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Abstract 

We develop a numerical scheme for spatially discrete total variation flows. We propose a modified 
minimizing movement scheme based on the localization of the energy onto the tangent space and the 
exponential map. The proposed method satisfies the energy dissipation property, and the convergence 
result is also shown. We further mention the application of our numerical scheme to the study of the 
Kobayashi-Warren-Carter model. 

1 Introduction 

The Kobayashi-Warren-Carter (KWC) model was introduced in [9, 8] as a mathematical model of grain 
boundaries and is formulated as the £ 2 gradient flow of the following KWC energy: 

where !1 is a bounded region with Lipschitz boundary, u: !1 x [0, T) --+ SO(3) denotes the orientation of the 
crystal, v: !1 x [0, T) --+ lR is an order parameter that indicates the position of grain boundaries, and E' is a 
single-well Modica-Mortola (MM) functional defined by 

E'(v) := ~ { lv'vl 2 dx + __!:__ { (v - 1)2 dx. 
2 }n 2E Jn 

Our research aims to elucidate the properties of the solution to the KWC model from mathematical and 
numerical analysis viewpoints. We also intend to apply our research to materials science and data science in 
future. 

The first term of the KWC energy is the most difficult to deal with in the numerical analysis. In other 
words, we have to deal with the £ 2 gradient flow of the weighted total variation, whose value is restricted to 
the manifold SO(3). 

In this paper, we first perform a numerical analysis of the total variation flow whose values are constrained 
to the prescribed manifold. Then, we consider the KWC energy with fidelity and mention its possible 
application to data clustering. 

2 Numerical analysis of constrained total variation flow 

2.1 Problem setting 

Let !1 be a bounded region in lR k with Lipschitz boundary. The total variation is defined as follows: 

'This talk is based on joint work with Yoshikazu Giga (The University of Tokyo), Jun Okamoto (The University of Tokyo), 
Kazutoshi Taguchi (ARISE analytics Inc.), and Masaaki Uesaka (Arithmer Inc./The University of Tokyo). 



2

where 

We consider the £ 2 gradient flow of the total variation where the values of the function u are restricted to 
the manifold M embedded into JR.1• The homogeneous Neumann boundary value problem is formulated as 
follows: 

inOx(O,T), 

on an x (0, T), 

inn, 

where 'lrp is the orthogonal projection from the tangent space TplR.1 (= JR.1) to the tangent space TpM (c JR.1) 

at p EM, and vn denotes the unit outward normal vector of an. 

2.2 Spatial discretization 

2.2.1 Mesh 

We first define partitions with rectangles. Let .6. be a finite set of indices and let n be a bounded region in 
JR.k_ A family Ot:,, = {Oa}aEt:,, of subsets of n is called a rectangular partition of n if it satisfies the following 
three conditions. 

1. _£Jk (n \ UaE!:,, na) = 0. 

2. _£Jk (00 n n 13 ) = 0 for ( a, (3) E .6. x .6. with a cl (3; here _£Jk denotes the k-dimensional Lebesgue measure. 

3. For eache a E .6., there exists a rectangular region Ra in JR.k such that n 0 =Rann, where we mean 
by a rectangular region that 

for some ai < bi. 

Hereafter, we arbitrarily take one rectangular partition Ot:,, = {Oa}aEt:,, of n and fix it. 

2.2.2 Finite dimensional spaces 

e(.6.) denotes the set of edges associated with .6.: 

where Hm denotes them-dimensional Hausdorff measure. For {a,/3} E e(.6.), set E{a,/3} = 800 n an13 • 
:.vioreover, define the set EOt:,, of interior edges by 

Ent:,, = { E{a,/3}} {a,/3}Ee(!:,,) · 

Let Ht:,, be the space of piecewise constant functions that take values in JR.1; that is, 

Ht:,, := {U E £ 2 (0; JR.1) I Ulna E JR.1 is a constant for each n" E Ot:,,}. 

Ht:,, is a closed subspace of L2 (0;1R.1), i.e., a finite-dimensional Hilbert space, and the inner product(·, •)H,,, 
is induced from L2 (0;1R.1); that is, 

(U, V)H,,, := (U, V)L2(0;IR') for U, VE Ht:,,. 

