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1 Introduction 

Let n C ]RN (N 2 2) be a bounded domain of class C2 and let DC I5 C n be an open set. Let ac =/ l 
be a positive constant and let a denote the following piece-wise constant function: 

where XA is the characteristic function of the set A (i.e., XA(x) is 1 if x E A and O otherwise). We 
consider the following overdetermined problem: 

Problem 1. Find the pairs (D, n) for which the solution of 

- div (av'u) = 1 inn, 

also satisfies the overdetermined condition 

u = 0 on an, 

OnU = const. on an, 

where On denotes the (outward) normal derivative on on. 

□ = 1 

n 

Figure 1: Problem setting. 

(1.2) 

(1.3) 

Remark 1.1. Any pair of concentric balls (Do, no) is a solution of Problem 1 (trivial solution). 

Remark 1.2. Serrin [Se} showed that, when D = 0, the only solution of class C2 of Problem 1 is given 
by n =ball. 

Remark 1.3. Sakaguchi [Sa} showed that, when n is a ball and D is an open set of class C2 with finitely 
many connected components and such that n \ I5 is connected, then Problem 1 is solvable if and only if 
D and n are concentric balls. 

Remark 1.4. By the (local) result of [KN}, if (D, n) is a classical solution of Problem 1, then an is an 
analytic surf ace. 
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2 Variational interpretation of Problem 1 

For a fixed bounded open set D, let 

(2.4) 

where u is the piece-wise constant function (1.1) and u denotes the solution to (1.2). Now, for some 
constant V0 > IDI consider the following constrained maximization problem: 

Problem 2. 
(2.5) 

Proposition 2.1. Let n be a bounded domain of class C2 • If n is a critical shape for Problem 2, then u 
satisfies the overdetermined condition (1.3). 

Proof. By hypothesis n is a critical shape for the following Lagrangian 

for some suitable Lagrange multiplier µ. Computing the shape derivative of £ with respect to some 
perturbation field h: JE.N --+ JE.N yields (see [Ca2, Theorem 4.2]): 

Now, since by hypothesis £'(!1)[h] = 0 for all perturbation fields h, we must have l8nul 2 =µon an. In 
other words, u satisfies (1.3) as claimed. □ 

Definition 2.2. We say that a solution (D, !1) of Problem 1 is a variational solution if it is a local 
extremizer of Problem 2. Otherwise, we say that (D, !1) is a saddle-type solution. 

Remark 2.3. Critical shapes for Problem 2 (that is solutions to Problem 1) are not necessarily variational 
solutions. Indeed, as shown in [Cal}, the trivial solution (Do, flo) is of saddle-type for Uc E (0, 1) and a 
variational solution (local maximizer} for Uc E (1, oo). 

3 Known results (local behavior near trivial solutions) 

Let (Do, !10 ) denote the trivial solution given by the concentric balls centered at the origin with radii R 
and 1 respectively (0 < R < 1). Moreover, for k EN, let 

k(N + k - 1) - (N + k - 2)(k - l)R2-N-2k 

s(k) := k(N + k - 1) + k(k - l)R2-N-2k ' 

I::={sE(0,oo): s=s(k) forsomekEN}. 

Depending on whether Uc belongs to I: or not, the local behavior of solutions near (Do, flo) changes 
drastically. 

Theorem 3.1 (Local existence for Uc (/:: I:, [CYl]). If Uc(/:: I:, then for every domain D of class C2•"' 

sufficiently close to D 0 , there exists a domain n of class C2•"' sufficiently close to !10 (and with the same 
volume of !10 ) such that the pair (D,!1) solves Problem 1. 

Theorem 3.2 (Bifurcation phenomenon around Uc= s(k), [CY2]). The values Uc= s(k) are bifurcation 
points for Problem 1 in the following sense. There exists a function t >-+ A(t) E lR and a continuous 
branch of the form (Do, flt) that solves Problem 1 for Uc = s(k) + A(t) for small ltl. Moreover, flt is a 
ball only fort= 0. 

Remark 3.3. A simple calculation yields that s(k) < l. As a result, for Uc > 1 we always have local 
existence for Problem 1 near trivial solutions. Moreover, by Remark 2.3 we know that such solutions 
are of variational type in a small enough neighborhood. Similarly, we know that the symmetry-breaking 
solutions given by Theorem 3.2 are of saddle type in a neighborhood of Uc= s(k). 
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s(k) 

Figure 2: Bifurcation diagram for Problem 1 ( Theorem 3.2). 

