a system of noninteracting particles,
namely U = 0. The relative signs and magnitudes of the
hopping amplitudes Jg and Je for the ground-state and excited-
state bands depend on the details of the particle’s internal
states and the lattice potentials. For example, if the excited-
state band is the lowest-energy orbital for atoms in an
electronic excited state such as the 1S0 → 3P2 transition of
Yb atom [14], Jg and Je have the same sign. However, the
relative signs and magnitudes of Jg and Je do not qualitatively
change the conclusions of this work. Here the system’s param-
eters were considered as follows: Je/Jg = 2 and h̄κ/Jg = 0.01
corresponding to a dephasing time of the picosecond order
due to, for example, the electron-phonon coupling. The time
delay was set to t2 = 0. The coherent 2D rephasing spectra

for different lattice sizes are shown in Fig. 2. It is evident that
all the peaks lie on the diagonal axis ω3 = −ω1. The number
of peaks increases with the lattice size. In the thermodynamic
limit (N → ∞), the signal in the 2D spectrum is the segment
εeg − 2(Je − Jg) � h̄ω3 = −h̄ω1 � εeg of the diagonal axis.
Note that throughout this paper the origin of 2D spectrum
is shifted by the energy gap εeg between the ground-state
and excited-state bands, namely h̄ω̃1 = h̄ω1 + εeg and h̄ω̃3 =
h̄ω3 − εeg. Thus, the origin ω̃1 = ω̃3 = 0 of the 2D spectrum
corresponds to h̄ω3 = −h̄ω1 = εeg.

In the absence of interaction between particles, quasi-
momentum is a good quantum number. The single-particle
energy eigenstates in the ground and excited bands are char-
acterized by a wave vector k (within the Brillouin zone)
with the corresponding energy eigenvalues given by ε

g
k =

−2Jg cos(2πk/N ) and εe
k = εeg − 2Je cos(2πk/N ) with k =

−N/2, . . . , N/2. Owing to the conservation of momentum
in the light-matter interaction, optical transitions can only
occur between pairs of single-particle energy eigenstates in
the ground and excited bands with the same wave vector. As
these transitions are not coupled to one another, only diagonal
peaks appear in the coherent 2D rephasing spectrum. With the
half-filling factor, the quantum many-body ground state of the
system contains all the single-particle energy eigenstates of
Ĥg with the wave vectors −N/4 � k � N/4 (for Jg > 0). The
corresponding transition energy satisfies εeg − 2(Je − Jg) �
εe

k − ε
g
k � εeg.

Next, we consider a system of interacting particles, namely
U > 0 (repulsive interaction). As the computational cost in-
creases exponentially with the system size, we restrict the
computation to a small system of N = 2 lattice sites. The co-
herent 2D rephasing spectra for different interaction strengths
(normalized by the hopping amplitude Jg) are shown in Fig. 3.
The other parameters of the system are the same as in the case
of noninteracting particles. As the interparticle interaction
becomes stronger, an off-diagonal peak starts to emerge at
U/Jg � 5 in addition to the diagonal peak. The off-diagonal
peak persists up to an interaction of U/Jg � 100. Finally,
at the strongly interacting limit U/Jg � 1000, all the peaks
coalesce into a single diagonal peak at the origin of the 2D
spectrum. In the presence of the interparticle interaction, the
quantum many-body ground state cannot be expressed by a
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FIG. 3. Coherent 2D rephasing spectra of a system of interacting spin-1/2 fermionic particles with different interaction strengths. Here the
interaction strength U is normalized by the hopping amplitude Jg and the number of lattice sites is N = 2.

