On an overdetermined problem for composite materials

LORENZO CAVALLINA (Mathematical Institute, Tohoku University) cavallina.lorenzo.e6@tohoku.ac.jp

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ be a bounded domain of class C^2 and let $D \subset \overline{D} \subset \Omega$ be an open set. Let $\sigma_c \neq 1$ be a positive constant and let σ denote the following piece-wise constant function:

$$\sigma \coloneqq \sigma_c \ \mathcal{X}_D + \mathcal{X}_{\Omega \setminus D},\tag{1.1}$$

where \mathcal{X}_A is the characteristic function of the set A (i.e., $\mathcal{X}_A(x)$ is 1 if $x \in A$ and 0 otherwise). We consider the following overdetermined problem:

Problem 1. Find the pairs (D, Ω) for which the solution of

$$-\operatorname{div}\left(\sigma\nabla u\right) = 1 \quad in \ \Omega, \qquad u = 0 \quad on \ \partial\Omega, \tag{1.2}$$

also satisfies the overdetermined condition

$$\partial_n u \equiv \text{const.} \quad on \ \partial\Omega,$$
 (1.3)

where ∂_n denotes the (outward) normal derivative on $\partial\Omega$.

Figure 1: Problem setting.

Remark 1.1. Any pair of concentric balls (D_0, Ω_0) is a solution of Problem 1 (trivial solution).

Remark 1.2. Serrin [Se] showed that, when $D = \emptyset$, the only solution of class C^2 of Problem 1 is given by $\Omega = ball$.

Remark 1.3. Sakaguchi [Sa] showed that, when Ω is a ball and D is an open set of class C^2 with finitely many connected components and such that $\Omega \setminus \overline{D}$ is connected, then Problem 1 is solvable if and only if D and Ω are concentric balls.

Remark 1.4. By the (local) result of [KN], if (D, Ω) is a classical solution of Problem 1, then $\partial \Omega$ is an analytic surface.

2 Variational interpretation of Problem 1

For a fixed bounded open set D, let

$$E_D(\Omega) = \int_{\Omega} \sigma |\nabla u|^2, \qquad (2.4)$$

where σ is the piece-wise constant function (1.1) and u denotes the solution to (1.2). Now, for some constant $V_0 > |D|$ consider the following constrained maximization problem:

Problem 2.

$$\max\left\{E_D(\Omega) : \Omega \supset \overline{D}, \quad |\Omega| = V_0\right\}.$$
(2.5)

Proposition 2.1. Let Ω be a bounded domain of class C^2 . If Ω is a critical shape for Problem 2, then u satisfies the overdetermined condition (1.3).

Proof. By hypothesis Ω is a critical shape for the following Lagrangian

r

$$\mathcal{L}(\Omega) := E_D(\Omega) - \mu |\Omega|$$

for some suitable Lagrange multiplier μ . Computing the shape derivative of \mathcal{L} with respect to some perturbation field $h : \mathbb{R}^N \to \mathbb{R}^N$ yields (see [Ca2, Theorem 4.2]):

$$\mathcal{L}'(\Omega)[h] = \int_{\partial\Omega} |\partial_n u|^2 \ h \cdot n - \mu \int_{\partial\Omega} h \cdot n.$$

Now, since by hypothesis $\mathcal{L}'(\Omega)[h] = 0$ for all perturbation fields h, we must have $|\partial_n u|^2 \equiv \mu$ on $\partial\Omega$. In other words, u satisfies (1.3) as claimed.

Definition 2.2. We say that a solution (D, Ω) of Problem 1 is a variational solution if it is a local extremizer of Problem 2. Otherwise, we say that (D, Ω) is a saddle-type solution.

Remark 2.3. Critical shapes for Problem 2 (that is solutions to Problem 1) are not necessarily variational solutions. Indeed, as shown in [Ca1], the trivial solution (D_0, Ω_0) is of saddle-type for $\sigma_c \in (0, 1)$ and a variational solution (local maximizer) for $\sigma_c \in (1, \infty)$.

3 Known results (local behavior near trivial solutions)

Let (D_0, Ω_0) denote the trivial solution given by the concentric balls centered at the origin with radii Rand 1 respectively (0 < R < 1). Moreover, for $k \in \mathbb{N}$, let

$$s(k) := \frac{k(N+k-1) - (N+k-2)(k-1)R^{2-N-2k}}{k(N+k-1) + k(k-1)R^{2-N-2k}},$$

$$\Sigma := \{s \in (0,\infty) : s = s(k) \text{ for some } k \in \mathbb{N}\}.$$

Depending on whether σ_c belongs to Σ or not, the local behavior of solutions near (D_0, Ω_0) changes drastically.

