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Foreword 

In 1981, an exchange program of mathematicians started between 
Japan and the Philippines under the auspices of JSPS and NSDB. (Later 
NSDB was reorganized as DOST.) In 1987, Sophia University became the 
Japanese core university to coordinate the JSPS-DOST exchange pro­
gram in breeder sciences, that is, mathematics, physics, chemistry, and 
molecular biology. 

Under this exchange program, about forty Japanese mathematicians 
have visited the Philippines and almost the same number of the Filipino 
mathematicians have come to Japan to conduct joint researches in sev­
eral branches of mathematics. During these visits, several introductory 
lectures were given by Japanese specialists. We were asked to consider 
the possibility to collect and publish these lectures because they would 
be profitable for new students to acquire a general idea of mathematics 
research and for new lecturers to help to prepare for introductory lectures. 

Now to respond these suggestions, we decided to publish the series 
"JSPS - DOST Lecture Notes in Mathematics". This is the first volume 
of this series consisting of two parts written by Professor T. Hirai and 
Professor N. Tatsuuma. We are grateful for their careful preparation of 
the manuscript in spite of our early deadline. We are sure this lecture 
note will serve as a good introduction for those students who want to 
study the representation theory of groups. 

Sophia University, Tokyo 
March 1994 

M. Morimoto and K. Shinoda 



Contents 

Part I. Takeshi Hirai, Atomosphere in the theory of group 
representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Part II. Nobuhiko Tatsuuma, General theory of unitary 
representation of locally compact groups ................ 35 



Part I 
Atmosphere in the theory of group representations 

PREFACE 

Here is a note of my introductory lectures on the theory 

of group representations, which were given at Dept. of Math. 

Fae. of Sci. Kyoto Univ. on the occasion of three mouthes stay 

of Prof. T. Rapanut from Univ. of the Philippines (=UP) College 

Baguio. At that tima I had only a handwritten manuscript for 

myself, but later I typed it out and added several pages to give 

some fundamental definitions, so as to distribute its copies to 

the participants of the summer school for mathematics teachers 

of high schools held at our Department on 1988. 

In 1989, when I visited UP one month under the DOST program, 

I delivered its copies to Prof. Rapanut herself and to my host 

scientist Prof. R. Felix, to whom I express my hearty thanks to 

their warm hospitality on that occasion. 

Takeshi HIRAI 

February 17, 1994 
in Kyoto 
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Atmosphere in the theory of group representations 

invariant differential operators and representations of 

the Lorentz group and the three dimensional rotation group ---

By Takeshi HIRAI (Kyoto University) 

1988.6 (added on July 20) 

The subjects of research which can be included under the name 

of "theory of group representations'', are very diverse. I would 

like explain how the theory comes into naturally in our sight. 

§1. How and why do we arrive to the theory of group represent­

ations? 

== A group G is a totality of actions on an object, satisfy­

ing certain conditions. 

This action gives us linear representations of the group by 

several kinds of linearizations. 

(I) First linearization. Let X be an object on which G 

acts. Consider 

1) a vector space of functions on X, or more generally 

2) a vector space of certain sections of a vector bundle on X 

such as tangent bundle, cotangent bundle or induced bundles. 

Example 1 .. A group G acts on G itself from the left and 

also from the right: for g E G, 

1 
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G ~ h ~-+ gh E G (resp. -1 G ~ h ~-+ hg E G) . 

We take as spaces of functions on G, Lp(G, dilg), Lp(G, drg) (p = 

1, 2), C(G) etc. Here dilg (resp. drg) denotes a left (resp. 

right) invariant measure (= Haar measure) on G, and C(G) denotes 

the space of all continuous functions on G. 

(II) Second linearization. This appears as a linear approxim­

ation of a non-linear object on which G acts. 

Here are some leading ideas for the theory of group represent-

ations. 

(1°) In case of a finite group, almost all things about G is 

already contained in the (right) regular representation (Rg, 

L2 (G)), where 

(Rgf) (h) = f(hg) 2 (g, h E G, f E L (G)). 

(2°) In general case, many informations about the object X 

are contained in or absorbed into the representations constructed 

in (I), (II), if G acts on X transitively preserving the 

structure of X. For instance, this is the case if X is a 

manifold with some structure such as Riemannian or Hermitian 

symmetric, and every element g E G preserves the manifold struct-

ure. 

2 



5 

Example 2. Let X be a complete Riemannian manifold with 

constant negative curvature, G the motion group of X. Then the 

geodesic flow on X is realized on a space of spherical tangent 

bundle on X by an action of a one-parameter subgroup {gt; -ro < t 

< ro} in G. Some important properties such as spectral type 

(actually countable Lebesgue), ergodicity and mixing property can 

be treated using group representation theory for G. For the case 

dim X = 2, see [3]. 

== Such vague ideas or intensions as those stated above, are 

the fundamental sentiment of our group-representation-people. 

Thus stated our sentiment, the core of our reseaches in the 

theory of group representations are: 

1) Construction of irreducible (unitary) representations and 

classification of them. 

2) To construct or find interesting representations relating 

also with another or other branches of mathmatics or physics. To 

study their mutual relations such as intertwining relations (or 

intertwinig operators), decomposition into irreducibles, mutual 

imbeddings etc. 

On the other hand, the range of the theory of group represent-

ations is still diverging. 

subjects of my reseach are: 

For instance, for myself, current 

1) Construction of irreducible unitary representations (= 

IURs) of certain infinite discrete groups, such as the infinite 

3 
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permutation group 

groups. 

S , the infinite wreath products of finite 
0:, 

2) Classification and construction of IURs of Lie super­

algebras (with H.Furutsu). 

3) Ergodicity of product measures under S (with N.Obata). 
0:, 

Further, even just surrounding me, many people, N.Tatsuuma, 

T.Nomura, H.Yamashita and so on are working in different 

directions, Other people graduated here are working also on the 

following subjects: 

== Kac-Moody groups (their construction and their linear 

representations), 

-- IURs of Chevalley groups over a local field or a finite 

field, 

Relations with number theory. 

§2. Invariant differential operators (first part). 

2.1. Vibration of~ string. Let us consider a string extended 

from x = 0 to x = ~- Let p(x) be the density of the string, 

µ(x) that of tension, and f(x,t) that of outer force at the time 

t. Then we know in [1, Chap.IV, §10] that the equation for the 

vibration u(x,t) of the string is given by 

( 2. 1) putt - µu + f(x,t) = O. xx 

Consider the case where the force 

constant, then the Eq,(2.1) turns out to 

4 

f = 0 and µ/p 
2 = C l 



( 2. 2) u xx 

7 

2 
: C Utt• 

Note that this equation is invariant under translations of the 

variables x and t. Putting c = 1, we look for a solution of 

the form u(x,t) = v(x)g(t), then 

v"(x) g(t) 
= = -A (put). 

v(x) g(t) 

We see that A. should be constant and get 

( 2. 3) v"(x) + Av(x) = O, g(t) + Ag(t) = O. 

In case of fixed ends v(O) = v(n) = O, we get eigenvalues /4 = 1, 

2 2 , •.. , n 2 , .•• , and a general solution u(x,t) of the Eq. (2.2) 

·has a formal expansion as 

u(x,t) = 2 sin nx 
n 

(a , b constants). 
n n 

We can discuss the convergence of this expansion if necessary. 

2.2. Vibration of~ membrane. Now consider a membrane on a 

domain in (x,y). Let p(x,y), µ(x,y) and f(x,y,t) be similar 

5 
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as above. Then the vibration u(x,y,t) of the menbrane is contro­

lled by the equation 

µ•Au - putt= f(x,y,t), 

where A = 
82 82 
--2 + --2· Consider the case f = 0 and p/µ 2 = C ' 
ax ay 

constant, then we get 

( 2. 4) 2 
= C Utt• 

Note that this equation is invariant under translation of 

variables (x,y,t) and moreover invariant under rotations of 

variables (x,y). 