collection of single-particle states. Consequently, the optical
transitions become effectively coupled to one another, leading
to the emergence of off-diagonal peaks. In the strongly inter-
acting limit, the quantum many-body ground state is in the
Mott insulating phase with each lattice site being occupied
by exactly one particle. Similar to the noninteracting limit,
there is no entanglement between the particles in the limit
of Mott insulator as the total wave function is a product of
localized single-particle states. The optical excitation of each
particle occurs locally with an excitation energy equal to εeg.
This results in a single diagonal peak at the origin of the 2D
spectrum. In the thermodynamic limit (N → ∞) we conjec-
ture that as the interaction between particles gets stronger, the
signal in 2D spectrum expands away from the diagonal axis,
and finally at the Mott-insulator limit, it shrinks to a single
diagonal peak at the origin of the spectrum corresponding to
the energy gap between two bands. The expansion of the 2D
spectral signal away from the diagonal axis is a consequence
of the effective coupling between transitions with different
frequencies via the quantum many-body interaction. Since the
propagation of the coupling is done via the hopping of parti-
cles between lattice sites, the displacement of the signal from
the diagonal axis should be a function of both the interaction
and the hopping amplitude. The displacement vanishes in both
the weakly interacting limit U/Jg → 0 and the Mott-insulator
limit U/Jg → ∞, and in the thermodynamic limit, when U
and Jg are comparable in magnitude, the displacement is ex-
pected to have this order of magnitude. For electronic systems,
both the Coulomb interaction and the hopping amplitude are
of the order of an electron volt. For a system of ultracold
atoms in an artificial lattice, the hopping amplitude is of the

order of the recoil energy ER = h2/(8ma), where h is the
Planck’s constant, m is the mass of the atom, and a is the
lattice constant. For a nanoscale artificial lattice, the recoil
energy and in turn the hopping amplitude is of the order of
GHz. Such a GHz-order-of-magnitude displacement of the 2D
spectral signal from the diagonal axis can be well measured
with the currently attainable frequency resolution of 2D coher-
ent spectroscopy [55]. An investigation of the displacement
of 2D spectral signal from the diagonal axis as a function of
the ratio U/Jg would provide valuable information about the
metal-to-Mott-insulator phase transition.

Finally, we consider the case of a time-varying interaction
U (t ) and investigate the coherent 2D spectrum as a function
of the time delay t2. The study of dynamics in interacting
quantum many-body systems is of high importance in mod-
ern physics as much less is understood about nonequilibrium
than equilibrium properties. By making a time-dependent in-
teraction, the system can be prepared in a nonequilibrium
state and the ensuing dynamics can be studied. It is a highly
nontrivial and intriguing issue to investigate nonequilibrium
dynamics across a quantum phase transition such as the metal-
to-Mott-insulator transition where universal behaviors might
be observed [56]. In ultracold atomic systems, the interaction
strength can be varied by using, for example, the Feshbach
resonance technique [57], or the ratio U/Jg of the interaction
to the hopping amplitude can be varied by changing the depth
of the lattice potential. In electronic systems, the interaction
between electrons might be effectively manipulated by ap-
plying a pressure or by driving the system with a laser. If
the interaction is switched off abruptly at time τ after the
incidence of the first laser pulse, i.e., U (t ) = U0 for t � τ
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FIG. 4. Coherent 2D rephasing spectra of a system of interacting spin-1/2 fermionic particles as a function of the time delay t2 between the
second and third laser pulses. (a)–(c) The interaction strength is abruptly switched off from U/Jg = 10 to U = 0 at time τ = 100h̄/Jg. (d)–(f)
The interaction strength is switched off steadily over the time interval of τ .

