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Abstract— Because the lung deforms during surgery because
of pneumothorax, it is important to be able to track the
location of a tumor. Deformation of the whole lung can be
estimated using intraoperative cone-beam CT (CBCT) images.
In this study, we used deformable mesh registration methods
for paired CBCT images in the inflated and deflated states,
and analyzed their deformation. We proposed a deformable
mesh registration framework for deformations of partial organ
shapes involving large deformation and rotation. Experimental
results showed that the proposed methods reduced errors in
point-to-point correspondence. As a result of registration using
surgical clips placed on the lung surface during imaging, it was
confirmed that an average error of 3.9 mm occurred in eight
cases. The result of analysis showed that both tissue rotation
and contraction had large effects on displacement.

I. INTRODUCTION

Three-dimensional (3D) high-resolution computed tomog-
raphy (CT) images and magnetic resonance imaging (MRI)
are widely used to analyze organ deformation and shape
differences. Intraoperative pneumothorax can involve large
deformations of the lung contour and changes in position of
any target lesions in the parenchyma. Some studies have sim-
ulated organ deformation and estimated the tumor position
for intraoperative image guidance[1][2]. If pneumothorax
deformation can be mathematically modeled, based on image
analysis, the position of a tumor during surgery can be
estimated more accurately.

Different registration techniques have been studied to
obtain local correspondence between organ shapes in medical
images. Examples of studies that performed registration for
organ deformation include the investigations that performed
preoperative CT and intraoperative CT registration for the
liver and lung[3][4] and a study that performed registration
during the respiratory cycle[5]. 3D analyses of pneumothorax
deformation of animal lungs have been conducted[6][7].
In recent years, it has become possible to partially image
organs using intraoperative cone-beam CT (CBCT) , which
has been used to estimate the changes between preoperative
CT and intraoperative CBCT. Studies on image registration
for animal lungs[8], abdominal image registration[9], and
analysis of preoperative CT and intraoperative CBCT images
in the inflated state[10] have been reported. There have been
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Fig. 1. Paired CBCT images(window width: 454, window level: -628) and
histogram of CT values

no reports of intraoperative pneumothorax in humans, and
inter-patient variations of deformation have not been studied
because of difficulties with intraoperative measurement.

This study was performed to register and analyze the shape
of the part of the lung included in the CBCT images. We
designed a mesh registration framework for shape changes
involving extreme deformation with rotation. The registered
meshes with local correspondences are directly available for
surgical guidance in thoracoscopic surgery, and for building
statistical deformation models with inter-patient variations.

This paper reports the findings of pneumothorax deforma-
tion analysis with the registration of CBCT images of inflated
and deflated states.

II. METHOD

A. Data

In this study, two images, one of inflated and one of
deflated states were generated from lung cancer patients at
Kyoto University Hospital. The images are measured in the
same position in the inflated and deflated states by controlling
the bronchial pressure after thoracotomy.

Each CBCT volume consists of a set of sections of 512
× 512 pixels (pixel resolution: 0.49mm × 0.49mm × 0.49-
1.0mm). In this paper, this dataset is referred to as “paired
CBCT images”, and the example is shown in Fig. 1. Air
flows around the lung and it collapses. CT density readings of
lung parenchyma differ depending on the amount of air in the
lungs. As image-based registration did not work properly, we
applied deformable mesh registration (DMR) to the meshes
of lung surfaces extracted from CBCT images.

The images are measured with two surgical clips placed
on the lung surface near the tumor. They can be used as



Fig. 2. Reference points set by the respiratory surgeon．(a) reference
point1(right lung)，(b) reference point2(right lung)，(c) reference point3(left
lung)，(d) reference point4(left lung)

landmarks. Besides, two reference points were manually
set by the surgeon near the first bronchial branch on the
boundary of the upper and lower lobes(Fig. 2).

3D labeling of lungs, bronchi, and tumors was performed
from CBCT images using Fujifilm Synapse VINCENT (Fu-
jifilm Corporation, Tokyo, Japan). Surface meshes of lungs
with 500 vertices and 996 triangular elements were gener-
ated. The number of vertices was determined by balancing
the need for accuracy against the calculation time. In this
study, the whole lung was treated as one shape because seg-
mentation of the lung lobes is difficult because of limitations
of image quality or existence of artifacts in CBCT images.