Consider a membrane on the unit disk, Introduce the polar co-

ordinates (r,0): x = r sin 0, y = r cos 0 (O~ral, Oa0~2n), then 

A = 
2 

8 
--2 + 
ar 

1 a 

r ar 

1 
+2 

r 

82 
-2· 
80 

Consider a solution of the form u = v(r,0)g(t), then we have 

similar equations as (2.3) with eigenvalues .:t.: 

( 2. 5) Av+ .:t.v = 0, 2.. 0 Cg+ ).g = • 

Note that the 1st equation is invariant under Euclidean motion 

6 



group of the (x,y)-plane. 

Further look for a solution of the form v(r,0) = f(r)h(0), 

then for an integer n 

h(0) = a cos n0 + b sin n0, 

r 2 f" + rf' + (r 2~ - n 2 )f = O. 

For the last equation, put y = f, ~ = kr with k2 = A, then we 

get the Bessel's equation 

+ ( 1 -

2 
n 
-)y = o. 
~2 

9 

SUDUDary for §§2.1-2.2. In the fundamental solutions given 

above, there appea~ functions sin nx, sin nt, cos nt, f(r)sin n0, 

f(r)cos n0 with Bessel's function f(r). These phenomena are not 

accidental but have intimate relation with irreducible unitary 

representations (= IURs) of groups which make the corresponding 

equations invariant. These special functions are essentially 

matrix elements of IURs of respective groups, or more exactly their 

real or complex parts. 

§3. Invariance of differential operators (2nd part). 

3.1. Case of linear transformation groups. 

Let a group G act on X = Rn as linear transformations: for 

7 
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(gx)i = :?: g . . x. 
l~j~n iJ J 

(1:ii~n). 

Take a function space f on X, e.g., f = C~(X), and put 

( 3. 1 ) 

Then e denotes the 

identity element in G, and I the identity operator. Thus the 

correspondence G ~ g ~- Lg' gives a linear representation of G 

on F. As we see visually the transformation Lg on f is 

naturally induced from the action of g on the base space X on 

which the function f grows like a forest on the earth. 

( 3. 2) 

Now consider a constant coefficient differential operator D = 

... ' .2._) then as a change of variables we have ax ' n 

-1 
(D(Lgf))(x) = D(f(g x)) 

= [ p ( ( ~y , ~y ' 
1 2 

..• ' -) g ) f ( y)] 1 . a -1 I 
3Yn y=g- x 

Proof, Put = -1 y g x, then x = gy and 
axi 
ayj = gij' Hence we 

get in the form of matrix multiplication 

8 



(~y, ~y' 
1 2 

• • • , ~v ) = 
·n (~x ' :x ' 1 2 

. . . ' Q.E.D . 

Let us introduce the definition of invariance under g, 

11 

Definition 3,2, A differential operator D on X is said to 

be invariant under a transformation g on X if D commutes with 

the transformation Lg on the function space F. 

Then we get from (3.2) the following 

Theorem 3.3. Let D be a constant coefficient differential 

operator D = P( 8 8 a ) ::;--,-:;---, ··•,-:;---x with a polynomial P, Then D 
oXl oXz O•n 

is invariant under G if and only if the polynomial P is 

invariant in the sense that 

(g E G), 

that is, P is invariant under changes of variables t -1 X ,...._ g X 

for any g E G. 

3.2, Case of vector valued functions on K· 

Let W be a G-module, that is, we are given a representation 

G ~ g - Tg E X(W) = {all continuous linear operators on W} : T = 
e 

I, T Tg = T (g 1 , g 2 e G). Take a vector space f of W-valued gl 2 glg2 -

9 
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functions f on X. We define an action of G on it by 

( 3. 3) (g E G), 

This definition of G-action is very natural as you can see from 

the picture below in the case of G = S0(3), 3-dimensional ratation 

group acting on the 2-dimensional unit sphere X = s2 c R3 , and W 

= R3 on which G acts naturally (in this example, X is no longer 

equal to the total space R3 ). ~~ 

~V=~1l 

We can verify easily 

The action U on F is nothing but the tensor product of two 

G-modules ( T, W) and (L, f), where -1 
Lgf'(x) = f(g x) ( g E G) 

as in the case of usual scalar valued functions. 

Let us now consider a system of first order homogeneous 

equations on f E F: 

( 3. 4) Df = 0, with D = Ll _a_+ L2 _a_+ ... + Ln _a_+~. 
axl 8Xz axn 

where L1 , L2 , ... , Ln are constant matrices of type N x N, N = 

10 



13 

dim W, and x is a constant. 

We define the invariance of differential operator D under g 

E G by DoL = L oD g g and then the invariance of the system of 

equations (3.4) by the invariance of D itself when X :;!: Q, The 

case x = O should be treated more carefully. 

Let us write down~ necessary and sufficient condition for D 

to be invariant under G, 

following 

Calculating 

Theorem 3.4. A differential operator D = 

... + L 2-- + X is n axn 
invariant under G 

= L. 
l. 

(1 ~ i ~ n, 

if and 

g E G). 

Ll 2-- + ax 1 

only if 

Proof. This follows from the fact that for y = gx, 

Q.E.D. 

§4. Max~ell's equation for electromagnetic field. 

L2 2-- + 
8Xz 

4. 1. Maxwell's equation in ~ vacuum and its invariance. 

An electromagnetic field on the Minkowski space X = R4 = 

{(x,y,z,t)} of space-time is given by a pair (V(x,y,z,t), 

A(x,y,z,t)) of scalar field V and a vector potential A, where 

A is an R3-valued function on X: A= t(A, A, A), denoting by 
X y Z 

t 
( ... ) the transpose of a matrix or a numerical vector. Then the 

11 
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Maxwell's equation in a vacuum of the eletromagnetic field is given 

as follows. Assume an additional condition as 

( 4. 1) where div A = aAx + aAY + aAz 
ax ay az 

Then the Maxwell's equation in the case Pm= 0, Jm = 0, is given 

by 

( 4. 2) 

with 

ov = - Poleo• 

32 
0 = ~ - i::oµo•--2 = 

at 

32 32 32 
~=--2+--2+--2 

ax ay az 

1 2 
a 

(d'Alembertian), 

(Laplacian in (x,y,z)), 

Here pm(·), Jm(·) denote respectively magnetic density and 

magnetrocurrent density, i:: 0 , µ 0 are constants with i:: 0µ 0 = 1/c2 

(called permitivity and permiability respectively), Po and J 0 

denote respectively electric density and electric current density. 

Further, in the static case where V, Po and J 0 do not depend on 

t, we have the following equation: 

( 4. 3) 

Introduce the polar co-ordinates (r,0,~) as 

12 
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x = r sin 0·cos 't', y = r sin 0·sin 't', z = r cos 0, 

then 6 is written as 

1 8 z 8 1 
( 4. 4) 6 = 2·-(r ·-) + 2° 6 2' 

r ar ar r S 

1 1 2 
a a a 

with 6 
s2 = ·-(sin 0·-) + . 2 ·--2· 

sin 0 ae ae sin 0 a,p 

The differential operator 6 2 is equal to a constant multiple of 
s 

the Laplace operator on the unit sphere s2 in ~ 3 considered as 

a Riemannian manifold with the metric d02 + sin20-d<p2 Note·that 

on 

Now consider functions on X with values in a 4-dimensional 

vector space 

covariantly: 

on which the Lorentz group r 4 

t 1 t a 2 (A, A, A, -V) = (A 1 , A2 , A3 , A4 ), 
X y Z C 

j - t(JOx' JOy' JOz' Cpo). 

acts 

Then the equations (4.2) and (4.1) are rewritten respectively as 

13 
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oa = µoj, 
( 4. 5 ) 

(~X I 
a a .2...-)a 

4 aAi 
ax ' --, - ~ = 0' 

1 2 8X3 ax4 i=l axi 

where (x 1 ,x 2 ,x3 ,x4 ) = (x,y,z,ct). 

