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Abstract— Because implicit medical knowledge and experi-
ence are used to perform medical treatment, such decisions
must be clarified when systematizing surgical procedures. We
propose an algorithm that extracts low-dimensional features
that are important for determining the number of fibular
segments in mandibular reconstruction using the enumeration
of Lasso solutions (eLasso). To perform the multi-class classi-
fication, we extend the eLasso using an importance evaluation
criterion that quantifies the contribution of the extracted fea-
tures. Experiment results show that the extracted 7-dimensional
feature set has the same estimation performance as the set using
all 49-dimensional features.

I. INTRODUCTION
Clinical treatment is performed by surgeons and medical

staff using a large amount of medical knowledge and expe-
rience. For instance, in mandibular reconstruction surgery,
in which the patient’s own fibula is transplanted [1] [2],
the number of fibular segments and the placement in the
mandible must be determined. Moreover, various reconstruc-
tion plans can be considered depending on the variety in the
shape of the mandibles. The quality such plans is difficult
to guarantee because manual planning largely depends on
the success of past cases and because the planning policy
depends on the subjectivity and experience of surgeons.
Hence, the systematization of these surgical procedures and
a more objective and low-cost surgical planning method
are required. In recent years, an automatic planning system
for mandibular reconstruction was proposed [3]. However,
designing indicators based on the insights of researchers
is time consuming and lacks objectivity [4]. However, the
high-dimensional deep features that are automatically ex-
tracted from medical images are not based on clinically used
anatomical features, and it is not possible to understand them
from an expert’s viewpoint. To obtain a reliable surgical plan,
it is necessary to use uniquely calculated features that can
be interpreted by humans.

This study focuses on analysis methods for extract-
ing essential anatomical knowledge from surgical planning
databases that have been manually annotated by surgeons for
past surgeries. In the last decade, sparse modeling, which
can extract essential information using the sparseness that is
inherently universal in data, has attracted attention. Kawasaki
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Fig. 1. Cutting planes and examples of reconstruction plans: (a) cutting
planes and cases using (b) one, (c) two, and (d) three fibular segments.

et al. showed that patient-specific surgical plans can be
estimated from past plans using sparse modeling [5]. One
of the most common feature selection methods is the least
absolute shrinkage and selection operator (Lasso) [6]. In
the Lasso, an important feature set is obtained. However,
this approach can overlook possibly relevant features not
selected by the Lasso. Recently, the enumeration of Lasso
solutions (eLasso) for finding multiple models using different
feature sets has been proposed [7]. However, this algorithm
is intended for the binary classification and cannot classify
multiple classes.

In this study, we hypothesized that surgical planning,
specifically the number of fibular segments used in mandibu-
lar reconstruction, can be determined by a low-dimensional
feature set T0. When the Lasso is used, only one feature
set is extracted. Therefore, this study extends the concept of
eLasso for selecting surgical procedures in fibular-segment
based mandibular reconstruction. Our aim is to enumerate
multiple sets of low-dimensional features that are important
for determining the number of fibular segments. In this paper,
we verify the effectiveness of the proposed method using 232
reconstruction plans given by an oral surgeon.

II. METHODS

A. Surgical planning datasets

In this study, we use 3D-CT datasets obtained from 29
patients [3] [8]. The mandible region was extracted from
head and neck images, and the fibular segments were ex-
tracted from foot images. Then, to evaluate the differences
in the resection areas, as shown in Fig. 1(a), we defined
six cutting planes. Each cutting plane was defined based



Fig. 2. Anatomical feature points of the mandible. Here, 49-dimensional
features were defined using combinations of eight feature points and two
cutting points on the left and right.

on anatomical distinctions, specifically C0: the mandibular
ramus, C1: the midpoint of the chin and C0, C2: the
symmetry point about the midline of C3, C3: the midpoint
of the chin and C5, C4: the midpoint of C3 and C5, and C5:
the mental foramen. Using these cutting planes, we defined
eight resection areas for each dataset, specifically (C0, C2),
(C0, C3), (C0, C4), (C0, C5), (C1, C2), (C1, C3), (C1, C4),
and (C1, C5). Assuming that the number of fibular segments
was between one and three, the appropriate number of fibular
segments and their placements were given by an oral surgeon
for these 232 cases. Figures 1(b), (c), and (d) show examples
of such reconstruction plans.

