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ON A LOCAL INVERSION OF THE X-RAY TRANSFORM FROM ONE SIDED 
DATA 

HIROSHI FUJIWARA, KAMRAN SADIQ, AND ALEXANDRU TAMASAN 

ABSTRACT. We explain how the theory of A-analytic maps of A. Bukhgeim can apply to a local 
CT inversion problem, in which the data is restricted to lines leaning on a given arc. 

1. INTRODUCTION 

By the time the commercial CT became a widespread diagnostic method in medicine, it was 
also apparent that X-ray radiation is harmful to human body. In mitigation, the engineering and 
mathematics communities have proposed various methods to lower the radiation dosage, in par
ticular by inverting the Radon transform from a restricted set of lines. It is well known, that 
discretization of the set of directions leads to non-unique image reconstructions, see [11]. More
over, in two dimensions, the inversion of the classical Radon transform is non-local, and, thus, the 
usage of only those lines that pass through the region of interest may not be enough to uniquely 
invert it. Several works identify specific subsets of lines which still provide unique reconstruction 
in the region of interest. Among the mathematics works, which use, roughly, half the data set, we 
refer to [4, 23, 5] or, in the constant attenuation case to [17, 16, 13, 20, 22]; see also references 
below. 

In this brief note, we are concerned with the inversion question in which the (fan beam) data 
is collected from "one side". More precisely, let n c ~ 2 be a convex domain and A be an arc 
of its boundary I', see Figure 1 (left) below. The chord L joining the endpoints of the arc A 
partitions the domain in two subdomains n±, where n+ denotes the domain enclosed by A u L. 
For a function f compactly supported inn, we explain that unique determination of fin+ from 
its attenuated X-ray transform over lines leaning on A is theoretically possible. Note that, if f 
happens to also be supported in n-, then its X-ray data is incomplete: while the measurements 
are affected by the possible nonzero values of Jin-, an entire cone of directions through points in 
n- are missing in the data. 

The unique determination of f I 0 + does follow from the support theorem in [7]; also in the 
attenuated case provided the attenuation is analytic. However. those arguments have yet to yield 
a method of reconstruction. In here we use the theory of A-analytic maps originally developed by 
A. Bukhgeim in [8] to address the inversion of the attenuated X-ray transform from complete data 
set; see [3, 24] for the application to the attenuated case and [25, 26] for extensions to higher order 
tensors. For different approaches to the inversion of the attenuated X-ray transform from complete 
data we refer to the original work in [18, 19], and further developments in [15, 6, 4, 12, 14]. 

The unique determination result here follows from a Carleman type formula for A-analytic 
maps as in [1, 2]. The novelty of this work is in the explicit Carleman weight-operator, see 
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FIGURE 1. (left) Geometric setup: on+ = A u L. (right) Domain nt. 

equation (6) below, specifically tailored for the convex hull of the arc A. The arguments here 
have been recently refined by the authors to yield a reconstruction method in [10] via the explicit 
Bukhgeim-Cauchy operator in [9]. 

The X-ray transform off is given by, 

(1) X J (z, 0) := L: f (z + s0)ds, (z, 0) E n x S1. 

The reconstruction of f from its ray data is approached through the known equivalence be
tween the X-ray transform and the boundary value problems for the transport equation: Let 
I'± := {((,0) E I' x S1 : ±v(() • 0 > 0} denote the outgoing(+), respectively incoming 
(-) submanifolds of the unit tangent bundle of I', with v( () being the outer normal at ( E I' and 
0 is a direction in the unit sphere S1 . If u(z, 0) is the unique solution to 

(2a) 

(2b) 

then its trace on I'+ satisfies 

(3) 

0 · Vu(z, 0) = f (z) (z, 0) En x S1, 
ulr_ = 0, 

In our problem here the data X f is only available on 

A±:= {((,0) EA x S1 : ±v(() • 0 > 0}. 