The Lorentz group r 4 is defined as a connected component of 

the identity element of the group of 4x4 ma trices g = ( g .. } l!S: • .!5: 4 lJ _l,J_ 
2 2 2 2 --leaving the Minkowski's quadratic form dx 1 + dx 2 + dx 3 - dx 4 

dx 2 + dy 2 + dz 2 - c 2dt 2 invariant. Denote by r 31 the diagonal 

matrix diag(l,1,1,-1) with diagonal elements 1, 1, 1, -1. Put 

( 4. 6) S0(3,1) 

and denotes its connected components of the identity by so0 (3,l). 

Then X4 = S00 (3,1). The actions of g t 
E X4 on p = (xl,xz, 

X3,X4) E X and also on w = 
t 

(wl,Wz1W31W4) E wl are given respec-

tively by p - gp and w 
.... _ 

T w - gw. The action on a and 
g 

j of g E r 4 is given as in (3,3) by 

We assert that the equation (4.5) is invariant (or rather 

better to say covariant) under r 4 in the following sense. 

(1) For the first equation, the differential operator D is 

itself invariant under r 4 , because 

14 
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• = + --2 + --2 - --2 
axz ax3 ax4 

and 

Therefore, under the action of g E r 4 , we get 

on the left hand side of the equation, whereas Ugj on the right 

hand side. They are consistent with each other. 

(2) For the second equation, take for instance the spaces 

F = C00 (X) - {C00-functions on X}, 

F 1 = Wl®RF - {W 1-valued C00-functions on X}, 

and consider a map from F 1 ~o F as 

D: 

On the spaces and F, we have the representations and 

of r 4 . The map D intertwines them, that is, 

(g E G), 

because the first order differential operators are transformed 

15 
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-1 contravariantly to Tg under p 
... _ 

g p. We call this property 

the invariance of the second equation Da = 0 in (4.5). 

We remark here that the operator ug on Fl = Wl®RF is the 

tensor product of T 
g on Wl and Lg on F, so that the represe-

ntation u is nothing but the tensor product of T and L. 

4.~. Application of representations of the rotation group to 

solve the Maxwell's equation. 

Lut us consider the Maxwell's equation (4.3) in the static 

case. The equation on A is reduced to two equations, inhomogene­

ous one ~ithout time parameter t and homogeneous one: 

3 aAi 
( 4. 7) M = fo, div A - ~ :: o, 

i=l ax. 
1 

( 4, 8) DA = 0' div A :: o, 

where w0-valued function, w0 
3 :: . R , and 

A :: A(x,y,z) :: t 1 2 3 (A (x,y,z), A (x,y,z), A (x,y,z)). 

Further, introducing complex valued 

functions, we consider a solution of (4.8) of the form 

A(x,y,z,t) ikct = A(x,y,z) ·e 

then (4,8) turns out to 

with A(x,y,z) as above, 

16 
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( 4. 9) div A= 0. 

Now let us consider The Eq.(4.9). The 3-dimensional rotation 

group SO(3) is defined as 

SO(3) = {h = (h .. ) 1.s:. ·.s:3 ; hI th= 
1J _1 'J_ 3 

det h = 1} ' 

where r 3 denotes the identity matrix of degree 3, An element h 

e SO(3) acts on A by 

0 -1 3 (UhA)(q) = h(A(h q)), q e R. 

The Eq,(4,9) is rotation-invariant in the sense that 

Denote by S(k) the space of all the solutions of (4.9). 

Then it follows from the invariance above that S(k) is invariant 

under SO(3), that is, if A e S(k), then UOA E S(k) 
h too. 

On the other hand, the differential equation (6 + k 2 )A = O, 

is elliptic and therefore every A e S(k) is real analytic. 

Introduce a scalar product in S(k) as 

<A' B> = I J ... 2 wES 

3 
(2 
i=l 

i i A {c,J)B (c,J)} dc,J, A, BE S(k), 

17 
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where dw denotes an SO(3)-invariant measure on s2 : dw = 

const•sin 0 d0 d~ in the polar co-ordinates w = (0,~), r = 1. 

Then S(k) becomes a pre-Hilbert space and the operators 

unitary in the sense that 

<U~A, U~B> = <A, B>, A, BE S(k). 

uo 
h are 

We can decompose this unitary representation u0 on S(k) of 

SO(3) into an orthogonal direct sum of irreducible ones (actually 

the space S(k) is known to be complete). Knowing these facts, we 

can make elements of irreducible representations in S(k) of 

SO(3) play the role of fundamental solutions of the equation, like 

sin nx, sin n0•f(r) etc. in §2. Any solution can be expanded as a 

linear combination of these fundamental solutions. We see in [2, 

§8) that, using a moving frame for the bundle space w0 at each 

point q E R3 and also matrix elements of irreducible unitary 

representations of the group SO(3), the separation of variables 

can be achieved as in §2. Thus the problem is essentially reduced 

to solve ordinary differential equations in the variable r. This 

is the advantage of the "invariant" method using representation 

theory of SO(3). 

We can apply also the "invariant" method to the inhomogeneous 

equation (4,7). 

Remark 4.1. We may also utilize the 3-dimensional Euclidean 

18 
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motion group M3' since the Eq. ( 4 . 9 ) is also invariant under M3. 

Here M3 is defined as the group of transformations on R3 given 

by (h,qo) E S0(3) I>< R3 as 

and the action of (h,q0 ) on A is given by 

-1 
h ( A ( ( h, q 0 ) q) ) , 

Utilization of representations of M3 is rather delicate because 

M3 is no longer compact contrary to S0(3). 

§5. Irreducible representations of the rotation group. 

Since the present text becomes already sufficiently long, I 

should content myself with referring a classical paper [2] or a 

good text book [4] for this subject. 

Added on Julv £Q_. 

by the above sentence. 

=== The earlier version of this text ended 

However a friend of mine recomended me to 

write down some explicit informations about the subject of this 

section. So I add here the least minimum. === 
5.1. Covering map from SU(2) onto S0(3). 

The 3-dimensional rotation group S0(3) has SU(2) as its 

(two-fold) covering group. A covering map ~, which is a group 

homomorphism, from SU(2) onto S0(3) is given as follows. 

19 
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We make SL(2,C) act on the complex plane as a group of 

fractional linear trnasformations: for g =(~ 1)E SL(2,C), 

( 5. 1) c,,t; .... --+t;' = EC. 

We denote t;' by gt;, then (gh)~ = g(h~) (g, h E SL(2,C)) as is 

easily proved. To be more precise, we should take the projective 

complex plane P 1 (C) =CU{=}, since the denominator ~t; + J may 

become zero. The identity transformation t; ,__ t;, is realized by 

two matrices r 2 = (~ ~) and -r 2 . Note that an element g of 

the subgroup SU(2) of SL(2,C) is of the form 

( 5. 2) g -( 0< /3] (i.e.,~= -13, J = a) with 
- -/3 .; 

Now consider a stereographic projection from the unit sphere 

( 5. 3) 

onto CU {oo} given by 

( 5. 4) 
X + iy 

t; = ~ + i7 = 2·---
1 - z 

1 + z 
(= 2·--­

x - iy 

20 

( i = ✓=T). 
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p = [~) 

M 

Then we can prove by calculations that a fractional linear transfo-

rmation in ( 5. 1 ) coming from d in ( 5. 2) corresponds to a rotation 0 

7t ( g) on the sphere and naturally that on the whole space R3. For 

example, 

= [ e:y/2 
e ~iy/2] [ cos 'P -sin 'P 0 ], for d n(g) = g3('f) = si~ 'P cos 'P 0 0 

0 1 

[ cos 
e isin 0] {~ 0 0 

: ]. 2 ~ , 
for g 

- isin e n(g) = g 1 (0) cos e -sin 
2 cos 

sin e cos 

A general form of n(g) for d in ( 5. 2) is given by 0 

[ 
1 2 2 -2 -2 ½ ( ,/ + ,8 2 -.; 2 _ /3 2 ) 

J 
z(oc -j:I +oc -j:I ) -oc,8-oc,8 

n(g) i 2 2 -2 -2 ½(,}+,a2+.;2+/32) i ( oc,8-;/3 ) = 2 ( -oc +j:1 +oc -j:I ) 

oc,8 +ocj:I i ( oc/3-.;f:l ) oc.;-j:113 

As a conclusion, the kernel of n, Ker(n), is given as Ker(n) 

21 
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= {±I 2 }, and therefore SU(2)/{±I 2 } ~ SO(3) through n, 

5.2. Euler angles. A rotation expressed by the matrix g 3 (y) 

(resp. g 1 (0)) is the rotation of angle y (resp. 0) arround 

the z-axis (resp. x-axis). Any rotation g' E SO(3) is expressed 

The angles (y 1 ,e,y2 ) are called the Euler angles of the rotation 

g', and by (5.5) we can introduce on SO(3) global co-ordinates 

valid except a set of lower dimension. The decomposition (5.5) can 

be proved by purchasing movements of a unit tangent vector on the 

sphere under g' and also under the right hand side of (5.5). 