The space of piecewise constant functions that take values in the manifold Mis denoted by Mt:,,: 

Mt:,,:= {u E L2 (0;M) I ulna EM is a constant for each n" E Ot:,,}. 

The nonconvex set Mt:,, can be interpreted as a submanifold of Ht:,,. Therefore, the tangent space TuMt:,, of 
Mt:,, at u E Mt:,, can be defined as follows: 

TuMt:,, = {X E L2 (0;ffi_l) I Xlna E Tu1r,aM is a constant for each na E Ot:,,.} 
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2.2.3 Spatially discrete total variation flow 

Substituting the expression u = I:aE~ u"ln 0 E H~ into the definition of the total variation, the discrete 
total variation functional TV~: H~---+ lR is defined as follows: 

TV ~(u) = 
{a,/l}Ee(~) 

where u" = uln 0 for a E Ll. Note that the functional TV~ is convex on H~ but not differentiable at u E H~ 
such that u" = ull holds for some {a, ,6} E e(Ll). Therefore, it is impossible to formulate the flow as an 
ordinary gradient flow, but we will consider a subdifferential formulation. Recall that the subdifferential 
8TV ~(u) of TV~ at u EH~ is defined as 

Definition 2.1. Let u0 EM~. A map u E W 1,2 (0, T; M~) is called a solution to the spatially discrete total 
variation flow if u satisfies 

{!~ E -Pu(t)8TVdu(t)) for a.e. t E (0,T), 

ult=□ = uo, 

Here, Pu denotes the orthogonal projection from H~ to T,,M~ at u E M~ defined by 

P,,X(x) = 1fu(x)(X(x)) for a.e. x E !1. 

(2.1) 

The following theorem assures the existence of solutions to the spatially discrete total variation flow (2.1). 
See [3, 5, 11] for more details. 

Theorem 2.2. Let M be a C 2 -compact submanifold in JR1 and u 0 E M~. Then, there exists a solution 
u E W 1 ,2 (0, T; M) to the spatially discrete total variation flow (2.1). Moreover, assuming that M is path
connected, the uniqueness holds. 

Remark 2.3. Since we have made a spatial discretization, it is natural to consider whether the spatially discrete 
total variation flow converges to the original total variation flow as the mesh size tends to 0. However, this 
problem is not as simple as it seems. 

When considering a rectangular partition, it is known that the real-valued spatially discrete total variation 
flows converge to anisotropic €1-total variation flows in the limit where the mesh size tends to O [2, 10]. It 
is expected that the same argument holds in the presence of manifold constraints, but so far, there is no 
mathematical proof in the literature. 

2.3 Time discretization 

Our time discretization methodology of the spatially discrete total variation flow (2.1) is based on the min
imizing movement scheme [1]. Let T > 0 be a time step size and denote by N(T) the maximal number of 
iterations, the minimal integer grater than T /T. Then, we define time nodal points tCn) by 

t n ·-
() {

nT ifn=0, ... ,N(T)-l, 

.- T ifn=N(T). 

Algorithm 2.4 (Minimizing movement scheme). Let u0 E M~. Then, the following procedure obtains a 
sequence {u~n)}:~~) in M~. 

1. For n = 0, set u~o) := u 0 . 

2. For n :;:> 1, u~n) is defined as a minimizer of the optimization problem 

Minimize 1>7 (u;u~n-l)) subject to u EM~, (2.2) 

where 



4

The optimization problem (2.2) is classified as a non-smooth Riemannian constraint optimization problem; 
therefore, it is not easy to solve it. We thus replace problem (2.2) with a more manageable problem. The key 
idea is to localize the energy functional <I>,,.(·; u~n-l)) to the tangent space T (n-1)M1:,. by using the exponential 

u,,. 
map. 

Let expP: TpM--+ M denote the exponential map of the Riemannian manifold Mat p EM. We then 
define the exponential map Expu: TuM1:,. --+ M1:,. of M1:,. at u E M1:,. by 

X(x) >---+ expu(x)(X(x)) for a.e. x E !1. 