Theorem 3.1 (Local existence for $\sigma_c \notin \Sigma$, [CY1]). If $\sigma_c \notin \Sigma$, then for every domain D of class $C^{2,\alpha}$ sufficiently close to D_0 , there exists a domain Ω of class $C^{2,\alpha}$ sufficiently close to Ω_0 (and with the same volume of Ω_0) such that the pair (D, Ω) solves Problem 1.

Theorem 3.2 (Bifurcation phenomenon around $\sigma_c = s(k)$, [CY2]). The values $\sigma_c = s(k)$ are bifurcation points for Problem 1 in the following sense. There exists a function $t \mapsto \lambda(t) \in \mathbb{R}$ and a continuous branch of the form (D_0, Ω_t) that solves Problem 1 for $\sigma_c = s(k) + \lambda(t)$ for small |t|. Moreover, Ω_t is a ball only for t = 0.

Remark 3.3. A simple calculation yields that s(k) < 1. As a result, for $\sigma_c > 1$ we always have local existence for Problem 1 near trivial solutions. Moreover, by Remark 2.3 we know that such solutions are of variational type in a small enough neighborhood. Similarly, we know that the symmetry-breaking solutions given by Theorem 3.2 are of saddle type in a neighborhood of $\sigma_c = s(k)$.

Figure 2: Bifurcation diagram for Problem 1 (Theorem 3.2).

Remark 3.4. The result of Theorem 3.1 can be extended to Lipschitz continuous perturbations of D_0 in a similar way (see [Ca3]). This yields the existence of nontrivial solutions of the form (D, Ω) , where ∂D is Lipschitz continuous and $\partial \Omega$ is an analytic surface.

Remark 3.5. There are only a finite number of $k \in \mathbb{N}$ such that s(k) > 0. In other words, for any given radius $R \in (0, 1)$ there is only a finite number of bifurcation points in the sense of Theorem 3.2.

4 Numerical computation of the solutions

The study of solutions of Problem 1 has also been treated numerically ([CY1]), employing a steepestdescent algorithm based on the following Kohn–Vogelius functional. For given D, let

$$\mathcal{F}(\Omega) := \int_{\Omega} \sigma |\nabla v - \nabla w|^2$$

where v is the unique solution of (1.2) and w is the unique solution of the following Neumann boundary value problem:

$$-\operatorname{div}\left(\sigma\nabla w\right) = 1$$
 in Ω , $\partial_n w = -|\Omega|/|\partial\Omega|$ on $\partial\Omega$, $\int_{\partial\Omega} w = 0$.

Remark 4.1. By construction, $\mathcal{F}(\Omega) \geq 0$ for all domains $\Omega \supset \overline{D}$ and $\mathcal{F}(\Omega) = 0$ if and only if (D, Ω) solves Problem 1.

In what follows, let D be fixed. By Remark 4.1, it is clear (D, Ω) is a solution of Problem 1 with $|\Omega| = V_0$ if and only if Ω is a solution of the following minimization problem.

Problem 3. Minimize the following augmented Lagrangian:

$$\mathcal{L}(\Omega) := \mathcal{F}(\Omega) - \mu G(\Omega) + \frac{b}{2} G(\Omega)^2, \qquad G(\Omega) := \frac{|\Omega| - V_0}{V_0},$$

where μ is a Lagrange multiplier and b > 0 is a large parameter.

In order to solve Problem 3 (and hence Problem 1) numerically, we first need to find the steepest descent direction of \mathcal{L} , which we obtain by computing the shape derivative of \mathcal{L} with respect to a smooth perturbation field $h : \mathbb{R}^N \to \mathbb{R}^N$. We get:

$$\mathcal{L}'(\Omega)(h) = \int_{\partial\Omega} \phi \ h \cdot n,$$

where $\phi := \left(-|\nabla w|^2 + 2w + 2cHw - |\nabla v|^2 + 2c^2 - \mu + b \frac{|\Omega| - V_0}{V_0^2}\right)$. In particular, notice that $h^* = -\phi n$ is a descent direction, because $\mathcal{L}'(\Omega)(h^*) = -\int_{\partial\Omega} \phi^2 < 0$. By the above, we obtain the following steepest descent algorithm:

Fix an initial shape Ω_0 . For $k = 0, 1, \ldots$, until convergence:

- 1. Compute the descent direction $h^* := -\phi n$ corresponding to the domain Ω_k .
- 2. Update the shape according to $\Omega_{k+1} := (\mathrm{Id} + \varepsilon h^*)(\Omega_k)$ for some small parameter $\varepsilon > 0$.
- 3. Repeat

In what follows we can see that the numerical results are in line with the expected results (Figure 4 shows the numerical approximation computed by the algorithm above, while Figure 5 shows the first-order approximation of the solution as given by the corollary of Theorem 3.1.)

Figure 4, in particular, suggests that the solution Ω "inherits the geometry" of D. This is indeed the case. Nevertheless, it is worth mentioning that the way the geometry of D is inherited also depends on the coefficient σ_c , as shown in the following figures.

Figure 6: Final shape for $\sigma_c = 10$

Figure 7: Final shape for $\sigma_c = 0.1$

Finally, we will consider the cases when the effect of D is negligible, that is when D is either small or σ_c is close to 1. The numerical results below suggest that, in both cases, the solution Ω is close to being a ball. This result has been made precise in a quantitative sense and proven rigorously in [CPY].

Figure 8: When D is small

Figure 9: When σ_c is close to 1

5 What is left to do: a peek into global existence

We are left with one big open problem, that is, the global existence of solutions for Problem 1.

Conjecture 5.1. Let $D \subset \mathbb{R}^N$ be a bounded open set and let $\sigma_c > 0$. Then there exists some bounded domain $\Omega \supset \overline{D}$ such that the pair (D, Ω) is a solution to Problem 1.

We can think of two possible approaches:

- Variational approach. Find a solution of Problem 2 in the class of quasi-open sets by the variational method of Buttazzo–Dal Maso ([BD]) and then bootstrap the regularity of the solution obtained. Downside: by this method, we cannot find saddle-type solutions.
- **Perturbation approach.** Take a very large ball $\Omega_0 \supset \overline{D}$. Since D is very small in comparison, notice that the pair (D, Ω_0) is close to being a solution to Problem 1 (see [CPY] for the precise result). Then, construct the solution Ω as a suitable perturbation of Ω_0 by the implicit function theorem. **Downside:** by this method, we can only find solutions with $|\Omega| \gg |D|$.

Acknowledgment

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [BD] G. BUTTAZZO, G. DAL MASO, An existence result for a class of shape optimization problems. Arch. Rat. Mech. Anal., 122 (1993), 183–195.
- [Ca1] L. CAVALLINA, Stability analysis of the two-phase torsional rigidity near a radial configuration. Applicable Analysis (2018) https://www.tandfonline.com/doi/full/10.1080/00036811.2018.1478082
- [Ca2] L. CAVALLINA, Analysis of two-phase shape optimization problems by means of shape derivatives (Doctoral dissertation). Tohoku University, Sendai, Japan, (2018). arXiv:1904.10690
- [Ca3] L. CAVALLINA, The simultaneous asymmetric perturbation method for overdetermined free boundary problems. (In preparation)
- [CPY] L.CAVALLINA, G. POGGESI, T. YACHIMURA, Quantitative stability estimates for a two-phase Serrin-type overdetermined problem under close to one-phase setting. (In preparation)
- [CY1] L. CAVALLINA, T. YACHIMURA, On a two-phase Serrin-type problem and its numerical computation, ESAIM: Control, Optimisation and Calculus of Variations (2020). https://doi.org/10.1051/cocv/2019048
- [CY2] L. CAVALLINA, T. YACHIMURA, Symmetry breaking solutions for a two-phase overdetermined problem of Serrin-type. https://arxiv.org/abs/2001.10212
- [KN] D. KINDERLEHRER, L. NIRENBERG, Regularity in free boundary problems, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 4 no. 2, (1977), 373–391.
- [Sa] S. SAKAGUCHI, Two-phase heat conductors with a stationary isothermic surface and their related elliptic overdetermined problems, RIMS Kôkyûroku Bessatsu B80 (2020), 113–132.
- [Se] J. SERRIN, A symmetry problem in potential theory. Arch. Rat. Mech. Anal., 43 (1971), 304–318.