The decomposition corresponding to (5.5) of g E SU(2) in 

(5.2) is given by 

( 5. 6) 

with v(0) 
isin 

cos 
0] 2 
A . 
2 

Recall that n(u(y)) = g 3 (-,,), n(v(0)) = g 1 (0). Here (T 1 ,0,'Pz-> is 

determined by 

lc,d, sin 

arg (od, 

22 
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5.3. Irreducible representations of SL(2,C). 

Finite-dimensional and holomorphic irreducible representations 

of the group SL(2,C) are parametrized, up to equivalence, by non­

negative half integers .Q. E (1/2)Z~0 = (0, 1/2, 1, 3/2, ... }. 

(Note that this group has many infinite-dimensional irreducible 

representations by unitary operators on Hilbert spaces.) 

A representation (T.Q., P.Q.) corresponding to a parameter .Q. 

is given as follows. Let P.Q. be the vector space over C consis­

ting of polynomials in ~ with complex coefficients of degree 2 

2.Q.. Then P.Q. has dimension 2.Q.+1 and a basis of it is given by 

p E Q.Q. - {p E (1/2)Z; -.Q.2pa.Q., .Q.-pEZ}. 

The operator 

formula: let 

( 5. 8) 

In particular, 

for g E SL(2,C) 

0(. /3 
't J 

Expanding the right hand side, we get 

or 

23 

is given by the following 

2 a (g)f • 
P .::Q pq p .. .Q. 
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Thus the linear transformation T.Q,(g) is expressed with respect to 

the basis by a (2.Q,+l)x(2.Q,+1) matrix 

( 5. 9) 

Note that -1 g = u ( -<p) for g = u(,p) and so 

Therefore the matrix (a (u(,p))) is a diagonal matrix with pq p,q 
diagonal elements eUl'f, ei(.Q,-l)'f, ... , e-i(Q.-l),p, e-i.Q,,p. 

5.4. Irreducible representations of SU(2) and those of 

so ( 3 ) • 

Restrict the representation (TQ., P.Q,) of SL(2,C) to its 

subgroup SU(2), then we see that it remains still irreducible. We 

denote this irreducible representation of SU(2) again by the same 

simbol TQ.. Any irreducible representation of SU(2) is finite­

dimensional (since SU(2) is compact) and is equivalent to TQ. 

for some .Q,. 

If Q. is an integer, then, for g' = -r 2 in the center of 

SU ( 2), we have TQ.(-I 2 ) = I' the identity operator on P.O.. If 

is not an integer, i.e., Q, = 1/2, 3/2, 5/2, ... , then T.Q.(-1 2 ) = 

Therefore, according as Q, is an integer or not, T.Q, of SU(2) 

gives a one-valued or a two-valued irreducible representation of 

S0(3) through n: SU(3) - S0(3) == SU(2)/{±I 2 ). They exhaust 

irreducible representations of S0(3) up to equivalence. 

24 
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5.5. Matrix lements of irreducible representations of SO(3). 

Now let Q 6 0 be an integer for simplicity and denote TQ 

by T~ when it is considered as a representation of SO(3): Til(g') 

= TQ(g) for g' = n(g), g E SU(2). Then the space PU contains 

f 0 (~) = ~U, which is invariant under g 3 (~) since Til(g 3 (y))f 0 = 

TU(u(~))f 0 = f 0 . Consider the matrix elements apq(g) as functio-

ns in g' = n(g), and denote it by a I ( g I ) • 
pq Then we get 

The function a~q(g 1 (0)) can be calculated explicitly and be 

expressed using Legendre's functions in the variable cos 0 or 

sine. In particular, 

where P1 is the Legendre's polynomial of degree Q: 

Finally we remark the following. Consider 

as a function in (0,~). Further consider (0,p) as the 
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co-ordinates of a point on the unit sphere s2 in 3 R, as in §4.1. 

Then all the functions Fp' p E QQ' give a complete system of 

linearly independent eigenfunctions with eigenvalue -Q(Q+l), 

for the invariant differential operator 6 2 in (4.4), Laplacian 
s 

on 

6 2(F) = -Q(Q+l)·F or {6 2 + Q(Q+l)}F = 0 
s s 

( F E c<•> ( S 2 ) ) • 
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Appendix 1. Fundamental definitions. 

Here we give the exact definitions for some fundamental 

things. 

26 



29 

1. Definition of~ group. We call G a group if it is a set 

equipped with an operation G x G ~ (g,h) ~--+ gh E G which satisf­

ies the following axioms. 

(i) There holds the associative law: (gh)k = g(hk) (g, h, k 

E G). 

(ii) There exists an element e E G such that eg = ge = g 

for any g E G. 

(iii) For every g E G, there exists an element h E G such 

that hg = gh = e. 

The element e in (ii) is unique and called the identity 

element of G, and the element h for g in 

and called the inverse of g and denoted by 

(iii) 

-1 g 

is also unique 

2. Action of~ group. Let G be a group and X a set. Then 

we say that G acts on X if; for every g E G, there corresponds 

a transformation on X, denoted as x ~--+ gx (x EX), which satisf­

ies the following 

ex= x (e = the identity element of G), 
( Al. 1) 

(gh)x = g(hx) (g, h E G, X E X). 

3. Linear representation of~ group. 

Let W be a vector space over a scalar field K (= R or C). 

Assume that, for every g E G, there corresponds a linear transfor­

mation Tg on W which satisfies 

27 
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T = I 
e 

(the identity operator on W), 

(Al.2) 
(g,hEG), 

that is, G ~ g ~- Tg E GL(W), the group of all invertible linear 

transformations on W, is a group homomorphism. If W is a 

topological vector space, we usually assume every Tg is continuo­

us and also assume a certain continuity on the correspondence 

G ~ g ~- T E GL(W). We sometimes call W, equipped with T, a g 

G-module over K. 

We say (T, W) is irreducible if W has no non-trivial 

invariant subspace. 

4. Equivalence of two representations, tensor products. 

Let i (T, W. ), i = 1, 2, be two representations of a group G. 
1 

Then we say that they are mutually equivalent if there exists an 

invertible linear operator 

Tl with T2 , that is, A·Tl 
g 

The tensor product U = 

A of w1 onto w2 which intertwines 

= T!·A for g E G. 

T10T 2 of two representations T1 and 

T 2 is defined on the space W = w10KWZ by 

(g E G). 

5. Matrix groups (linear groups) and Lorentz groups. 

Let Imn be a diagonal matrix of type (m+n)x(m+n) with 

diagonal elements 1 ' 1 ' ••• J 1 (m-times), -1, -1, ... , -1 (n-times). 

Then the group O(m,n) and SO(m,n) are defined as follows: 
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(Al.3) 
O(m,n) = {g E GL(m+n,R); gimntg = Imn}, 

SO(m,n) = lg E O(m,n); det g = 1}, 

and so0 (m,n) denotes the connected component of the identity of 

SO(m,n). When n = O, we get orthogonal groups O(m) and SO(m). 

