On an overdetermined problem for composite materials

Lorenzo Cavallina (Mathematical Institute, Tohoku University) cavallina.lorenzo.e6@tohoku.ac.jp

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain of class \mathcal{C}^{2} and let $D \subset \bar{D} \subset \Omega$ be an open set. Let $\sigma_{c} \neq 1$ be a positive constant and let σ denote the following piece-wise constant function:

$$
\begin{equation*}
\sigma:=\sigma_{c} \mathcal{X}_{D}+\mathcal{X}_{\Omega \backslash D}, \tag{1.1}
\end{equation*}
$$

where \mathcal{X}_{A} is the characteristic function of the set A (i.e., $\mathcal{X}_{A}(x)$ is 1 if $x \in A$ and 0 otherwise). We consider the following overdetermined problem:

Problem 1. Find the pairs (D, Ω) for which the solution of

$$
\begin{equation*}
-\operatorname{div}(\sigma \nabla u)=1 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

also satisfies the overdetermined condition

$$
\begin{equation*}
\partial_{n} u \equiv \text { const. } \quad \text { on } \partial \Omega, \tag{1.3}
\end{equation*}
$$

where ∂_{n} denotes the (outward) normal derivative on $\partial \Omega$.

Figure 1: Problem setting.

Remark 1.1. Any pair of concentric balls $\left(D_{0}, \Omega_{0}\right)$ is a solution of Problem 1 (trivial solution).
Remark 1.2. Serrin [Se] showed that, when $D=\emptyset$, the only solution of class \mathcal{C}^{2} of Problem 1 is given by $\Omega=$ ball.

Remark 1.3. Sakaguchi [Sa] showed that, when Ω is a ball and D is an open set of class \mathcal{C}^{2} with finitely many connected components and such that $\Omega \backslash \bar{D}$ is connected, then Problem 1 is solvable if and only if D and Ω are concentric balls.

Remark 1.4. By the (local) result of $[K N]$, if (D, Ω) is a classical solution of Problem 1, then $\partial \Omega$ is an analytic surface.

2 Variational interpretation of Problem 1

For a fixed bounded open set D, let

$$
\begin{equation*}
E_{D}(\Omega)=\int_{\Omega} \sigma|\nabla u|^{2}, \tag{2.4}
\end{equation*}
$$

where σ is the piece-wise constant function (1.1) and u denotes the solution to (1.2). Now, for some constant $V_{0}>|D|$ consider the following constrained maximization problem:

Problem 2.

$$
\begin{equation*}
\max \left\{E_{D}(\Omega): \Omega \supset \bar{D}, \quad|\Omega|=V_{0}\right\} \tag{2.5}
\end{equation*}
$$

Proposition 2.1. Let Ω be a bounded domain of class \mathcal{C}^{2}. If Ω is a critical shape for Problem 2, then u satisfies the overdetermined condition (1.3).

Proof. By hypothesis Ω is a critical shape for the following Lagrangian

$$
\mathcal{L}(\Omega):=E_{D}(\Omega)-\mu|\Omega|
$$

for some suitable Lagrange multiplier μ. Computing the shape derivative of \mathcal{L} with respect to some perturbation field $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ yields (see [Ca2, Theorem 4.2]):

$$
\mathcal{L}^{\prime}(\Omega)[h]=\int_{\partial \Omega}\left|\partial_{n} u\right|^{2} h \cdot n-\mu \int_{\partial \Omega} h \cdot n .
$$

Now, since by hypothesis $\mathcal{L}^{\prime}(\Omega)[h]=0$ for all perturbation fields h, we must have $\left|\partial_{n} u\right|^{2} \equiv \mu$ on $\partial \Omega$. In other words, u satisfies (1.3) as claimed.

Definition 2.2. We say that a solution (D, Ω) of Problem 1 is a variational solution if it is a local extremizer of Problem 2. Otherwise, we say that (D, Ω) is a saddle-type solution.

Remark 2.3. Critical shapes for Problem 2 (that is solutions to Problem 1) are not necessarily variational solutions. Indeed, as shown in [Ca1], the trivial solution $\left(D_{0}, \Omega_{0}\right)$ is of saddle-type for $\sigma_{c} \in(0,1)$ and a variational solution (local maximizer) for $\sigma_{c} \in(1, \infty)$.