and U (t ) = 0 for t > τ , the coherent 2D spectra for different
values of the time delay t2 are shown in Figs. 4(a)–4(c). Here
the initial interaction strength is U0/Jg = 10, the switching
time is τJg = 100h̄, and the other parameters of the system are
the same as in the case of a time-independent interaction. The
2D spectrum is observed to change from t2 = 0 to t2 = τ , and
subsequently, it remains almost unchanged. The 2D spectrum
at t2 = 0 shows the pair of a diagonal peak at h̄ω1 = −h̄ω3 �
1.4Jg and an off-diagonal peak at h̄ω1 � 1.4Jg, h̄ω3 � −1.6Jg

that also appear in the 2D spectrum for constant U = U0

[see Fig. 3(c)]. These peaks are, however, extended along the
diagonal direction of ω1 = ω3 to h̄ω3 = −2Jg, which is the
emission frequency for the single diagonal peak in the 2D
spectrum for constant U = 0 [see Fig. 3(a) for the 2D spec-
trum for constant U/Jg = 1 which is close to that for constant
U = 0]. The spectrum also contains a small diagonal peak at
h̄ω1 = −h̄ω3 = 2Jg, which is the peak in the 2D spectrum for
constant U = 0. The 2D spectrum changes with the variable
time delay. At t2 = τ it is composed of a small diagonal peak
at h̄ω1 = −h̄ω3 = 2Jg as at t2 = 0, an off-diagonal peak at
h̄ω1 � 1.4Jg, h̄ω3 = −2Jg, i.e., the same excitation frequency
as the peaks in the 2D spectrum for constant U = U0 and the
same emission frequency as the peak in the 2D spectrum for
constant U = 0, and a connection between them. Therefore,
the 2D spectrum as a function of the time delay t2 contains
information of the 2D spectra associated with the initial and
final values of the interaction as well as the time evolution in
between.

If the interaction is switched off steadily over a time pe-
riod of τ after the incidence of the first laser pulse, i.e.,
U (t ) = U0(1 − t/τ ) for t � τ and U (t ) = 0 for t > τ , the

coherent 2D spectra for different time delays are shown in
Figs. 4(d)–4(f). A fringe pattern emerges in the 2D spectrum,
which should be attributed to the continuous time variation
of the interaction strength. The spectrum changes gradually
with a variable time delay. At t2 = τ , it consists of an array of
peaks distributed on the segment between h̄ω1 � 1.4Jg and
h̄ω1 = 2Jg, i.e., the excitation frequencies of the peaks in
the 2D spectra for constant U = U0 and for constant U = 0,
respectively, of the horizontal line h̄ω3 = −2Jg, i.e., the emis-
sion frequency of the peak in the 2D spectrum for constant
U = 0.

III. CONCLUSION

We investigated the coherent 2D spectrum of an interacting
quantum many-body system of spin-1/2 fermions moving
in a lattice, for example, electronic and ultracold atomic
systems. In the weakly interacting limit, the 2D rephas-
ing spectrum manifests itself as a segment on the diagonal
axis because different optical transitions are not coupled to
one another. In contrast, if the interaction between particles
is sufficiently strong, the signal of 2D spectrum expands
away from the diagonal axis, which can be used as a di-
rect probe of a non-negligible interaction. It is attributed to
the fact that different optical transitions can be effectively
coupled to one another in the presence of interparticle interac-
tion. Notably, effective coupling is induced by the quantum
many-body interaction between particles as opposed to the
conventional coherent coupling between two transitions at
the level of single-body physics. As the interaction strength
is increased further, when the system approaches the Mott
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insulating phase in the strongly interacting limit, the 2D
spectrum shrinks to a single diagonal peak at the origin of
the spectrum, i.e., at the transition frequency between the
ground-state and excited-state energy bands. Moreover, when
the interaction is time dependent, the information of its time
variation can be obtained from the evolution of the coherent
2D spectrum as a function of the time delay between the
second and third pulses. The results of this study demon-
strate the potential of coherent multidimensional spectroscopy
for studying quantum many-body interactions and ultrafast
dynamics in various kinds of strongly correlated systems.
Another advantage of using ultrafast 2D spectroscopy to study
coherent quantum many-body interactions is that the effects
of incoherent processes occurring at longer timescales can be

separated. A quantitative characterization of the metal-Mott-
insulator phase transition point by the coherent 2D spectrum
is, however, still an interesting open question, which requires
a numerical or experimental study of a large-size system of
interacting particles.
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