Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator

Ryusei Yamashita

Tokyo Metropolitan University

This study is based on the paper [5]. We show a reconstruction formula of the convex hull of the defect D from the Dirichlet to Neumann map associated with the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2], assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case.

Let $\Omega \subset \mathbb{R}^n (n = 2, 3)$ be a bounded domain where the boundary $\partial\Omega$ is C^2 and let D be an open set satisfying $\overline{\mathbb{D}} \subset \Omega$ and $\Omega \setminus \overline{\mathbb{D}}$ is connected. The defect D consists of the union of disjoint bounded domains $\{D_j\}_{j=1}^n$, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω . Here, let $D_A^2 u := \sum_{j=1}^n D_{A,j}(D_{A,j}u)$, where $D_{A,j} := \frac{1}{j}\partial_j + A_j$ and $A = (A_1, A_2, \dots, A_n)$.

Definition 1. Suppose $q \in L^{\infty}(\Omega), q \geq 0, A \in C^{1}(\overline{\Omega}, \mathbb{R}^{n})$. For a given $f \in H^{1/2}(\partial\Omega)$, we say $u \in H^{1}(\Omega)$ is a weak solution to the following boundary value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega, \\ u = f \text{ on } \partial\Omega, \end{cases}$$
(1.1)

if u = f on $\partial \Omega$ and u satisfies

$$\int_{\Omega} (D_A u) \cdot \overline{D_A \varphi} + q u \overline{\varphi} \, dx = 0$$

for any $\varphi \in H^1(\Omega)$ such that $\varphi|_{\partial\Omega} = 0$. Here, $\overline{\varphi}$ is the complex conjugate of φ .

The DN map $\Lambda_{q,A}$ is defined as follows.

Definition 2. (Weak formulation of DN map) The DN map $\Lambda_{q,A} : H^{\frac{1}{2}}(\partial\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$ is defined as follows by the duality:

$$\langle \Lambda_{q,A}f, \overline{g} \rangle = \int_{\Omega} (D_A u) \cdot \overline{D_A v} + q u \overline{v} \, dx, \quad f, g \in H^{1/2}(\partial \Omega),$$

where $u \in H^1(\Omega)$ is the weak solution of (1.1) and $v \in H^1(\Omega)$ is any function satisfying $v|_{\partial\Omega} = g$.

We define the weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Robin boundary condition on ∂D .

Definition 3. (Robin case)

Suppose $q \in L^{\infty}(\Omega \setminus \overline{D}), q \ge 0, \lambda \in C^1(\partial D), \lambda \ge 0$ and $A \in C^1(\overline{\Omega \setminus D}, R^n)$. Let ν is the outward unit normal vector to $\Omega \setminus \overline{D}$. For a given $f \in H^{1/2}(\partial\Omega)$, we say $u \in H^1(\Omega \setminus \overline{D})$ is a weak solution to the following value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega \setminus \overline{D}, \\ \nu \cdot (\nabla + iA)u + \lambda u = 0 \text{ on } \partial D, \\ u = f \text{ on } \partial \Omega, \end{cases}$$
(1.3)

if u = f on $\partial \Omega$ and u satisfies

$$\int_{\Omega \setminus \overline{D}} (D_A u) \cdot \overline{D_A \varphi} + q u \overline{\varphi} \, dx + \int_{\partial D} \lambda u \overline{\varphi} \, dS = 0$$

for any $\varphi \in H^1(\Omega \setminus \overline{D})$ such that $\varphi|_{\partial\Omega} = 0$.

The DN map $\Lambda_{q,A,D}^{(R)}$ is defined as follows.

Definition 4. (DN map of the Robin case)

The DN map $\Lambda_{q,A,D}^{(R)}: H^{\frac{1}{2}}(\partial\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$ is defined as follows by the duality:

$$\langle \Lambda_{q,A,D}^{(R)} f , \overline{g} \rangle = \int_{\partial D} \lambda u \overline{v} \, dS + \int_{\Omega \setminus \overline{D}} (D_A u) \cdot \overline{D_A v} + q u \overline{v} \, dx, \quad f,g \in H^{1/2}(\partial \Omega),$$

where $u \in H^1(\Omega \setminus \overline{D})$ is the weak solution of (1.3) and $\varphi \in H^1(\Omega \setminus \overline{D})$ is any function $\varphi|_{\partial\Omega} = g$. In the special case $\lambda = 0$, we denote $\Lambda_{q,A,D}^{(N)}$ instead of $\Lambda_{q,A,D}^{(R)}$.

