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1 Introduction 

Let r c JR:.2 be a smooth non-intersecting open arc (crack), and we assume that r can be extended to an 
arbitrary smooth, simply connected, closed curve 80 enclosing a bounded domain O in JR:.2 • Let k > 0 be the 
wave number, and let 0 E § 1 be incident direction. We consider the following direct scattering problem: For 
0 E § 1 determine U 8 such that 

llu8 + k2u 8 = 0 in JR:.2 \ r, 
Us = -eik0•x on f 

lim ,Ji --;,- - iku" = 0, ( au• ) 
r--+oo ur 

(1.1) 

(1.2) 

(1.3) 

where r = lxl, and (1.3) is the Sommerfeld radiation condition. It is well known that there exists a unique 
solution u" and it has the following asymptotic behaviour: 

ikr 

u"(x) = ~ { uDO(x, 0) + 0(1/r) }, r-+ oo, x := 
1
:

1
. (1.4) 

The function uDO is called the far field pattern of u". With the far field pattern uDO, we define the far field 
operator F : L 2 (§1 ) -+ L 2 (§1 ) by 

Fg(x) := { uDO(x, 0)g(0)ds(0), x E § 1. )§, (1.5) 

The inverse scattering problem we consider is to reconstruct the unknown arc r from the far field pattern 
uDO(x, 0) for all x E §1, all x E § 1 with one k > 0. In other words, given the far field operator F, reconstruct 
r. 

In order to solve such a problem, we use the monotonicity method. The feature of this method is to 
understand the inclusion relation of an unknown target and artificial object by comparing the data operator 
with some operator corresponding to an artificial one. For recent developments of the monotonicity method, 
we refer to [2, 3, 4]. The following theorems are our main results for solving the inverse crack scattering 
problem. 

Theorem 1.1 (Theorem 1.1 in [1]). Let a C JR:.2 be a smooth non-intersecting open arc. Then, 

acr 

where the Herglotz operator H": L2 (§1)-+ L 2 (a) is given by 

Hc,g(x) := r eik0·xg(0)ds(0), X Ea, 
ls1 

(1.6) 

(1.7) 

and the inequality on the right-hand side in (1.6} denotes that -ReF-H;H" has only finitely many negative 
1 

eigenvalues, and the real part of an operator F is self-adjoint operators given by ReF := 2(F + F*). 
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Theorem 1.2 (Theorem 1.2 in [1]). Let BC ffi.2 be a bounded open set. Then, 

rcB ~ -ReF -S:!ln HlmH&B, 

where HaB : L2 (§1 ) ➔ L 2 (&B) is given by 

HaM(x) := { eikO·xg(0)ds(0), x E &B. 
ls1 

2 Proof of Theorem 

We will only prove Theorem 1.1 because Theorem 1.2 is proved by the same argument. We denote by 

Hl/2(r) := { ulr: u E Hl/2(&!1)} 

fI 1!2 (r) := {ulr: u E H 1l 2 (&!1),supp(u) c r} 

H-1;2(r) := (fI1/2(r))' 

fI-1;2(r) := ( H1;2(r) )' 

We have the following inclusion relation: 

fI1! 2(r) C H 1l2(r) C L2(r) C fI- 1! 2(r) C H-1! 2(r), 

We denote by the Herglotz operator Hr: L 2 (§1 ) ➔ H 112 (r) 

Hrg = v9 lr, 

(1.8) 

(1.9) 

(2.1) 

(2.2) 

We remark that Hr : L 2 (§1 ) ➔ H 112 (r) has just a different range from Hr : L 2 (§1 ) ➔ L 2 (r). We denote by 
the single layer operator S: fI-1/2(r) ➔ H 112(r) 

S<p(x) := l <p(y)if!(x,y)ds(y), X Er, 

where if!(x,y) is the Green's function for Helmholtz equation in ffi.2 , 

i (1) 
if!(x, y) := 4H 0 (klx - YI), x f- y. 

Lemma 2.1 (Kirsch and Ritter 2000, [5]). The far field operator F has the following factorization: 

F = -iifs- 1iir. 

Furthermore, s-1 is of the form 
s-1 = C+K, 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

wher K is some compact operator, and C is some self-adjoint and coercive operator, i. e., there exists eo > 0 
such that 

('P, C<p) 2> co ll'Pll 2 for all <p. (2.7) 

(==⇒) Assume that u c r. Let R: L 2 (r) ➔ L 2 (u) be the restriction operator, i.e., Rf:= !la. Then, 

Ha =RHr. 

Let J: H 112 (r) c...+ L 2 (r) be a compact embedding map. Then, 

Hr = JHr, 

(2.8) 

(2.9) 
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which leads to 

Then, 

H,,.=RJHr. 

