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1 Formulations and solutions 

Here, for the three inverse problems previously shown by Prof. Saito in his ab
stract, we present formurations and solutions for those problems using Tikhonov 
regularization. 

1) Inverse source problem in the Poisson equation([!]) 
We obtained very and surprisingly simple approximate solutions for the Poisson 
equation, for any L2 (Rn) function g, 

(1.1) 

in the class of the functions of the s order Sobolev Hilbert space H 8 on the 
whole real space Rn(n?: 1,s?: 2,s > n/2). 

We shall use the n order Sobolev Hilbert space Hn comprising functions F 
on Rn with the norm (Here, of course, r1 + r2 + · · · + r n = 11.) 

This Hilbert space admits the reproducing kernel 

(1.3) 

as we see easily by using Fourier's transform.Note that the Sobolev Hilbert 
space H 8 admitting the reproducing kernel (1.3) for n = s can be defined for 
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any positive number s in term of Fourier integrals F' of F 

as follows: 

for any s > n/2. 
Under these conditions our formulations and results are stated as follows: 

Theorem 1 Let n 2 1, s 2 2 and s > n/2. For any function g E L2 (Rn) and 
for any A > 0, the best approximate function F{s,g in the sense 

Fi?;ks { >-IIFIIJp + Ilg - ~FIILcRn)} = >-IIF{s,gllJJ-s + Ilg - ~FI,s,g11LcRn) 
(1.4) 

exists uniquely and FI,s,g is represented by 

(1.5) 

for 

(1.6) 

If, for FE H 8 we consider the solution uF(x): ~uF(x) = F(x) and we take 
uF(t) as g, then we have the favourable result: as>.--+ 0 

FI,s,g --+ F, (1.7) 

uniformly. 

2) The problem in the heat conduction([2]); that is, from some heat u(x, t) 
observation at a time t, look for the initial heat u(x, 0). 

We gave simple approximate real inversion formulas for the Gaussian con
volution (the Weierstrass transform) 

(1.8) 

for the functions of the s order Sobolev Hilbert space H 8 on the whole real 
space Rn(n 2 1, s > n/2). This integral transform which represents the solution 
u(x, t) of the heat equation 

Ut(X, t) = Uxx(x, t) on Rn X {t > 0} (u(x, 0) = F(x) on Rn). (1.9) 

In this problem we can set same norm and reproducing kernel as (1.2) and (1.3). 
Under those situations our formulations and results are stated as follows: 
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Theorem 2 For any function g E L2(Rn) and for any .A> 0, the best approx
imate function F;,s,g in the sense 

= .x1w;,s,gllJp + Ilg - UF{a,J, t)llia(Rn) 
exists uniquely and F;,s,g is represented by 

(1.11) 

for 

(1.12) 

If, for F E H 3 we consider the output up(x, t) and we take up(~, t) as g, then 
we have the favourable result: as .A ---+ 0 

F;,s,g ---+ F, (1.13) 

uniformly. 

3) Real inversion formulas for the Laplace transform([3]) 
We obtained a very natural and numerical real inversion formula of the 

Laplace transform 

(.CF)(p) = f(p) = fo00 
e-pt F(t)dt, p > 0 (1.14) 

for functions F of some natural function space. The inversion of the Laplace 
transform is, in general, given by a complex form, however, we are interested 
in and are requested to obtain its real inversion in many practical problems. 
However, the real inversion will be very involved and one might think that its 
real inversion will be essentially involved, because we must catch "analyticity" 
from the real or discrete data. 

We shall introduce the simple reproducing kernel Hilbert space (RKHS) HK 
comprised of absolutely continuous functions F on the positive real line R+ 
with finite norms 

This Hilbert space admits the reproducing kernel 

rmin(t,t') 

K(t, t') = Jo ~e-f;,d~. 

Then we see that 

(1.15) 

(1.16) 
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(1.17) 

that is, the linear operator on HK,(.CF)(p)p into L 2 (R+,dp) L2 (R+) is 
bounded([4]). For the reproducing kernel Hilbert spaces HK satisfying (1.17), 
we can find some general spaces.Therefore, from the general theory in [4], we 
obtain 

Theorem 3 (/4}). For any g E L2 (R+) and for any a > 0, the best approxi
mation F;,9 in the sense 

= a 100 1Fi'.g(t)12~etdt + 11(.CF~,g)(p)p - gllLcR+) (1.18) 

exists uniquely and we obtain the representation 

(1.19) 

Here, Ka(·, t) is determined by the functional equation 

Ka(t, t') = ¾K(t, t') - ¾((.CKa,t' )(p)p, (.CKt)(p)p)L 2 (R+) (1.20) 

for Ka,t' = Ka(·, t') and Kt = K(·, t). 

We shall look for the approximate inversion F;,9 (t) by using (1.19). For this 
purpose, we take the Laplace transfrom of (1.20) in t and change the variables 
t and t' as in 

(.CKa(·, t))(~) = ¾(.CK(·, t'))(~) - ¾((.CKa,t' )(p)p, (.C(.CKt)(p)p))(~))L2 (R+)• 

(1.21) 

Note that 

{ 
-te-t - e-t + 1 

K(t, t') = I -t' -t' -t e - e + 1 
for t St' 

for t 2 t'. 

I I [ -t' -1 ] 1 .CKa ·, t ~ = e-t Pe-t + + . ( ( ))() p(p+l) p(p+1)2 p(p+1)2 
(1.22) 

f00 e-qt' (.CK(·, t'))(p)dt' = ( l )2 · lo pq P + q + 1 
(1.23) 

Therefore, by setting (.CKa(·, t))(~)~ = Ha(~, t), which is needed in (1.19), we 
obtain the Fredholm integral equation of the second type 
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2 Some examples of numerical experiments 

1) Inverse source problem in the Poisson equation([l]) 

FiJure 1: For g(x1, ;2) = X[-l,l] (x1) x :~'._6-l,l] (x2) on R 2 , the figures of 
F>-.,2,9(x1,x2) and flF>-., 2,9(x1,x2) for,\= 10 . 

This numerical result shows that the new method ((1.5),(1.6)) is working 
effectively and is useful. 

2) The problem in the heat conduction([2]) 

Figure 2: For g(x1, x2) = X[-l,l] (x1) x X[-l,l] (x2) on R 2 , the figures of 
F{, 8 ,9(x1,x2) and uF{,s,g(x,,x 2 ;t) fort= 1,s = 2,,\ = 10-22 . 

The results of this numerical experiment prove the usefulness and correctness 
of our method. 
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3) Real inversion formulas for the Laplace transform([3]) 

-0.2 ~--~--~--~--~--~--~--~ 
0 0.5 1 1.5 2 2.5 3 3.5 

Figure 3: For F(t) = x(t, [1/2, 3/2]), the characteristic function and for a = 
10-4, 10-8' 10-12. 
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Figure 4: For F(t) = x(t, [1/2, 3/2]), the characteristic function and for a = 
10-100, 10-400_ 

The results of these numerical experiments show that our method is effective 
even when there are jumps in the target function, and in Figure 4 we use a high
precision numerical algorithm developed by our collaborator Professor Fujiwara. 
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