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Abstract— Computed tomography (CT) and magnetic reso-
nance imaging (MRI) scanners measure three-dimensional (3D)
images of patients. However, only low-dimensional local two-
dimensional (2D) images may be obtained during surgery or
radiotherapy. Although computer vision techniques have shown
that 3D shapes can be estimated from multiple 2D images, shape
reconstruction from a single 2D image such as an endoscopic
image or an X-ray image remains a challenge. In this study,
we propose X-ray2Shape, which permits a deep learning-based
3D organ mesh to be reconstructed from a single 2D projection
image. The method learns the mesh deformation from a mean
template and deep features computed from the individual
projection images. Experiments with organ meshes and digitally
reconstructed radiograph (DRR) images of abdominal regions
were performed to confirm the estimation performance of the
methods.

I. INTRODUCTION

Three-dimensional (3D) medical imaging, such as com-
puted tomography (CT) and magnetic resonance imaging
(MRI), can image human internal organs, and are widely
used for diagnosis, intraoperative navigation, and radiother-
apy. However, a large number of image slices are typically
required to obtain accurate organ shapes and tumor positions
from 3D medical images [1] [2]; in the case of CT, this
gives rise to high exposure to ionizing radiation, which
is undesirable for the patient. The measurement time and
imaging radiation dose can be reduced by lowering the
number or the resolution of the image slices, but the image
quality may be sacrificed correspondingly. Most importantly,
it is seldom possible to use CT and MRI equipment during
surgery or daily radiation therapy, because they are usually
located separately. When high-resolution 3D images are not
available, treatment can only proceed with low-dimensional
and local images, such as endoscopic images and X-ray
images.

To solve this problem, some researchers have proposed
a method to reconstruct 3D organ shape from a single
image, such as an endoscopic or X-ray image [3] [4] [5].
For example, Wu et al. proposed a 3D shape reconstruction
algorithm based on a Convolutional Neural Network (CNN)
[4], and showed that the 3D shape of the lungs during a
deaeration deformation process can be reconstructed from
only one captured two-dimensional (2D) image. However,
the shape estimated by Wu’s method was represented as point
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clouds; this means that the surface and topological informa-
tion between vertices, which is important for deformation
calculation, was lost. It is difficult to accurately obtain the
vertex correspondence before and after deformation for point
clouds, especially for organs undergoing large deformations
such as lungs and abdominal organs. Wang et al. proposed
a CNN-based framework to calculate lung respiratory de-
formation from a digitally reconstructed radiograph (DRR)
image simulating an X-ray image [5]. However, in Wang’s
study, the training and test experiments were performed using
artificially created augmented data, and the 3D shapes were
deformed from multiple 3D initial templates. Hence, the
CNN-based reconstruction of organ shape for real patients
has yet to be tested.

The purpose of our study was to reconstruct the 3D shape
of an organ from an individual patient’s single-view 2D
X-ray image. Our method uses a combination of Graph
Convolutional Networks (GCN) [6] and a CNN. We extend
and apply the framework that is based on Pixel2Mesh [7]
used on natural images to low contrast DRR images. X-ray
images and DRR images are projected images, especially in
the abdominal region, where clear organ contours can not be
obtained and the contrast from the background is also very
low. Shape reconstruction is therefore a difficult task. We set
the mean shape derived from the training 3D CT data as the
initial template, and aimed to calculate the deformation from
the initial template to the individual organ shape using the
image features of the DRR image.

II. METHODS

A. Outline of the methods

Fig. 1 shows the framework of the proposed method.
The entire framework consists of a 2D image-feature CNN
network and a GCN mesh deformation network. As the
patient’s posture is fixed relative to the X-ray irradiation
position during X-ray imaging, it can be assumed that the
camera position and angle at the time of imaging are known.
Therefore, the 2D image pixel coordinates corresponding to
each 3D shape vertex can be calculated using the camera
parameters. In our proposed method, the 3D initial template
is projected onto the input DRR image, and the image fea-
tures corresponding to each vertex can be extracted. We then
concatenate the image features and 3D vertex coordinates
and incorporate them into a GCN network for deformation.
We used two types of loss, MSE loss and discrete Laplacian
loss, to train the network to generate an accurate mesh.
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Fig. 1. The full X-ray2Shape framework contains a CNN and GCN. The CNN is used for extracting image features from the 2D image, and the GCN
is for mesh deformation.

⊕
means the concatenation of image features and vertex coordinates.