Remark 3.4. The result of Theorem 3.1 can be extended to Lipschitz continuous perturbations of Do in 
a similar way (see [Ca3}). This yields the existence of nontrivial solutions of the form (D, 0), where 8D 
is Lipschitz continuous and 80 is an analytic surface. 

Remark 3.5. There are only a finite number of k EN such that s(k) > 0. In other words, for any given 
radius RE (0, 1) there is only a finite number of bifurcation points in the sense of Theorem 3.2. 

4 Numerical computation of the solutions 

The study of solutions of Problem 1 has also been treated numerically ([CYl]), employing a steepest
descent algorithm based on the following Kohn-Vogelius functional. For given D, let 

F(O) := L alv'v - v'wl 2 , 

where v is the unique solution of (1.2) and w is the unique solution of the following Neumann boundary 
value problem: 

-div(av'w)=l inO, lao w = 0. 

Remark 4.1. By construction, F(O) 2: 0 for all domains n :) I5 and F(O) = 0 if and only if (D, 0) 
solves Problem 1. 

In what follows, let D be fixed. By Remark 4.1, it is clear (D, 0) is a solution of Problem 1 with 
IOI = Vo if and only if n is a solution of the following minimization problem. 

Problem 3. Minimize the following augmented Lagrangian: 

where µ is a Lagrange multiplier and b > 0 is a large parameter. 

In order to solve Problem 3 (and hence Problem 1) numerically, we first need to find the steepest 
descent direction of£, which we obtain by computing the shape derivative of£ with respect to a smooth 
perturbation field h: m.N--+ m.N_ We get: 

£'(0)(h) = { q; h. n, 
lao 

where q; := (-lv'wl 2 + 2w + 2cHw - lv'vl 2 + 2c2 - µ + b 10l~t0 ). In particular, notice that h* = -</Jn 

is a descent direction, because £'(0)(h*) = - fao </;2 < 0. By the above, we obtain the following steepest 
descent algorithm: 
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Fix an initial shape 0 0 . Fork= 0, 1, ... , until convergence: 

1. Compute the descent direction h* := -</m corresponding to the domain nk. 

2. Update the shape according to nk+l :=(Id+ ch*)(Ok) for some small parameter c > 0. 

3. Repeat 

In what follows we can see that the numerical results are in line with the expected results (Figure 4 
shows the numerical approximation computed by the algorithm above, while Figure 5 shows the first-order 
approximation of the solution as given by the corollary of Theorem 3.1.) 

D 
Figure 3: Initial shape Figure 4: Final shape Figure 5: Analytical result 

Figure 4, in particular, suggests that the solution n "inherits the geometry" of D. This is indeed the 
case. Nevertheless, it is worth mentioning that the way the geometry of D is inherited also depends on 
the coefficient Uc, as shown in the following figures. 

Figure 6: Final shape for Uc = 10 Figure 7: Final shape for Uc= 0.1 

Finally, we will consider the cases when the effect of D is negligible, that is when D is either small or 
Uc is close to 1. The numerical results below suggest that, in both cases, the solution n is close to being 
a ball. This result has been made precise in a quantitative sense and proven rigorously in [CPY]. 

Figure 8: When D is small Figure 9: When Uc is close to 1 
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5 What is left to do: a peek into global existence 

We are left with one big open problem, that is, the global existence of solutions for Problem 1. 

Conjecture 5.1. Let D C JRN be a bounded open set and let CYc > 0. Then there exists some bounded 
domain fl :::i I5 such that the pair (D, fl) is a solution to Problem 1. 

We can think of two possible approaches: 

• Variational approach. Find a solution of Problem 2 in the class of quasi-open sets by the 
variational method of Buttazzo-Dal Maso ([BD]) and then bootstrap the regularity of the solution 
obtained. Downside: by this method, we cannot find saddle-type solutions. 

• Perturbation approach. Take a very large ball fl 0 :::i D. Since D is very small in comparison, 
notice that the pair (D, 0 0 ) is close to being a solution to Problem 1 (see [CPY] for the precise 
result). Then, construct the solution fl as a suitable perturbation of flo by the implicit function 
theorem. Downside: by this method, we can only find solutions with lfll » IDI. 
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