In (Al,3), GL(m+n,R) denotes the group of all (m+n)x(m+n) matric­

es with determinant* O, and so GL(m+n,R) ~ GL(Rm+n). 

The (homogeneous) Lorentz group is 0(3,1) and the proper 

Lorentz group r 4 is so0 (3,1). The inhomogeneous Lorentz group 

r 4 is the semidirect product of the linear group r 4 and the 

group R4 ~ the group of all the translations in the Minkowski 

The group r, 
4 acts on X as follows: for (g,q) E 

~---+ x' = gx + q EX. 

Let us represent x EX by a vector 

the above transformation is expressed in the matrix multiplication 

form as 

xl 

x2 
( g, q): X = X3 -

X4 
1 

where g = (g .. )is· ·s4 l.J _l,J_ 

x' 1 
Xz 

x' = xj 

X4 
1 

and 

29 

ql xl 

(gij) 
q2 x2 

= q3 X 3 
q X4 

0 0 0 0 1 l 

Denote by 
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T (g,q) 

T(g,q) 

the above 5x5 matrix, then the correspondence 

gives a faithful linear representation of r' 4 

Appendix 2. Actions of the symmetric groups. 

Let X = {1, 2, ... , n} and G = S be the group of all 
n n 

permutations on X , called n-th symmetric group: n 

( A2 . 1 ) ( Cf-C ) ( i ) = o(.::(i)) for Cf' -r: E s n' 

Every element o· E Sn is expressed by 

(er(~) 
2 3 

er(:))' o(2) o ( 3) 

i E X n 

and the product or of er, re Sn can be calculated using this 

expression. 

Now consider the vector space V consisting of all real-valued 
n 

functions on Xn. Then Vn ~ Rn by the correspondence ¢: Vn ~ ~ 

~- x = (x. >is·s E Rn with x. = ~(i) (i e X ). The linear 1 _1_n 1 n 

representation of 

on X is n 

( A2 • 2) 

s n on V 
n 

canonically induced from the action 

and through ¢, it is transformed on Rn as 

(A2.3) ( CfX) 1. = X 
o- 1 (i) 
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In this way, to an element O E Sn' there corresponds an nxn 

matrix 1t(o) in GL(n,R) given by 

-- { 01 ( A2 • 4 ) 1t ( o) = ( g i j ) , g i j 
l.'f . -1(') J = 0 l. ' 

otherwise. 

Thus S ~ o ~--4 1t(o) E GL(n,R) 
n 

is a matrix representation of s ' n 

and S acts on X = Rn by linear transformations. This action 
n 

on X induces in its turn a linear representation of S on each 
n 

(S -) invariant vector space F consisting functions on X = Rn. 
n 

For instance, take F = C(Rn), Cro(Rn), P(Rn) = the space of all 

polynomials on Rn, and so on. Then L0 on F, o E Sn' is given 

by 

• • • ' X ( ) ) ' o· n 

that is, L 
0 

is nothing but a permutation of the variables 

... ' X • n 

We call a function 

Denote by D = D(x 1 , x 2 , 

f svmmetric if L0 f = f for any o E Sn. 
n ... , xn) E P(R) the difference product: 

D = n ( X. - xJ. ) . 
l~i<j~n 1 

function f is called alternating if 

S . W.e know the following n 

31 

is the sign of o. A 

L f = sgn(o)f 
0 

for any o E 
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Theorem A2.1. (i) The space P(Rn) contains as its proper 

subspace a direct sum of the space of symmetric polynomials S(Rn) 

and that of alternating polynomials A(Rn). 

(ii) The space S(Rn) is generated freely by the following 

fundamental symmetric polynomials: for O ~ k ~ n, 

= ~ 

where the sum runs over all 1 ~ i 1 < i 2 < • , • < ik ~ n. 

(iii) Every element in A(Rn) is a product of D and a Q 

in S(Rn). 

We remark that the assertion (i) says that the representation 

(L, P(Rn)) contains the direct sum (1, S(Rn)) s (sgn, A(R) as 

its subrepresentation, where 1 denotes the trivial representation 

of S or its multiple. Moreover it is known that any other 
n 

irreducible representations are contained also in P(Rn) modulo 

equivalence. 
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Part II 

General theory of unitary representation of 
locally co•pact groups 

by Nobuhiko Tatsuu•a 

Preface 

This presentation is an introductory short communication for the 
theory of unitary representations of general locally compact groups 
and the duality theorem for such groups without proof. We start from 
the preliminary definitions about locally compact groups. 

The Pontryagin duality theorem for abelian locally compact groups 
and the Tannaka duality theorem for compact groups are famous, and 
have so many applications in wide fields. But there exists a theory 
which concludes these two duality theorems, duality theorem for 
genaral locally compact groups. This duality theorem shows that the 
so-called regular represantation has complete information of the base 
group. 
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General theory of unitary representations of 

locally compact groups 

N.Tatsuuma 

26th April 1988 

§0 Purpose of this talk 

Definition h G :locally compact group is a topological 

group(l) with compact(Z) neighborhood of the unit( 3 ) in G. 

(1) Topological ~roup is a group with topology under 

which the group operations are continuous, i.e. 

' -1 GxG 3(g 1 , g 2 ) • g 1 g 2 E G ; continuous. 

(2) We assume T2 ( i.e. Hausdorff) separating property 

for the definition of "compact". 

(3) By the group structure, this is equivalent to the 

existence of compact neighborhoods for any point in G. 

Definition h D={!i, Ug} ; uni tan, representation of G is 

a strong continuous homomorphism( 3 ) G3g • UgEU(!i) from G to the 

group U(!i) of all unitary operators on a Hilbert space(l) !i 

(1) !i; Hilbert space is a complete topological vector 

spacia)on the field of complex numbers (which is denoted by C) 

with inner product(b) < >. 

(a) Vector space with topology~ under which the operatio­

ns "addition+" and "scalar multiplication·" are continuous. 

Cx[xCx!i 3 (a;u,b,v) • a·u + b•v E !i: continuous. 

( b) < > is a positive sesqui-linear form. 

[x[3(u,v) • <u,v>EC such that <u,u> >O for all u(*O)E!i and 

~ is given by the norm UuU=(<u,u>) 112 ,and !i is complete. 

1 



(2) Put 

B([)s{A;bounded(i.e.continuous) linear operator on[}, 

U([)s{AEB([);AA*=A*A=I(identity operator) ,i.e. unitary}. 

A*: the conjugate of A defined by 

all u,vE [ 

* <A u,v> = <u, Av> for 

(3) The strong topology v on B([) is given by the family 

of seminorms { vu ; vu(·)= U·uH, u e [}. 

'.I._HE PURPOSE OF THIS TALK. Based on such definitions, to 

investigate properties of unitary representations of locally 

compact groups. 

§1. Properties of locally compact groups. 

a) HAAR MEASURE. 

Theorem(A.Weil). 1) For any locally compact group G 

there exists a right-invariant(Haar) measure µr. 

2) Right Haar measure is unique up to constant. 

3) There exists a continuous real positive character 

~G: G 3 g • ~G(g) ER+ ,i.e. 

~G(glg2) = ~G(g 1 )·~G(g 2 ) for all g 1 ,g 2e G and 

= ~G(g)µr(E) for all E : measurable set, g E G. 
-1 -1 dµr(g ) = ~G(g )dµr(g) becomes a left-invariant 

measure. 

definition. 

Hereafter we denote shortly 

Definition L G is unimodular when ~G = 1 

H ( c G) closed subgroup, X = H,a : factor space. 

Then X becomes a locally compact space under quotient 

2 
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topology. Denote G~g • n(g)=g=Hg EH,G=X (canonical map). 

Definltion i• µ on Xis quasi-invariant iff 

µ( •g)~(equivalent)µ(·) for all g E G. 

µ on Xis relative invariant iff 

3character Z on G, µ(•g) = Z(g)µ( ·) for all g E G. 

µ on Xis invariant iff µ( •g) = µ( ·) for all g E G. 