B. X-ray2Shape modules

In this section, we describe the internals of each X-
ray2Shape module. For the initial template, we calculated
the mean shapes of the organs from the training data (Fig. 2
(a)). The initial liver template we used in our experiment
contained 500 vertices and 996 faces, and all estimated
shapes were deformed from this initial template.

For the image feature CNN module, the layers of the CNN
shown in Fig. 1 were from an extended VGG-16 model, as
it has been widely used and shown to be effective for image
processing [10]. However, VGG-16 has often been used to
extract features from 224×224 pixel images [8], but our input
DRR images are much larger, at 640×640 pixels. To extract
effective features, we changed the convolution filter size from
3× 3 to 5× 5, meaning that we expanded the receptive field
to obtain features from a larger range of pixels. With the
camera parameters, each 3D vertex can find its 2D pixel
coordinates in the input DRR image. We extracted features
from the latter layers of the CNN (i.e. the red layers in Fig.
1) and concatenated these high-level features to accurately
learn the shape.

For the GCN module, a network that applies deep learning
to graph structure data, the graph (eg. mesh) is a pair of
sets (V, E), where V is the set of vertices and E is the
set of edges. The graph can be deformed by updating the
features of each vertex. The GCN network in our experiment
consisted of eight sequential graph convolutional layers, with
each convolutional layer defined as below,

F (l+1) = σ(D̂−
1
2 ÂD̂−

1
2F (l)W (l)) (1)

where F (l) and F (l+1) are the feature matrix before and after
convolution, Â ∈ Rn×n is an adjacency matrix, D̂ ∈ Rn×n is
the degree matrix of Â, and n is the total number of vertices.
W is the learnable parameter matrix and the feature F (l) is
the concatenation of 2D image feature from CNN and 3D
vertex coordinates. The initial template can be deformed by
updating F (l).

C. Loss functions

In this section, we define two loss functions, MSE loss
and discrete Laplacian loss [9], which are used to generate
an accurate 3D shape. Unlike the pixel2mesh framework,
whose estimated shape is deformed from an ellipsoid with
fewer vertices, our estimated shape is deformed from a mean
shape with the same number of vertices. Therefore, we define
MSE loss to reduce the distance of the corresponding vertices
between the estimated shape and ground truth. The MSE loss
is defined as

LMSE =
1

n

n∑
i=0

‖vi − v̂i‖22 (2)

where n is the total number of vertices, vi ∈ V(i =
1, 2, ..., n) is the ground truth vertex, and v̂i is the estimated
vertex. This loss function tends to converge the estimated
vertex to the correct position.

To preserve the smoothness of the surface, we used a
discrete Laplacian loss function. The discrete Laplacian at
vertex vi is defined as

L(vi) =
1

N(vi)

∑
j∈N(vi)

(vi − vj) (3)

where N(vi) is the number of adjacent vertices of one ring
connected by vertex vi and the edge, vj is the neighboring
vertex of vi, and the discrete Laplacian loss can be defined
as

Llaplacian =
1

n

n∑
i=0

‖L(vi)− L(v̂i)‖22 (4)

where L(vi) and L(v̂i) are the discrete Laplacian before and
after deformation. MSE loss makes vertices move too freely,
while discrete Laplacian loss properly limits the freedom of
vertex movements.

The total loss is the weighted sum of two loss functions
which is expressed as

Ltotal = λMSELMSE + λlaplacianLlaplacian (5)
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Fig. 2. Experimental data, (a) Initial templates of five organs (liver,
stomach, duodenum, left kidney, right kidney) with mean shapes, (b) input
DRR image, (c) liver coordinates of different cases before preprocessing,
(d) liver coordinates of different cases after preprocessing

In our experiment, we set the hyper-parameter λMSE = 1
and λlaplacian = 100 to balance the two loss functions.

III. EXPERIMENTS

A. Dataset and preprocess

The 3D organ data we used in this experiment were
generated from 3D CT datasets from 124 patients. The 3D
organ data used a surface triangle mesh structure, with the
liver mesh having 500 vertices and 996 faces. Once we have
the 3D organ meshes, we can generate the corresponding
front-view 2D projections that we refer to as the DRR
image (Fig. 2 (b)), with the size of these DRR images being
640× 640 pixels.

However, the CT imaging range varies from patient to
patient, which means that the variation in the 3D organ
coordinates is very large. For example, in Fig. 2 (c), the
liver coordinates vary greatly between the three different
patients, affecting the accuracy of the estimated organ shapes.
To solve this problem, we preprocess the 3D organ mesh. We
calculate the center of gravity of five organs (liver, stomach,
duodenum, left kidney, right kidney) and use this as the
origin to translate the 3D organs. The translated 3D liver
meshes are shown in Fig. 2 (d), in which we can see the
livers of different patients translated into the same coordinate
range. In our experiment, we randomly split the dataset into
104 cases for training and 20 cases for testing. The initial
liver template in Fig. 1 is the mean shape of the translated
training cases.