Upon a rotation and translation of the domain n, we assume without loss of generality that the 
arc A lies in the upper half plane with the endpoints on the real axis lying symmetrically about the 
origin. In particular, n n {ITm z = 0} = L = (-l, l), for some l > 0. For E > 0, define 

(4) n: = {z ED: [mz > 1:}; 

see Figure 1 on the right. 
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2. A CARLEMAN TYPE FORMULA FOR £-ANALYTIC MAPS IN n+ 
In this section we breifly recall some known properties of A-analytic functions, on which our 

reconstruction method is based, and present an explicit Carleman weight operator tailored for n:. 
For z = x + iy, let 7J = (ox+ ioy) /2, and o = (ox - ioy) /2 be the Cauchy-Riemann operators. 

A sequence valued map n 3 z - u(z) := (u0 (z), u_ 1(z), u_2 (z), ... ) in C(TI; lro) n C1(D; lro) 
is called £-analytic, if 

(5) [a+ L'.o] u(z) = 0, Z E D, 

where L'. is the left shift operator, L'.(u0 , u_1, u_ 2 , • • •) = (u_1, u_ 2 , •••),and lro is the space of 
bounded sequences. Note that we use the sequences of non-positive indexes to conform with the 
notation in Bukhgeim's original work [8]. 

Unique determination off follows via a Carleman type formula as in [1], provided a suitable 
quenching function is known. In here we made explicit such a function tailored for the subdomain 
n+. More precisely, for >. > 0, we consider the Carleman weight operator function 

(6) 

and its inverse <1>:;:- 1 (z) <l>.x(-z). By direct computation, one can check that <l>.x satisfies the 
operator valued equation 

3<.P_x(z) + L'.o<l>_x(z) = e-i.XzeiXz£i).£ + £(-i.X)e-i.XzeiXz£ = 0. 

Consequently, if u(z) is £-analytic in n+, then <I> .x (z )u(z) is also £-analytic in n+, so its values 
can be determined from the boundary on+ = A u L by 

1 l -<l>.x(z)u(z) = -. (d( - L'.d()G(( - z)<I>.x(()u((), 
27rl AuL 

where G(z) = (z-L'.z)- 1 is the Green kernel for the differential operator in (5); see [8]. By using 
the commutating properties [<I>:;:-1(z), <l>.x( ()] = 0, and [ <1>:;:- 1 (z), L'.] = 0, for z E n+ and ( E Au L, 
we obtain 

(7) 1 l -u(z) = -. (d(- L'.d()G((- z)<l>.x((- z)u(() 
27r! AuL 

We consider for s E (0, 1), the following space 

The left shift operator L'. : z'?;,s ---> z'?;,s is bounded, and the operator norm 11£11 = s. 

Theorem 2.1. For E > 0, let n: c IR2 be the subdomain in (4), d be diameter of n+, and let 

s < i /Ju is £-analytic inn+ with ulL E z'?;,s(L), then it is uniquely determined by its trace on 

Aby 

(8) u(z) = lim -. (d( - L'.d()G(( - z)<l>.x(( - z)u((), 1 l -
.X---+ro 21r1 A 

where <l>.x is the Carleman weight operator in (6). 
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Proof For>. > 0, we consider the Carleman weight operator function <I>» in (6). We argue that 
the integral over the segment L in (7) vanishes in the limit with >. ---> oo, 

(9) lim I (d( - .Cd()G(( - z)<I>>.(( - z)u(() = 0. »-ool 
For z = x + iy En: and (EL, we haver:,:::; lz - (I ,:::; d and lei>.(z-()1 = e->.y,:;; e->.,_ If 11·11 

denotes the operator norm in z2,s, we obtain for any z E 0' that 

supll<I>»(( - z)II = llei>.(z-()e-i>.(:z-()£11,:::; e->.(e-sd)_ 
(EL 

Since s < i by letting >. ---> oo, we conclude (9) 

The source f is recovered in n:, by 

J(z) = 21Re{ou_1(z)}, 

□ 

where u_1 is the first component in (8). The reconstruction to n+ can be completed by a layer 
stripping argument. 
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