Theorem(A.Weil). 1) For all X = H,G, ~ . . . -quas1-1nvar1ant 

measureµ. 

2) All quasi-invariant measure on X are mutually equiva-

lent (with Raikov's proof). 

3) 3 Invariant measure on X iff ti.a(h) = ~H(h) for all he H. 

4) 3Relative invariant measure on X iff 

(~GIH)/~H extendable to a continuous character on G. 

Lemma(F.Bruhat). For any continuous real character X on 

H, there exists a continuous(C00 for Lie group) function~ s.t. 

~(hg) = X(h)~(gi for all hEH , geG. 

Proposition. 1) For the case of X(h) = (~H(h)/~G(h)), 

a measureµ on Xis given by the followings. 

µ(I)(= fx I(g) dµ(g)) = f 0 f(g)X(g) drg , 

here I(g) = fHf(hg) drh , 

for f eC0 (G): continuous functions with compact supports. 

2) µ is a quasi-invariant measure on X = H,G. 

(Caution!!) In the definition of Haar measure, the followi­

ng properties are important. 

1) It is a regular measure, defined on the Borel field 
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generated by all relatively compact open set in G. 

2) Every open measurable set has positive measure. 

3) Every compact set has finite measure. 

Example 1· For non d compact locally compact group G, if 

all open set in G is measurable , invariant regular measure 

does not exist. 

Example g__. Rd (discrete additive group), put 

µ 1 (E) = 0 (for countable set E), 

µ2(E) = #E. 

= oo (others). 

Then both are invariant zag }&z measures. 

Example 1, On R (ordinary additive group). Consider 

µ 2 : ordinary Lebesgue measure. 

Then both are invariant regular measures. 

Theorem(Y.Yamasaki). For infinite dimensional Hilbert 

space (additive group), no translation quasi-invariant measure 

exists. 

Theorem(Weil'~ inverse Theorem). Let G be a group, 

B Borel structure on G, s.t. 

-1 1) the map GxG~(g 1 ,g 2 ) • g 1 g 2 EG is B-measurable. 

2) the map GxG~(g 1 ,g 2 ) • (g 1g 2 ,g 2 )EGxG is 8 x B-measurable. 

If there exists a G-invariant measureµ on (G, B) then 

1) 3 G :a locally compact group which contains G densely. 

2) For ~;Haar measure on G, ~IG = c·µ, c : constant. 

b) STRUCTURAL THEOREM. 

Theorem(D.Montgomery ~ L.Zippin). For all connected 

4 
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locally compact group G and all neighborhood V of 

3 compact normal subgroup H c V s.t. G/H is a Lie group. 

{el {el 

Connected I Connected 
{el • Solvable->Connected• Semisimple• {el 

Lie Group Lie Group Lie Group 

Infinite 
Discrete 

Group 

Connected 
{el • Locally • 

Compact Group 

LOCALLY 
COMPACT 

GROUP 

Totally 
• Disconnected • {el 

Group 

Connected 
Compact 

Group 

Compact 
Proj( Lie ) 

Group 

{el 

Compact Totally 
Disconnected 

Group 

§2. Unitary Representation 

a) CONTINUITY. 

Pro. (Finite) 
J Group 

{el 

Only here, we consider non-unitary representations. 

Let Ebe a locally convex topologicai vector space, 

~x(E)={ A; bounded, inverse bounded operators on E}. 

Call a representation { E ,Ag} of G on E , 

G ~g • Ag E~x(E): weak continuous group homomorphism. 

e, 

Proposition.(See G.Warner : Harmonic Analysis on Semi 

Simple Lie Groups 1. (1972) Springer P.237 Prop4.2.2.1) 
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For G3g • AgE~x(E) group homomorphism on separable Banch 

space E. The following (1), (2),(3) are mutually equivalent. 

( 1 ) The map G X E3( g, V ) • Agv EE is continuous. 

( 2) For all VEE, the map G3 g • 

* ( 3 ) For all VEE, ,pEE (dual space 

G;.g • < A V g ' 'P > ec 

Analogously, we can obtain 

Proposition(no references). 

group homomorphism, assume that, 

is 

Agv EE is continuous. 

of E) ' the map 

continuous. 

1) Eis a reflexive locally convex topological vector space, 

* 2) for all veE, ,peE, G~g • < A1 v, 'P > EC is locally bounded 

and measurable, 

3) there exists a neighborhood V of e in G,s.t. for all ve E, 

Agv ; gEV} spans a separable subspace of E. 

Then for all v eE, the map G~ g • Agv eE is continuous . 

. (we call 2)+3) strongly measurable.) 

These properties come from same reason as the following 

famous fact, which shows the relation between the topology and 

Haar measure of G. 

Proposition. Put ~p(G)=( f; measurable function on G, 

s.t. llfll = f0 1f(g)lpdrg) 11P < oo }, (l~p<oo), 

( Precisely we must take equivalence classes "up to measure 

zero".) 

Consider the right translation, 

6 
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Then, for all f E rP(G), the map is 

continuous. 

Definition §_. (l;aip(co) is called 

regular representation of G. 

to the case p = 2. In this case 

Hereafter we restrict this word 

r 2 (G) is a Hilbert space. 

Example. As an example of non continuous unitary represe­

ntation, here we quate a "non-measurable'' character on R, ~hich 

is constructed using "Hamel basis". ( Precise discussion is 

omitted. 

2) COMPLETELY REDUCIBLE PROPERTY, IRREDUCIBILITY. 

Go back to unitary case, let D = ( [, Ug} be a unitary 

representation of G. 

Proposition. Let [ 1 be a G-invariant closed subspace 

in R i.e. for all g E G, 

Then Kii= {YE[; < v, u > = 0 

G-invariant, too. 

(Remark) This property comes from only the *-invariant 

property of the family of operators ( Ug; gEG }. 

Example. G = R ~ t • (~ ~) e M(C2 ) ( matrices on c2 

non-unitary representation. [ 1 = ( (i) ; ye C} is 

G-invariant, but [ 1 - XEC is not G-invariant. 

Definition~- D = ( [, Ug}; irreducible iff no 

G-invariant closed subspace in R exists except (0} and [. 

Definition 1, For a family {D ={H, uag}} of unitary 
a -a 

representations of G, we call ~Da=( ~[a 1~u:} 
a a a 
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the (discrete) direct sum of {D }'s. 
-- 0( 

Corollary. All finite dimensional unitary representations 

have irreducible decompositions. (In general, not unique ! ! , ) 

Definition 8. For D= ~D , D are called components of D. 
- 0( C( 

0( 

Example(~-dimensional case). G = T (!-dimensional torus) 

= ✓-::IR e - ; -;i: ( 0 ~ TC } • By Fourier expansion, 

g(regular representation) = L2 (T), Ra} = 2 e{C, eJ-TjB 
~ j=-<» 

(direct sum of !-dimensional i.e. irreducible unitary represe­

ntations of G.) 

Extending the notion of "direct sum", we can define 

"direct integral" or "continuous direct sum", 

Here ( xEX ) are unitary representations. 

I am sorry that precise discussions must be omitted, 

because there exist some complicated situations and many 

pa tho logical phenomena. And I quote here the NOMURA' s talk ( 'llot 

But we have to state, 

Theorem(S.Teleman). 

(1976) pp 465-486.) 

Rev. Roum. Math. pures et Appl. 

All D(unitary representation of G) is decomposed to 

a continuous direct sum of irreducible representations, 

( D : irreducible unitary representations of G. 
X 

Example. If vis a point mass, 

8 

45 



46 

[v] : support of v ), that is a discrete direct sum. 

Remark. Such a decomposition is not unique essentially. 

Example(H.Yoshizawa). For G=F2 (discrete free group with 

2-generators), there exist two irredusible decompositions, 

fxDx dv(x) = JyDy dr(y), 

for which D are not equivalent to D for all pairs ( x, y ). 
X y 

An important conclusion from the existence of irreducible 

decomposition of the regular representation~• is obtained. 