Utilizing the exponential map Exp (n-1) at u~n-l), any element u in M1:,. can be written as u = Exp (n-1) (X) 

for some X ET (n-l)M1:,.. Since theuTaylor expansion of the exponential map Exp (n) is of form u~n)+"x+o(X) 

as IIXIIH., --+ ~: ignoring the higher-order term o(X) and substituting u = :in-l) + X into the energy 
functional <1>,,.(u;u~n-l)) yield 

Based on this observation, we propose the following modified minimizing movement scheme. 

Algorithm 2.5 (Modified minimizing movement scheme). Let u 0 E M1:,.. Then, a sequence {u~n)};;'~~) in 
M1:,. is obtained by the following procedure. 

1. For n = 0, set u~o) := uo. 

2. For n ~ 1, u~n) is defined by the following two steps. 

(a) X~n) is defined as a minimizer of the optimization problem 

Minimize <1>10c(X;u~n-l)) subject to X ET (n-l)M1:,., 
u,,. 

(2.3) 

where 

1 
<l>,,.1 (X· u(n-l)) := TTV 1:,.(u(n-l) + X) + -11x11 2H for X ET (n-l)M1:,.. 

OC ) T T 2 ~ UT 

Since the tangent space T (n-1)M1:,. is a linear space and the energy functional <l>[0 c(X;u~n-l)) is con
vex with respect to X E T (nu.,1)M1:,., the optimization problem (2.3) is convex, which yields the modified 
minimizing movement sche~~'s well-posedness. 

2.4 Energy dissipation and convergence 

We summarize the mathematical properties of the modified minimizing movement scheme. For detailed 
discussions and proofs, see [7]. 

Since the total variation flow decreases the total variation with time evolution, it is natural to expect that 
our numerical scheme also satisfies this property in a discrete sense. We have the following theorem. 

Theorem 2.6 (Energy dissipation [7, Proposition 5]). Let M be a C 2 -compact manifold embedded into JR1, 

u0 E M1:,. be an initial data, and {u~n)};;'~~) be a sequence generated by the modified minimizing movement 

scheme. lfT is sufficiently small, then the energy dissipation property TV 1:,.(u~n+l))::; TV i:,.(u~n)) holds for 
all n = 0, 1, ... ,N(T)-1. 

We obtain the following theorem concerning the convergence of the numerical solution to the original 
spatially discrete total variation flow. 
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Theorem 2.7 (Convergence [7, Theorem 1]). Let M be a path-connected and C 2 -compact submanifold in JR1 

and T > 0. Fix two initial data u5, u5 E Mt,. Let u E W 1•2 (0, T; Mt,) be a solution to the spatially discrete 

total variation flow with initial value u5, and {u~n)};;'~~) be a sequence generated by the modified minimizing 
movement scheme with initial value u5. Then, we have 

llu(t(n)) - U~n) Ilk,. :','. eCot<n) llu5 - U6llk,. + t(n)eCot<n\C1 T + C2T2) 

for all n = 0, 1, ... , N(T), where Co, C1, and C2 are constants independent of u and { u~n)};;"~t 

In particular, if u/i = u5, then we have an 0( T 112 )-convergence of the numerical solution to the spatially 
discrete total variation flow. 

3 Numerical examples 

In this section, we show the results of numerical experiments for the cases of M = 82 and M = 80(3). 

3.1 M = S2 

In [4], an example of constrained total variation flow, which does not reach the stationary point in finite time, 
is shown. More precisely, the following theorem holds. 

Theorem 3.1. Let a, b E 8 2 be two points represented by a = (a1, a 2, 0) and b = (a1, -a2, 0) for some 
a1, a2 E [-1, 1 l with ar + a~ = 1 and a1 > 0. Take arbitrary ho E 8 2 n { X2 = 0} whose X3-coordinate does not 
vanish. Then, for any L > 0 and 0 < li < l2 < L, the total variation flow u: [0, oo)-+ L2 ((0, L); 8 2 ) starting 
from the initial value 

is given by 

u(t) = al(o,i,) + h(t)l(t,,l,) + bl(l,,L) 

and h(t) converges to (1, 0, 0) as t-+ oo but does not reach it in finite time. 