There are some differences in the patient’s posture and air
contents of the lung. Therefore, the normalization of the lung
mesh is first performed. First, the translation is performed
so that the midpoint between the two reference points is the
origin. The individual posture is normalized by matching the
axis connecting the two reference points to the inflated state.

B. Problem definition

In this study, we focused on the following two issues for
DMR of intraoperative pneumothorax deformation;

1 Partial lung shapes in CBCT images
2 Large deformation with rotation
First, the entire lung cannot be measured because of the

limited imaging area in CBCT imaging. As shown in Fig.
3(a), the imaging area for the lung may change between
inflated and deflated lungs; some parts of the lung in the
deflated state may be located outside of the imaging area in
the inflated state. Here, the reference points and clips can be
used as landmarks. Based on the location of the landmarks,
we can consider the following three types of partial shapes
measured in CBCT images;

TYPE 1 Top of lung
TYPE 2 Center of lung
TYPE 3 Bottom of lung

Fig. 4(a) shows the region of interest (ROI) defined for the
three types of partial shapes. The areas among the reference
points and clips are considered to be the corresponding ROIs
of the inflated/deflated lungs. For TYPE 1, the lower lobe
side area outside these points is excluded, and for TYPE 3,
the upper lobe side area outside these points is excluded.

Fig. 3. Problem definition.(a) corresponding points in the inflated state are
located outside of the imaging area，(b) an example of paired CBCT with
large deformation and rotation

Since TYPE 2 has a corresponding point only in the middle
area among these points, the upper and lower lobe side areas
outside these points are excluded. The boundary surface is
parallel to the boundary surface of the CBCT partial shape.
Fig. 4(b) shows vertices used for registration.

For the second point of the problem, registration errors
tend to increase in case of large deformations with rotation.
Fig. 3(b) shows an example of the paired CBCT. In the case
of pneumothorax deformation, some cases largely rotate in
this way, so in this study, clips were used to estimate the
rotation.

C. DMR for pneumothorax deformation

In this section, the registration algorithm for obtaining
local correspondence between paired CBCT is explained. As
described in Section II-B, registration errors tend to increase
in cases of extreme deformation with rotation, so this study
use reference points and clips. Shape matching is performed
from the source shape to the target shape. In this study,
inflated states were used as the source and deflated states
were used as the targets. Registration is performed in the
next step.

STEP 1 Affine Transformation
STEP 2 Piecewise Affine Transformation[11]
STEP 3 Laplacian-based Shape Matching[7]
First, in STEP 1, the rotation and scale are adjusted,

and then, in STEP 2, Piecewise Affine Transform (PWA),
which performs Affine Transformation on each of the divided
regions, is employed. Here, the source is updated to minimize
the objective function defined by Eq. (1).

E = Eshape + Eclip

= d(SD, SI) + w|pD − pI | (1)

where d is the mean distance[7], mean value of the nearest
bidirectional point-to-surface distance of the two meshes SD

and SI . w is a weight, and pD and pI are the position
of surgical clips placed on the lung surface in the inflated
and deflated states, respectively. In STEP 1, the evaluation
function based on the clip and the reference Eclip is mini-
mized, and in STEP 2, E is minimized in consideration of



Fig. 4. Processing of ROI. (a) The processing method of ROI by type, (b)
Red: corresponding ROIs of the mesh, green: reference points, blue: clips

the shape evaluation function Eshape. Here, to calculate d,
the nearest two vertices are determined as the pair of vertices
that minimize the local shape similarity Q defined by Eq. (2).

Q = |vs − vt|+ γ(1− ns · nt) (2)

vs is the source vertex, vt is the target vertex, ns is the
source normal vector, nt is the target normal vector, and γ
is a weight. Q locally evaluates shape similarity per vertex,
and the pair of vertices that minimize Q is set as the nearest
vertices. Then, d is computed as the mean bidirectional point-
to-surface distance defined by the vertex pair.

Finally, in STEP 3, registration is performed to match
the surfaces with high accuracy. The discrete Laplacian
is a shape descriptor, and by using it, minimizes shape
differences while maintaining shape. Regarding the details
of the algorithms and the performance, see [7].