In this experiment, features were defined with an anatomi-
cal name or medical terms that have been used in the clinical
literature for the past 10 years. To eliminate the dependence
on the coordinate system, each feature is a distance or
an angle. As shown in Fig. 2, we defined eight points as
the anatomical feature points, specifically the left and right
mandibular condyle, mandibular angle, mental foramen, and
mental tubercle. The following 49-dimensional features were
defined from these feature points as F1-F49:

• the distance from the chin to the line of the mandibular
condyle: 1 dimension;

• the anterior angle of the mandible: 1 dimension;
• the posterior angle of the mandible: 2 dimensions;
• the angle based on the mandibular condyle and the

mandibular angle: 1 dimension;
• the distance between anatomical feature points: 28

dimensions;
• the distance between the left and right cutting points

and anatomical feature points: 16 dimensions.
The distance from the chin to the line of the mandibular

condyle was defined as the distance between the forward-
most point of the bottom edge of the mandible and the
line connecting the left and right mandibular condyles. The
anterior angle of mandible was defined as the angle formed
by the line connecting the left and right mandibular angles
and the mental tubercles. The posterior angle of the mandible
was defined as the angle formed by the line connecting the
mandibular angle and the mandibular condyle and the line
connecting the mandibular angle and the mental tubercle. The
angle based on the mandibular condyle and the mandibular
angle was defined as the angle formed by the lines connecting
the left and right mandibular condyles and mandibular an-

gles. To incorporate more information about the mandibular
morphology as features, the distance of all combinations of
anatomical feature points (8C2 = 28 dimensions) was used.
To represent cutting planes by relative position, the distance
between two cutting points on the left and right and the
anatomical feature points (2×8 = 16 dimensions) was used.
Then, we normalized each feature between 0 and 1 because
the values of different unit systems were used as features.

B. Outline of the methods

In this study, based on the hypothesis that the number of
fibular segments used in mandibular reconstruction can be
determined by a low-dimensional feature set T0, we extended
the concept of eLasso [7] and applied it to mandibular
reconstruction planning. Using a dataset of plans created by
an oral surgeon as the training data, we performed the multi-
class classification of one, two, and three fibular segment
plans. To extend eLasso from binary classification to multi-
class classification, we introduce the importance evaluation
criterion, which scores the effect of each feature on the
classification based on the weight of the feature calculated
by the Lasso.

Figure 3 shows the processing flow of the pro-
posed method. First, for case j, 49-dimensional fea-
tures are calculated and a feature vector d(j) =
[d1, d2, · · · , d49]T is created. Furthermore, feature matrix
Df = [d(1)d(2) · · ·d(232)]T is created by concatenating the
feature vectors. Next, to perform the multi-class classification
of the number of fibular segments, we use the one-versus-
rest [9]. When performing three-class classification with one,
two, and three fibular segments, case j is labeled using a
three-element vector y(j) = (y1, y2, y3) as follows.

• Class 1 (one fibular segment): y(j) = (1, 0, 0)
• Class 2 (two fibular segments): y(j) = (0, 1, 0)
• Class 3 (three fibular segments): y(j) = (0, 0, 1)

Each case is labeled, and then correct answer labels yi =
[yi

(1)yi
(2) · · · yi(232)]T (i = 1, 2, 3) are created by arranging

every yi. The correct answer labels yi and feature matrix Df

are used as input data. Binary classification of yi using the
Lasso yields regression coefficient βi. In this study, feature
set T is extracted from these using the importance evaluation
criterion E described later. When the Lasso is applied once,
only one feature set can be obtained. Therefore, feature
matrix Df is updated based on the extracted T , and the Lasso
is performed again. This makes it possible to enumerate
multiple versions of T .

C. Feature extraction using eLasso

First, we explain how we perform the binary classifi-
cation of yi. We represent the correct answer labels yi

by a weighted sparse linear combination, where βi =
[β1

(i)β2
(i) · · ·βn

(i)]T (i = 1, 2, 3)(n : the number of fea-
tures) denotes the weight vectors, which are calculated by
minimizing the following objective function.

L(βi) = ||yi −Dfβi||22 + λ||βi||1 (1)



Fig. 3. Outline of the proposed eLasso for extracting important features. The Lasso uses feature matrix Df and correct answer labels yi to extract feature
set T . Then, feature matrix Df is updated based on the extracted T , and the Lasso is performed again.

where λ is a parameter to control the sparsity and is called a
normalization coefficient. In this study, we used ADMM to
calculate β∗

i [10]. The inner product of β∗
i and d(j) is cal-

culated, and the class corresponding to the largest value ŷ
(j)
i

is the estimated number of fibular segments. For example,
the calculation for case j yields ŷ(j) = (0.1, 0.7, 0.3), and
the estimated number of fibular segments is two because of
the maximum ŷ

(j)
2 .

In the proposed algorithm, by introducing eLasso, multiple
feature sets including features that could not be obtained
by the Lasso are enumerated. In the method by Hara et
al., feature sets are extracted based on the weight of each
feature calculated by the Lasso. However, in the multi-class
classification targeted by this study, as shown in the examples
in Figs. 4(a), (b), and (c), three weight vectors β1, β2, and
β3 with different scales were obtained, so the weights of
each feature cannot be compared. Therefore, the importance
evaluation criterion E is defined by the following equation
to quantify the effect of each feature on the multi-class
classification of the number of fibular segments.