The function h(t) = (h1(t), 0, h2(t)) in the theorem can be characterized as a solution to the following 
system of ordinary differential equations: 

d v2a1 2 
-d (h1, h3) = - . ~(h1 - 1, h1h3), (3.1) 

t cv 1 - a1h1 

where c = 12 - h. We use this solution as a benchmark task for our numerical scheme. 
In order to visualize the numerical results, we adopt the Euler angle representation. More precisely, the 

Euler angle representation of a point ( x, y, z) in 8 2 is given by 

(x, y, z) = (sin 0 sin q',, sin 0 cos q',, cos 0), 

and we plot the angle 0. Figure 1 shows the result of the numerical computation. The reference solution is 
computed using the explicit Euler method for the system of ordinary differential equations (3.1) with time 
step size 10-6 . The numerical solution plots the solution obtained by applying the modified minimizing 
movement scheme. It can be seen that their time evolution are similar. Figure 2 shows how the error decays 
as the time step size T of the numerical solution becomes smaller and smaller, and it can be seen that the 
error decays in the first order of T. On the other hand, the result presented in Theorem 2. 7 is of the order of 
1/2, which means that there is room for improvement in the error analysis. 

3.2 M = S0(3) 

In M = 80(3), the numerical solution cannot be compared with a simple reference solution, unlike M = 8 2 • 

In this subsection, we will check whether the facet-preserving phenomena, a facet's property to evolve in 
time while preserving its structure as much as possible, holds with time evolution to determine whether the 
numerical computation is successful. Figure 3 plots the time evolution of the Euler angles, showing that the 
facet-preserving phenomena are indeed observed and that our numerical scheme works well also in this case. 



6

~ ~ M M ~ M V M M 

(a) Reference solution 
~ ~ M M ~ M V M M 

(b) Numerical solution 

Figure 1: Comparison of numerical solution with numerical solution. The vertical axis represents the value 
of the Euler angle 0. 

Figure 2: L 2 error between reference solution and numerical solution. 

4 Kobayashi-Warren-Carter energy with fidelity 

By modifying the numerical scheme constructed in the preceding sections for spatially discrete total variation 
flows accordingly, we can perform numerical computation for the L2 gradient flows of the KWC energy Ekwc. 
The time evolution of u is computed by the modified minimizing movement scheme. In contrast, the time 
evolution of v is computed by the discrete gradient method, enabling the numerical solution to satisfy the 
energy dissipation property in a discrete sense. 

In this section, we briefly describe our recent efforts to apply the KWC model to data analysis, rather 
than just numerical computation of the L 2 gradient flow of the KWC energy. The KWC energy Ekwc is 
very similar to the Ambrosio-Tortorelli (AT) energy without fidelity 

The only difference being the exponent of l'vul in the first term's integrand is either 1 or 2. EAT can be 
regarded as inhomogenization of the Dirichlet energy plus single-well MM functional. Given this observation, 
Ekwc can be interpreted as inhomogenization of the total variation plus the single-well MM functional. 

In data analysis, especially image processing, the AT energy with fidelity has been often used. It is defined 
by 
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Figure 3: Time evolution of total variation flow in the case of M = S0(3). 
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where f represents the reference image data. The basic idea is to compute the £ 2 gradient flow of this energy 
to obtain a smooth reconstruction of the original data from the noisy data. The similar idea is to use the 
KWC energy with fidelity: 

E'i~c( u, v; f) := Ekwd u, V) + _!_ r ( U - !)2 dx. 
2µ lo 

Since the first term in the KWC energy is inhomogenization of the total variation, we expect that the £ 2 

gradient flow of the KWC energy with fidelity can remove noise from the image while preserving sharp edge 
structure. 

Another interesting research topic is the singular limit of the KWC energy as E tends to O and its numerical 
analysis. In [6], a precise analysis of the singular limit that tends E to O is given for the KWC energy defined 
on a one-dimensional interval. Based on this work, we have developed a numerical scheme for the limit 
KWC model. We are also beginning to understand that there are several stationary solutions to the KWC 
model with fidelity, and we are discussing the structure (e.g., number and size) of facets and the stability of 
stationary solutions. 
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