Theorem(I.M.Gelfand ~ A,Raikov). For any locally compact 

group G , there exist sufficiently many irreducible unitary 

representations. (cf. NOMURA's talk) 

Example(as a remark). Let Ds([, Tg} be a fixed unitary 

representation of G, 

(for all xEX) and 

(Hx~H) and consider 

X (X, µ) a measure space. Put Dx=(Hx,Tg}=D 

ri(fi,µ)([-valued r 2-functions)~f fixdµ(x) 

ug on it as ug=fx T; dµ(x). 

On the other hand, take a C.O.N.S. (~) 
(l( 

consider closed subspaces H - (v~ (x); ve[) in -oc (l( 

and 

Put 

D - { ~•lfglH } D, 
C< -C< 

fx DX dµ(x) - ? D 
(l( 

3) SCHUR'S LEMMA. 

Definition~- For 

tations) of G , AEB([1 , 

Then we get 

(l( ' 
symbolically fxn dµ(x) ~ ?n. 

D.s{H., Ugj) (j = 1,2)(unitary represen­
J -J 

[ 2 ) (bounded operators from [ 1 to [ 2 ) 

is an intertwining operator ( between D1 and D2 ) iff 

A·Ul = u2 -A for all g E G. g g 

Notation. I(D1 , b2 )s{A EB([1 , [ 2 ); intertwining operator 

9 



between D1 and D2}. 

Theorem(Schur•~ lemma). A unitary representation, D={fi,Ug} 

is irreducible iff I(D,D)={cI ; cEC}(scalar operator). 

Remark. 1) In this LEMMA, the assumption of "boundedness" 

of I(D,D) can be loosen to "closedness". 

2) This LEMMA depends only on the *-invariant property of 

Example. a b + 
G={g=( 0 l/a); aeR , bER}. Consider the 

nonunitary 2-dimensional representation 

a b 2 
D; g • ( 0 l/a) on C. 

Then I(D,D)={cI} , but Dis not irreducible. 
ttnutu.ciUt eiu i, wi~,,., t" 

two/\irreducible Corollary. Let D.= {H., Ugj} be 
J -J 

unitary 

representations of G. Then there exists unique surjective 

isometric operator u0 up to constant from rr1 to rr2 , such that 

~(D 1 ,D2 )={cU0 ~ ceC}. 

4) CONJUGATE REPRESENTATION. 

For instance, let D={li,Tg} be a finite dimensional unitary 

representation of G, {v .} . 1 C.O.N.S. (complete orthonormal 
J J= , .. ,n 

system) in li . Then Tg is represented by a matrix 

Tg= ( T .. ( g) ) . . = ( < T v. , v . > ) . .. 
1J i,J g 1 J i,J 

Consider a homomorphism: G3g • (T )-=(T~~(g)), 
g 1J 

("-"means complex conjugate). Then this map gives a unitary 

representation on the same space li, too. 

Example. 1) 
✓=It G=R3t • e EC. We take the conjugation 

-✓=It t • e • 

10 
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Then {C, e-J-It} is a I-dimensional representation. 

2) G=Rot(3) operates on R3 as rotations, we can extend 

it naturally 3 on C and get a unitary representation. This 

representation is obviously self-conjugate. 

Definition l0(G.W.Mackev'~ definition). The map 

!i( Hilbert space)3v • < ., v >EH*(dual as a Banach space) is 

conjugate linear, and the family of operators, 

* * (Ug ;!i 3( , 1 V > • < gives a unitary representa-

tion n*=<!i*, u*i g of G. 

W 11 D* . . f D e ca conJugate representation o . 

* * * [3v • v =< . , v>E!i , conjugation map. 

And the map 

Example, 1) On the regular representation R 

conjugation map is, * so, 

the 

2) For G = SL(2,R), for the representations in discrete 

series , + * -(Dn) ~ Dn. etc. 

§3 Tensor product. 

Example. !i1 ,!i2 : finite dimensional vector spaces. 

N 1 2 1 2 
(Form 1:lst version) [ 1@[2={~ v.®v.; v.EH 1 , v.EH 2 }. 

j=l J J J - J -

(Form 2: 2nd version) Take basis {u!} in [ 1 , {u!} in R2 

and dual basis (~!} in [~(i.e. < u!, ~!>=apq), Define a linear 
~1 2 ~1 * 

maps ~pq as up • uq, u1 • 0 (p~J) ih r([1 ,!i2 ). We connect the 

above two versions by the map, 

11 



In the case of c,,-dimensional Hilbert spaces !!1 , !!2 , we 

can define in the analogous way. 

Put 

This gives an inner product and defines ndrm tt· tt. Let !!10!!2 be 

the completion of !!1@ 0!!2 with respect to 11•11, 

(2nd version) Consider 

Al 2 Al 
Here 'Ppq: up • uq, un • 0 ( p ¢ n ), (Well-defined!!.) 

Obviously, rank 'Pp,q = 1, so for all cp E Image(H.10 0!!2 ), 

rank(,p)<=. This shows, as the completion of Image(tl_10!!2 ), 

(Hilbert-Schmidt.operators). 

Moreover all rank 1 operators are in Image([10!!2 ), so 
* , 

HS(!!1 ,!!2 )=Image([1@!!2 ) ! ! . This concludes that 

!!10!!2 ~ HS(!!~,tl.2 ), with the norm lfcpll = ( ~ lfcp(~P)lf 2 ) 11 2 . 
p 

( Independent of the choice of C. 0. N. S. ! ! . ) 

We define for A E 

1 2 
( A ® B) ( 2 V. ® V. ) 

j J J 

Lemma. For U .E 
J 

Definition 11· 

D. = (H. I 
uj } of 

J -J g 

B(!!1l1 BE 
. 1 = 2 ( Av.) ® 

j J 

B(!!2 ) (bounded operators), 

2 ( Bvj). (Well-defined ! ! . ) 

U( !!.) (unitary opera tors) , 

Ul® u2 E U(!!l® tl.2 ) 

For two un.i tary representations 

G. ( j = 1, 2 ) I we call 
J 

12 
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U~ ® u!} (unitary representation of G1@G 2 ), 
1 2 

the outer tensor product of D1 and D2 . 

Proposition. If D. are irreducible unitary representa­
J 

tions of Gj(j=l,2), then D 10D2 is irreducible. 

Example. Let G1=G 2 =G={Yoshizawa group}(i.e. discrete 

group with 2-generators). On R = r 2 (G), consider 

For G x G ~ {g 1 ,g 2 ), define a representation of G x G, 

r 2 (G)~f • Rg Lgfer2 (G). 
1 2 

This representation is irreducible, but not the form of 

outer tensor product of some representations of G. 

In general, we use the word "tensor product" for following 

"inner tensor product". 

Definition !_g_. D. ( j = 1,2 ) ; unitary representations 
J 

of the same group G. We call (inner) tensor product, the 

representation 

Here ~G = ((g, g)EGxG; gEG} (the diagonal group). 

Example. If D1 is irreuducible and D2 is I-dimensional 

representation of G. Then 0 1002 is irreducible. 

Proposition. D10D~:::JI(contains as a discrete component), 

if and only if 3 rinite dimensional mutually equivalent compone-

nts in both D1 , D2 • 

Corollary, If D2 is finite dimensional unitary representa­

tion, * [D1 , D2 )=[D10D2 , I). Here [D 1 ,D2 )= dim I[D1 ,D2 ). 

13 



§ 4 Induced representation 

H(cG): closed subgroup. Ds([, Th}: unitary representation of 

H. Fixµ : a quasi-invariant measure on X = H~G. Consider 

[- valued functions on G. 

H = (f; [-valued function on G. (1)(2)(3) holds}. 

( 1 ) for all hEH, gEG. 

(2) f ; strongly measurable. 

( 3 ) II f II = ( J x II f ( g ) 11 ~dµ ( ; ) ) l / 2 < <». 

~ 

His a Hilbert space with <f 1 ,r2 >-= fx<f 1 (g),f 2 (g)> 

1/2 

dµ( g). 