B. Evaluation

In this section, the mean distance DMean [11] and the
Euclidean distance DEuclidean are used to evaluate the differ-
ence between ground truth and estimated shapes. The mean
distance DMean is the mean value of the nearest bidirectional

Fig. 3. Mean distance error and Euclidean distance error of 20 test cases

TABLE I
COMPARISON BETWEEN OUR LOSSES AND PIXEL2MESH LOSSES

Our losses pixel2mesh losses

D̄Mean D̄Euclidean D̄Mean D̄Euclidean

6.71mm 16.0mm 9.1mm 19.3mm

point-to-surface distance. Considering that the ground truth
and estimated shapes require point-to-point correspondence,
we define the Euclidean distance below to calculate the
distance between corresponding points,

DEuclidean =
1

n

n∑
i=0

√
(vi − v̂i)2 (6)

However, while these two metrics can evaluate the distance
error between ground truth and estimated shapes, they do
not reflect the smoothness and estimated shape quality. We
visualize the estimated shape in Fig. 4 to better understand
these aspects.

C. Training and Results

Our experiment aimed to generate liver shape from a
single DRR image with low background contrast, and to
do so using limited datasets. We used an extended VGG-
16 model without pre-training. The width (channel number)
of each layer is marked at the top of the layers in Fig. 1, and
the size of each layer is marked below. The whole network
was implemented in Tensorflow-GPU, and the network was
trained using an Adam optimizer with a learning rate of
1 × 10−4 and weight decay of 5 × 10−6. The batch size
was 1 and the total number of training epochs was 1000.
The network took 4.5 hours to train on a single NVIDIA
GeForce RTX 2070.

The distance error of each test case is shown in Fig. 3.
The blue bars show the Euclidean distance error of 20 test
cases, with the mean value of the Euclidean distance error
being 16.0 mm. The green bars show the mean distance error,
with the mean value of these 20 test cases being 6.71 mm.
We compared training the network with our proposed loss
functions with training it with the loss functions proposed
in pixel2mesh. It should be noted that we already knew the
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Fig. 4. An example of 3D shape reconstruction using the proposed method, (a) projection of the ground truth liver shape (the pixels corresponding to
each 3D vertex are colored blue), (b) projection of the estimated liver shape, (c) projection of the initial template of the liver, (d) sideview of the overlap
between estimated and ground truth shapes, (e) ground truth liver shape, (f) estimated liver shape, (g) initial template of the liver, (h) frontview of the
overlap between estimated and ground truth shapes

correct position of each vertex. Hence, in this comparison
we replaced the pixel2mesh’s Chamfer loss with MSE loss,
while the rest of the losses in pixel2mesh were unchanged.
The results are shown in Table 1, where D̄ means the mean
value of the distance errors. They show that the mean value
of the Euclidean distance errors and the mean distance errors
calculated with our losses are totally smaller than those
obtained with the pixel2mesh losses. As our deformation
starts from the mean shape, the variation in the shape is
smaller than that with pixel2mesh. On the other hand as the
ground truth coordinates of each vertex are already known,
the two loss functions proposed in this paper are sufficient.

The visualization result is shown in Fig. 4. To understand
how the estimated 3D shape is deformed from the initial
template, we projected the 3D shape onto the DRR image
with the pixels corresponding to each 3D vertex colored in
blue (Fig. 4 (a–c)). It can be observed that the projection
of the initial template is completely misplaced (Fig. 4 (c)).
However, the projection of the estimated 3D shape (Fig. 4
(b)) has been improved, especially the diaphragm part, where
an obvious contour can be seen. The overlap between the
estimated shape and the ground truth shape is shown in Fig.
4 (d) and (h).

IV. CONCLUSIONS
This paper proposed X-ray2Shape, a deep neural network

that combines a GCN and CNN to reconstruct 3D liver shape
from only one low-contrast DRR image. To generate an
accurate and smooth 3D shape, we trained our network using
MSE loss and discrete Laplacian loss. Our experimental
dataset contains 3D CT from 124 patients without data
augmentation. Distinct from the natural and captured images,
our input DRR images were low-contrast, without clear
organ contours. However, as shown by the evaluation error
and visualization results, our trained X-ray2Shape network
was still effective. In future work, we will use multi-view
DRR images for training, and design other losses to more
accurately reconstruct the shape.
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