D. Analysis method

This section describes how we analyzed pneumothorax de-
formation. Investigating the characteristics of the rotation of
the pneumothorax can lead to better registration. Therefore,
the displacement of clips is decomposed into a contraction
component, which is the displacement in the direction of
the origin, and a rotation component, which is obtained by
removing the contraction component from the displacement.
Assuming that pneumothorax deformation does not move the
hilum, we set it as the origin. For vertices, displacement can
be represented by scaling and rotation around the origin.

Fig. 5. Relationship between total displacement ui, contraction component
ci, rotation component ri computed from the corresponding vertices vI

i and
vD
i .

Fig. 5 shows the relationship between displacement and each
component. The displacement ui, the contraction component
ci, and the rotation component ri are expressed by the Eq.
(3), (4), (5).

ui = vD
i − vI

i (3)

ci =
(
|vD

i | − |vI
i |
) vI

i

|vI
i |

(4)

ri = ui − ci (5)

The distance between clips and the origin is used as an index
of the position of clips.

III. EXPERIMENTS AND RESULTS

We used data as described in section II-A. Cases 1-5 are
the right lung and cases 6-8 are the left lung, for a total of 8
cases. We compared two registration methods with/without
surgical clips for the constraints. To perform analysis based
on the correct displacement, 10 registrations were made in
each case and the one with the least clip position error was
used. Regarding the weight parameters, we used 10.0 for δ
and 1.0 for λ after the examination of several parameters
sets.

A. Registration results

Comparing the registrations that use and do not use clips.
Table I shows the registration errors of the two methods.
Mean distance (MD), Hausdorff distance (HD)[7] and target
registration errors (TRE) of the two surgical clips are used
for the evaluation criteria. MD and HD were almost equal.
TRE1 and TRE2 were 20.4 mm and 21.4 mm without clips
but were 3.9 mm and 4.0 mm with clips. If clips were not
used, the surface could be registered with high accuracy, but
the position of the clips was not very accurate. Registration
was more accurate when using clips.

Without clips, if the organ is rotating as shown in Fig. 3(b),
the algorithm simply locates nearby vertices and cannot find
the corresponding vertex. By using clips as landmarks, the
effects of rotation, which are difficult to find only by shape,
can be ascertained.

From this result, it was found that the conventional method
cannot cope with the rotation, and the error increases. Our
method requires landmarks and cannot be used in clinical
settings. Therefore, a registration method that supports rota-
tion will be required.



TABLE I
QUANTITATIVE COMPARISON OF MEAN (MINIMUM ‐ MAXIMUM)

REGISTRATION ERRORS. MEAN DISTANCE (MD), HAUSDORFF DISTANCE

(HD) AND TWO TARGET REGISTRATION ERRORS (TRE) ARE LISTED.

no clips with clips
MD [mm] 0.1 (0.1 - 0.2) 0.1 (0.1 - 0.2)
HD [mm] 1.8 (0.8 - 4.6) 1.5 (0.7 - 3.2)

TRE1 [mm] 20.4 (7.5 - 39.3) 3.9 (1.8 - 6.8)
TRE2 [mm] 21.4 (7.9 - 35.8) 4.0 (2.2 - 5.8)

Fig. 6. Visualization results of total displacement, contraction and rotation
components.

B. Analysis of pneumothorax deformation

Fig. 6 shows, from left to right, the results of total
displacement, contraction, and rotation components. The
displacement was decomposed into a contraction and a
rotation component, and both components had large vectors.
The contraction component tended to have a large vector
in the direction of gravity. There was a part with a rotation
component of 50 mm or more (red vector). Table II shows the
average values of the displacement, contraction, and rotation
components. The smallest rotation component was 5.8 mm
and the largest one was 36.7 mm. Also, the contraction
component was a minimum of 8.1 mm and a maximum of
31.4 mm, and there is a difference between cases.

Differences in rotation and contraction were observed
within and between cases. It is thought that friction and
adhesions between the lobes and surrounding organs made
this difference.

IV. CONCLUSIONS

In this study, registration and analysis were performed with
clips using CBCT images, which are partially observed data
containing large rotations. In future work, we will investigate
the relationship between lung shape and deformation and
develop a registration method that supports rotation.
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TABLE II
THE AVERAGE VALUES OF DISPLACEMENT, CONTRACTION AND
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