Operators (Ug f)(g) = w( g, g 1 ) f(gg 1 ),( w( g, g 1 ) 
1 

weight 

function forµ) gives a unitary representation of G 

Defionition li• IndG( (H, T } ) ----H------h-

We call 

induced from D) . 

this induced' representation (representation 

Example. 

Example. 

G For any representation D = IndG D. 

G 
~ (regular representation) = Ind{e}l. 

Here 1 shows the trivial representation of subgroup {el. 

Theorem(Step theorem). G J H1 J H2 : closed subgroups. 

D; unitary representation of H2 . Then 

Corollary. ~G 

Theorem. Let D.= 
J 

G 8 1 D _ IndH (Ind8 D). 
1 2 

G = IndH 
G 

IndH D. 
j J 

!!H 
of closed subgroups H.(j=l,2) of 

J 

G respectively. Assume H}G/H 2 is countably separated. Then 

14 
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Example. Put Hz= G 

G G = Ind{e}l®Dz = Ind{e}(l®Dzl {e}) = [dim D2 ]g . 
( Here we remark that l®Dz j {e} = "t9 . 1 ) , 

d11nD 

§5. Compact group. 

Many results in the representation theory of compact 

groups are considered as direct extensions of one of finite 

groups. This comes from the only reason that the function 

"constant 1'' is contained in r 2 (G), that is the same, the 

total mass of whole group is finite. 

We shall state here such results. 

Theorem. Any continuouse representation of a compact 

group by bounded operators on a Hilbert space, is equivalent to 

a unitary representation. 

Theorem. Any irreducible unitary representation of a 

compact group is finite dimensional. 

Theorem. 1 ) Any unitary representation of compact 

group is decomposed to a discrete direct sum of its irreducible 

components. 

2) (Orthogonal relations,) If we take a C.O.N,S. in 

representation spaces for each irreducible representations and 

represent these representation operators by unitary matrices 

as Ug(p) E (ufj(g))ij , then 

fa ui1(g) •uk~(g) drg = (o(p,d}·ot·o~)/dim(p). 

15 



Here J(p,d) =1 for p ~ d ,and =0 otherwise. 

Proposition. For a compact group, 

Proposition( Frobenius's reciprocity l, For irreducible 

representations w of G and p of closed subgroup Hof G, 

of G, 

Here [D, w] = dim I[D, w], 

Proposition. For three irreducible representations p,-r,d 

§6 

1 ) 

Max( [d0't',c,J], [-r0vJ 1 cr], [c,;©cr,-r]) a (dimer) (dimc-J)/(dim-r), 

Duality theorem for locally compact groups. 

ABELIAN GROUP A 

As { X ; continuous unitary character on A} 

i.e. X(a 1a 2 ) = X(a 1 )•X(a 2 ) for all a 1 ,a2 EA. 

IX(a)I s 1 for all a e A 

A becomes an abelian locally compact group, too, by 

(X 1 .x 2 )(a)s x1 (a)·X 2 (a) for all aEA (multiplication), X • x0 is 

uniborm convergence on any co~pact set in A (topology). 

We call this group A "The dual group of A" . 

Consider A =(the dual group of A}, then naturally, 

A~a • {a(X)s X(a)}(for all XeA) EA gives an imbedding. 

Theorem(L.Pontrjagin'~ duality). 

1) A= A as topological groups (by the above imbedding) . . 
2) For all B(CA) closed subgroup, put Bs {XeA; X(B)=l}, 

then the set {closed subgroup of A} corresponds to the set . 
{closed subgroup of A one to one way by B t--+- Band . 

B ~ A / B (B) ~A/ B . 

16 

53 



54 

2) COMPACT GROUP K. 

K={p;(equivalence class of) all irreducible repres. of K}. 

For all (p, o)E KxK, let p®o = -z:- 1e -z:- 2e ... e-z:-n ("t:jE K). 

K can be considered as a discrete space. 

K = (T=(T(p)}; operator field over K s.t .. (1)(2) hold}. 

(1) T(p) ; unitary matrix on the space of representation p. 

Then K becomes a compact group by 

T1 ·T2=(T 1 (p)·T2 (p)) for Tj={Tj(p)) (j= 1,2)(group operation). 

T • T0 iff T(p) • T0 (p) for all p€K (topology). 

Take an imbedding K? k • (k(p)(= Uk(p))} EK 

Theorem(T,Tannaka'~ duality theorem). 

K = K as topological groups (by the above imbedding). 

(Remark) The 1-1 corresponding between the sets 

(Normal subgroups Lin K} and {p EK;plL = l}(closed under 

tensor product and*) is easily shown. 

3) GENERALIZATION TO LOCALLY COMPACT GROUPS G. 

G = (p;(equivalent class of) irred. unitary repres. of G}, 

Consider irreducible decompositions of tensor pr~ducts, 

p,a,vJ EG ) • 

Here U is the operator of equivalence. 

On G, we can consider the "Mackey-Borel structure". Put 

G = (T =(T(p)}; operator field over G s.t.(1)(2)(3) hold} 

17 



(1) T(p) ; unitary operator on the space of p. 

(2) U(T(p)®T(o))U-l = fa T(w) dv(w) 

for all pairs p,a EG, and all irreducible decompositions. 

(3) {T(p)} :Mackey-Borel measurable. (Precise definition 

is omitted.) 

Consider a structure of topological group on G, 

T1 •T2={T 1 (p)·T2 (p)} for Tj= {Tj(p)}(j=l,2).(multiplication) 

The topology "comes from the weak topology on R''. (omitted) 

We can give an imbeddig , G ~ g • Ug _ 

THEOREM(duality for locally compact group). 

G = G as topological groups. 

E G ,also. 

(Remark) 1) The property 2) in the Pontrjagin's duality 

can be extended to general case under adequate interpretations. 

But we have a pathological ~esult as "for a closed· normal 

subgroup Hin G such that G/H is non-amenable, G/H corresponds 

to many closed subgroups in G " 

2) The assumption "T(p) is unitary" in our duality 

theorem can be loosen to "T(p) is closed" under some additio­

nal conditions. 

3) The assumption (2) 

contains "measurability" of T(w) in its definition. That is, 

it contains partly the assumption (3). 

4) ln the proof of duality, the regular representation R 

of G plays very important role. 

~ counter(?) example to duality theorem. 
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Consider non-abelian group G of 8 order ( #G = 8 ). 

From 8 = dim(~ 2 (G)) =~~(dim ~) 2 = 1 2 +1 2+1 2+1 2+2 2 , 
~EG 

it is concluded directly 

G ={1, x1 , x2 , x3 , p} ( here Xj;character, p; 2-dim. ) 

R = I e x 1e x2e x 3e [2]p. 

Now we calculate the tensor product table of G. 

At first, since G is non-abelian, the kernel of character 

Xj must be have 4-elements. This concludes directly that, 

(Xj) 2 = 1 for all j. And Xj·Xk=Xn for all different j,k,n. 

Next pis only non-1-dimensional irreducible representati­

on of G, and Xj®p are all irreducible 2-dimensional, so 

Xj®p = p (j=l,2,3) 

Lastly we consider D = p®~ in two ways. 

1. D:p®(leX 1ex 2ex3e[2]p) = pepepepe[2](p®p) = [4]p~[2](p®p). 

2. D = [2]~ = [2](1eX 1ex2ex3e[2]p) = [2J(lex1ex2ex3 )e[4]p. 

Comparing above two results, we get, p ® p = leXeXeX, 

so obtain the complete table of tensor products of G uniquely.­

It is remarkable that to get th~s table we use only the 

order of G, that is, we get same table for two mutually non 

isomorphic 8-order groups. 

IT SEEMS TO US THAT THIS RESULT CONTRADICTS TO OUR DUALITY 

THEOREM (AND ALSO TO TANNAKA'S DUALITY THEOREM). 

We leaves to solve this question to readers, it will be 

obtained by considering the correspondence of vectors in the 

decompositions of tensor products. 
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