-ReF - H;H,,. Hi, [Res-1 - J* R* RJ] Hr 

Hi,[C + ReK - J*R*RJ]Hr 

-. ili,[c+k]flr, 

(2.10) 

(2.11) 

where K is a self-adjoint and compact operator. Let {(,\j,V,j)lj EN} be complete eigensystem of K. Let 
V := span{v,il,\i < -ea}, where a constant number c0 > 0 appears in Lemma 2.1, and it is finite dimensional. 
Then, for all v E V.L = span{V'il,\i 2': -co} 

((C+k)v,v) ;::,:o, 

which implies that for all g E [Hi,(V)].l (~ Hrg E V.l) 

((-ReF - H;H,,. )g,g) = ((C + K)Hrg, Hrg) ;::,: o, 

and dim[Hi,(V)] S dim(V) < oo. By Corollary 3.3 of [3], we conclude that 

(2.12) 

(2.13) 

(2.14) 

(-s==) Let a- rt r. We assume on the contrary H;H,,. Sfin -ReF, i.e, by Corollary 3.3 of [3] there exists 
a finite dimensional subspace V s.t. for all g E V.l 

(2.15) 

We choose a small open arc a-0 s.t. a-0 c a- and a-0 n r = 0. Then, we have for all g E V.L 

11Huo9llr,(uo) s IIH,,.gllr 2 (u) 

s ((-ReF)g,g) 

((Res- 1 )Hrg, Hrg) 

s IIRes- 1 11 IIHrgllr,(r). (2.16) 

Lemma 2.2 (Harrach et al. 2019, [3]). Let X, Y, and Z be Hilbert spaces, and let A: X---+ Y and B: X---+ Z 
be bounded linear operators, and let V C X be a finite dimensional subspace. Then, 

:JC> 0: IIAxll 2 SC 11Bxll 2 for all x E V.L 

By this lemma, we have 

On the other hand, 

~ Ran(A*) c:: Ran(B*) + V, 

Lemma 2.3 (Harrach et al. 2019, [3]). Let X, Y, V C Z be subspaces of a vector space Z. If 

X n Y = {O}, and X c:: Y + V, 

then, dim(X) s dim(V). 

Lemma 2.4 (Furuya et al. 2020, [1]). (a) dim(Ran(H;0 )) = oo 

{b} Ran(H;0 ) nRan(Hi,) = {0}. 

(2.17) 

(2.18) 

(2.19) 

As X = Ran(H;0 ), Y = Ran(Hr), and V = V, we apply contraposition of Lemma 2.3. We remark that 
oo = dim(Ran(H;0 )) i dim(V) < oo. Then, Ran(H;0 ) rt Ran(Hr) + V, which contradicts (2.18). Therefore, 
we conclude that H;H,,. ifin -ReF. D 



109

3 Numerical examples 

Based on Theorem 1.1, we give numerical examples. The indicator function in our examples is given by 

I(a) :=#{negative eigenvalues of - ReF - H;Ha}. (3.1) 

The idea to reconstruct r is to plot the value of I(a) for many of small a in the sampling region. Then, we 
expect from Theorem 1.1 that the value of the function I(a) is low if a is close tor. 

Here, a is chosen in two ways; One is the vertical line segment af,'Y := Zi,j + {O} x [- 2!, 2!] where 

Zi,j := (1tJ', JH.) (i,j = -M, -M + 1, ... , M) denote the center of aY,'Y, and ij, is the length of a:(,'_j', and 
R > 0 is length of sampling square region [-R, R] 2, and M E N is large to take a small segment. The other 
is horizontal one atr := Zi,j + [-2!, 2!l X {0}. 

The far field operator F is approximated by the matrix 

(3.2) 

where xz = ( cos( 2; 1), sin( 2; 1)) and 0m = ( cos( 2;_,m), sin( 2;_,m)). The operator H;Ha is approximated by 

H;Ha"" 21r (1 eiky•(0m-x,)dy) E rr,NxN_ (3.3) 
N a 1<:l,m<:N 

In our examples, we fix R = 1.5, M = 100, N = 20, and wavenumber k = 1, and consider the true shape of 
r as a blue curve in Figure 1. Figures 2 and 3 are given by plotting the values of the vertical and horizontal 
indicator functions 

Iver(Zi,j) := I(a'/,rJ, 
for each i, j = -100, 99, ... , 100, respectively. 

o.o 

-0.5 J 
-L.5 .._ ______ _____... 

- 1.5 - 1.0 - 0.5 0.0 0.5 l.0 1.5 

Figure 1: true shape of r Figure 2: vertical 
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