3 Known results (local behavior near trivial solutions)

Let $\left(D_{0}, \Omega_{0}\right)$ denote the trivial solution given by the concentric balls centered at the origin with radii R and 1 respectively $(0<R<1)$. Moreover, for $k \in \mathbb{N}$, let

$$
\begin{aligned}
s(k) & :=\frac{k(N+k-1)-(N+k-2)(k-1) R^{2-N-2 k}}{k(N+k-1)+k(k-1) R^{2-N-2 k}}, \\
\Sigma & :=\{s \in(0, \infty): s=s(k) \text { for some } k \in \mathbb{N}\}
\end{aligned}
$$

Depending on whether σ_{c} belongs to Σ or not, the local behavior of solutions near (D_{0}, Ω_{0}) changes drastically.

Theorem 3.1 (Local existence for $\sigma_{c} \notin \Sigma$, [CY1]). If $\sigma_{c} \notin \Sigma$, then for every domain D of class $\mathcal{C}^{2, \alpha}$ sufficiently close to D_{0}, there exists a domain Ω of class $\mathcal{C}^{2, \alpha}$ sufficiently close to Ω_{0} (and with the same volume of $\left.\Omega_{0}\right)$ such that the pair (D, Ω) solves Problem 1.

Theorem 3.2 (Bifurcation phenomenon around $\sigma_{c}=s(k)$, [CY2]). The values $\sigma_{c}=s(k)$ are bifurcation points for Problem 1 in the following sense. There exists a function $t \mapsto \lambda(t) \in \mathbb{R}$ and a continuous branch of the form $\left(D_{0}, \Omega_{t}\right)$ that solves Problem 1 for $\sigma_{c}=s(k)+\lambda(t)$ for small $|t|$. Moreover, Ω_{t} is a ball only for $t=0$.

Remark 3.3. A simple calculation yields that $s(k)<1$. As a result, for $\sigma_{c}>1$ we always have local existence for Problem 1 near trivial solutions. Moreover, by Remark 2.3 we know that such solutions are of variational type in a small enough neighborhood. Similarly, we know that the symmetry-breaking solutions given by Theorem 3.2 are of saddle type in a neighborhood of $\sigma_{c}=s(k)$.

Figure 2: Bifurcation diagram for Problem 1 (Theorem 3.2).

Remark 3.4. The result of Theorem 3.1 can be extended to Lipschitz continuous perturbations of D_{0} in a similar way (see [Ca3]). This yields the existence of nontrivial solutions of the form (D, Ω), where ∂D is Lipschitz continuous and $\partial \Omega$ is an analytic surface.
Remark 3.5. There are only a finite number of $k \in \mathbb{N}$ such that $s(k)>0$. In other words, for any given radius $R \in(0,1)$ there is only a finite number of bifurcation points in the sense of Theorem 3.2.

4 Numerical computation of the solutions

The study of solutions of Problem 1 has also been treated numerically ([CY1]), employing a steepestdescent algorithm based on the following Kohn-Vogelius functional. For given D, let

$$
\mathcal{F}(\Omega):=\int_{\Omega} \sigma|\nabla v-\nabla w|^{2}
$$

where v is the unique solution of (1.2) and w is the unique solution of the following Neumann boundary value problem:

$$
-\operatorname{div}(\sigma \nabla w)=1 \quad \text { in } \Omega, \quad \partial_{n} w=-|\Omega| /|\partial \Omega| \quad \text { on } \partial \Omega, \quad \int_{\partial \Omega} w=0
$$

Remark 4.1. By construction, $\mathcal{F}(\Omega) \geq 0$ for all domains $\Omega \supset \bar{D}$ and $\mathcal{F}(\Omega)=0$ if and only if (D, Ω) solves Problem 1.

In what follows, let D be fixed. By Remark 4.1, it is clear (D, Ω) is a solution of Problem 1 with $|\Omega|=V_{0}$ if and only if Ω is a solution of the following minimization problem.
Problem 3. Minimize the following augmented Lagrangian:

$$
\mathcal{L}(\Omega):=\mathcal{F}(\Omega)-\mu G(\Omega)+\frac{b}{2} G(\Omega)^{2}, \quad G(\Omega):=\frac{|\Omega|-V_{0}}{V_{0}}
$$

where μ is a Lagrange multiplier and $b>0$ is a large parameter.
In order to solve Problem 3 (and hence Problem 1) numerically, we first need to find the steepest descent direction of \mathcal{L}, which we obtain by computing the shape derivative of \mathcal{L} with respect to a smooth perturbation field $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$. We get:

$$
\mathcal{L}^{\prime}(\Omega)(h)=\int_{\partial \Omega} \phi h \cdot n
$$

where $\phi:=\left(-|\nabla w|^{2}+2 w+2 c H w-|\nabla v|^{2}+2 c^{2}-\mu+b \frac{|\Omega|-V_{0}}{V_{0}^{2}}\right)$. In particular, notice that $h^{\star}=-\phi n$ is a descent direction, because $\mathcal{L}^{\prime}(\Omega)\left(h^{\star}\right)=-\int_{\partial \Omega} \phi^{2}<0$. By the above, we obtain the following steepest descent algorithm:

Fix an initial shape Ω_{0}. For $k=0,1, \ldots$, until convergence:

1. Compute the descent direction $h^{\star}:=-\phi n$ corresponding to the domain Ω_{k}.
2. Update the shape according to $\Omega_{k+1}:=\left(\operatorname{Id}+\varepsilon h^{\star}\right)\left(\Omega_{k}\right)$ for some small parameter $\varepsilon>0$.
3. Repeat

In what follows we can see that the numerical results are in line with the expected results (Figure 4 shows the numerical approximation computed by the algorithm above, while Figure 5 shows the first-order approximation of the solution as given by the corollary of Theorem 3.1.)

Figure 3: Initial shape

Figure 4: Final shape

Figure 5: Analytical result

Figure 4, in particular, suggests that the solution Ω "inherits the geometry" of D. This is indeed the case. Nevertheless, it is worth mentioning that the way the geometry of D is inherited also depends on the coefficient σ_{c}, as shown in the following figures.

Figure 6: Final shape for $\sigma_{c}=10$

Figure 7: Final shape for $\sigma_{c}=0.1$

Finally, we will consider the cases when the effect of D is negligible, that is when D is either small or σ_{c} is close to 1 . The numerical results below suggest that, in both cases, the solution Ω is close to being a ball. This result has been made precise in a quantitative sense and proven rigorously in [CPY].

Figure 8: When D is small

Figure 9: When σ_{c} is close to 1

5 What is left to do: a peek into global existence

We are left with one big open problem, that is, the global existence of solutions for Problem 1.
Conjecture 5.1. Let $D \subset \mathbb{R}^{N}$ be a bounded open set and let $\sigma_{c}>0$. Then there exists some bounded domain $\Omega \supset \bar{D}$ such that the pair (D, Ω) is a solution to Problem 1.

We can think of two possible approaches:

- Variational approach. Find a solution of Problem 2 in the class of quasi-open sets by the variational method of Buttazzo-Dal Maso ([BD]) and then bootstrap the regularity of the solution obtained. Downside: by this method, we cannot find saddle-type solutions.
- Perturbation approach. Take a very large ball $\Omega_{0} \supset \bar{D}$. Since D is very small in comparison, notice that the pair $\left(D, \Omega_{0}\right)$ is close to being a solution to Problem 1 (see [CPY] for the precise result). Then, construct the solution Ω as a suitable perturbation of Ω_{0} by the implicit function theorem. Downside: by this method, we can only find solutions with $|\Omega| \gg|D|$.

Acknowledgment

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

[BD] G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rat. Mech. Anal., 122 (1993), 183--195.
[Ca1] L. Cavallina, Stability analysis of the two-phase torsional rigidity near a radial configuration. Applicable Analysis (2018) https://www.tandfonline.com/doi/full/10.1080/00036811.2018.1478082
[Ca2] L. Cavallina, Analysis of two-phase shape optimization problems by means of shape derivatives (Doctoral dissertation). Tohoku University, Sendai, Japan, (2018). arXiv:1904.10690
[Ca3] L. CAVALLINA, The simultaneous asymmetric perturbation method for overdetermined free boundary problems. (In preparation)
[CPY] L.Cavallina, G. Poggesi, T. Yachimura, Quantitative stability estimates for a two-phase Serrin-type overdetermined problem under close to one-phase setting. (In preparation)
[CY1] L. CaVallina, T. Yachimura, On a two-phase Serrin-type problem and its numerical computation, ESAIM: Control, Optimisation and Calculus of Variations (2020). https://doi.org/10.1051/cocv/2019048
[CY2] L. CaVallina, T. Yachimura, Symmetry breaking solutions for a two-phase overdetermined problem of Serrin-type. https://arxiv.org/abs/2001.10212
[KN] D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 4 no. 2, (1977), 373-391.
[Sa] S. SaKAGUChI, Two-phase heat conductors with a stationary isothermic surface and their related elliptic overdetermined problems, RIMS Kôkyûroku Bessatsu B80 (2020), 113-132.
[Se] J. Serrin, A symmetry problem in potential theory. Arch. Rat. Mech. Anal., 43 (1971), 304-318.