E =

3∑
i=1

|βi|
∥βi∥

(2)

All features are evaluated by Eq. (2). Figure 4(d) shows an
example of the importance evaluation criterion E calculated
from Figs. 4(a), (b), and (c). It is assumed that a feature with
a larger E is a more important feature in the multi-class
classification. Thus, features can be compared. Using the
importance evaluation criterion E as a guideline for feature
extraction extends eLasso to multi-class classification, and a
framework for enumerating the feature sets with the top-N
importance evaluation criterion is provided below.

STEP 1 For feature matrix Df , weight vector βi and
the sum Q of the three objective function values
L(βi) are obtained from Eq. (1).

STEP 2 All features are evaluated by Eq. (2), and the
feature set T containing the features with the top-
N values of E is obtained. Then, (T,Q,Df ) is
retained as a solution candidate.

STEP 3 Of the retained solution candidates, the one with
the smallest sum of the three objective function
values is output as the kth solution.

STEP 4 The following operation is performed for all fea-
tures t of the output solution in STEP 3.

a) The column corresponding to feature t is removed
from feature matrix Df , and a new feature matrix
Df is created.

b) For feature matrix Df , weight vector βi and
the sum Q of the three objective function values
L(βi) are obtained from Eq. (1).

c) All features are evaluated by Eq. (2), and the
feature set T containing the features with the top-
N values of E is obtained. Then (T,Q,Df ) is
retained as a solution candidate.

STEP 5 Repeat STEP 3 and STEP 4.
In the proposed method, the Lasso and feature extraction

are performed with a new feature matrix that is updated
by removing the information of the feature extracted by the
Lasso from the feature matrix. By repeating this operation,
several important feature sets can be output.

Finally, we describe the estimation method using the ob-
tained N -dimensional feature set T . Creating a new feature
matrix D̂f that contains only the extracted N -dimensional
feature set, we calculate β̂i by performing the Lasso again.
The number of fibular segments is estimated by calculating
the inner product of these weight vectors and the feature
vector of the reconstruction plan. The performance of feature
set T is estimated by the proportion of estimation results that
match the number of fibular segments determined by an oral
surgeon, that is, by the accuracy rate.

III. EXPERIMENTS

The purpose of this experiment was to use the pro-
posed method to obtain multiple low-dimensional feature
sets with high estimation performance for classifying the
number of fibular segments. To evaluate performance, the
number of fibular segments was estimated using only the N -
dimensional feature sets extracted according to E using the
conventional (Lasso-based extraction) method and the pro-
posed (eLasso-based extraction) method. The accuracy rates
were then obtained. In the conventional method, the Lasso
was applied once, and the top-N feature set was obtained
based on the importance evaluation criterion E. Then, the
Lasso was performed again using only the obtained feature



(a) (b) (c) (d)
Fig. 4. Examples of weight vectors extracted by the Lasso and the importance evaluation criterion: (a) weight vector β1, (b) weight vector β2, (c) weight
vector β3, and (d) importance evaluation criterion E.

TABLE I
ACCURACY RATES FOR EXTRACTED FEATURE SETS OBTAINED BY THE

CONVENTIONAL AND PROPOSED METHODS

N Conventional method Proposed method
1 58.62% 60.34%(2 sets)
2 45.69% 75.86%(1 sets)
3 64.66% 79.31%(2 sets)
4 79.31% 83.62%(3 sets)
5 79.31% 84.48%(7 sets)
6 82.33% 85.78%(6 sets)
7 82.33% 87.50%(1 sets)

set, and the accuracy rate was calculated. In the proposed
method, N -dimensional features were enumerated, but the
number of the output solutions was 10, 000. Thus, multiple
feature sets were obtained, but the feature set with the highest
accuracy rate was selected. This feature set was compared
with the feature set obtained by the conventional method. The
number of feature dimensions to be extracted was varied as
N = 1, 2, 3, 4, 5, 6, and 7. For the normalization coefficient,
the value with the highest accuracy rate after several trials
was used. Specifically, λ = 1.0 was used for extraction and
λ = 10−5 was used for estimation. We note that the accuracy
rate was 87.50% when the estimation was performed using
all 49 dimensions.

The accuracy rates obtained by the proposed method and
the conventional method for various numbers of extracted
feature set dimensions are shown in Table I. For the proposed
method, the numbers of feature sets that yielded the highest
accuracy rate are also shown. For each value of N , the
proposed method obtained feature sets with higher estimation
performance than those obtained by the Lasso. In addition,
the 7-dimensional feature set obtained by the proposed
method achieved the same accuracy rate as that obtained
using all 49 dimensions.

IV. CONCLUSIONS

This paper proposed an algorithm based on eLasso for
extracting multiple sets of low-dimensional features that are
important for determining the number of fibular segments
in the mandibular reconstruction. The experiments using a
dataset of plans specified by an oral surgeon showed that the
extracted 7-dimensional feature set obtained by this method
had the same estimation performance as one in which all

49-dimensional features defined using traditional anatomical
features were used.
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