Remark 1. The weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Dirichlet boundary condition on ∂D and the DN map $\Lambda_{q,A,D}^{(D)}$ can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method. We denote by S^{n-1} the set of n-dimensional unit vectors (n = 2, 3). For a given $\omega \in S^{n-1}$, we can take an orthogonal unit vector $\omega^{\perp} \in S^{n-1}$, namely $\omega \cdot \omega^{\perp} = 0$. Then we can construct a solution $v_{\tau}(x;\omega) := e^{\tau x \cdot (\omega + i\omega^{\perp})}(1 + r_{\tau}(x;\omega))$ of $D_A^2 v + qv = 0$, where $r_{\tau}(x;\omega)$ is chosen suitably associated with the parameter $\tau \in R$. This solution is called the complex geometrical optics solutions.

Definition 5. (Indicator function)

Let $t, \tau \in \mathbb{R}$. Then, the indicator function $I_{\omega}(\tau; t)$ is defined as follows.

$$I_{\omega}^{(R)}(\tau;t) := \langle (\Lambda_{q,A} - \Lambda_{q,A,D}^{(R)})(e^{-\tau t}v_{\tau}(x;\omega)), \overline{e^{-\tau t}v_{\tau}(x;\omega)} \rangle$$

Here, $\overline{v_{\tau}}$ is the complex conjugate of v_{τ} . In the special case $\lambda = 0$, we denote $\Lambda_{q,A,D}^{(N)}$ instead of $\Lambda_{q,A,D}^{(R)}$. Also, $I_{\omega}^{(D)}(\tau;t)$ can be defined by $\Lambda_{q,A,D}^{(D)}$. We define the support function $h_D(\omega)$ as follows :

$$h_D(\omega) = \sup_{x \in D} x \cdot \omega, \ \omega \in S^{n-1}.$$

Then it is well-known that the convex hull conv(D) of D is obtained as follows.

$$\operatorname{conv}(D) := \bigcap_{\omega \in S^{n-1}} \{ x \in R^n | x \cdot \omega < h_D(\omega) \}.$$

Since the indicator function $I_{\omega}(\tau; t)$ is determined from the DN map, if the support function $h_D(\omega)$ is obtained from the indicator function $I_{\omega}(\tau; t)$, the convex hull conv(D) of inclusion D can be reconstructed from the observation data on boundary $\partial \Omega$. Now, we give the formula of the reconstruction of the support function from the indicator function under a certain smallness condition for the vector potential A.

Theorem 1. Suppose ∂D is Lipschitz continuous. Let $n = 2, 3, q \in H^2(\Omega), q \ge 0, A \in H^3(\Omega)$ and $C(\Omega) ||A||_{H^2(\Omega)} \le \frac{1}{2}$. Then, we have

$$\lim_{\tau \to \infty} \frac{\log |I_w^{(D)}(\tau;0)|}{2\tau} = h_D(w), \lim_{\tau \to \infty} \frac{\log |I_w^{(N)}(\tau;0)|}{2\tau} = h_D(w)$$

for any $\omega \in S^{n-1}$. Here, the constant $C(\Omega)$ depends only on Ω .

For a given $\omega \in S^{n-1}$, we furthermore assume the following condition $(D)_{\omega}$ for the Robin case.

 $(D)_{\omega}$: Suppose ∂D is C^2 and the set $T(\omega) := \{x \in \overline{D} \mid h_D(\omega) - x \cdot \omega = 0\}$ consists of only one point $x_0 \in \partial D$. Furthermore, we assume that in the neighborhood of x_0 the boundary ∂D can be expressed as $y = f(s), |s| < \epsilon, s \in \mathbb{R}^{n-1}$, and there exists $K_0, K_1 > 0, m_{\omega} \geq 2$ such that

$$K_0|s|^{m_w} \le f(s) \le K_1|s|^{m_w} \quad (|s| < \epsilon).$$

Theorem 2. (Robin case) Suppose $\lambda \neq 0, \lambda \geq 0$ and $\lambda \in C^1(\partial D)$. Let $n = 2, 3, q \in H^2(\Omega), q \geq 0, A \in H^3(\Omega)$ and $C(\Omega) ||A||_{H^2(\Omega)} \leq \frac{1}{2}$. We assume that the condition $(D)_{\omega}$ holds as $2 \leq m_w < 3$ for some $\omega \in S^{n-1}$. Then, we have

$$\lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(R)}(\tau; 0)|}{2\tau} = h_D(\omega)$$

See [5] for the proof of Theorem 1. We present the basic estimates for the DN maps in the Robin case.

Proposition 1. Let $\lambda \neq 0, \lambda \geq 0$ and $\lambda \in C^1(\partial D)$. Let L be a constant satisfying $\|\lambda\|_{L^{\infty}(\partial D)} \leq L$. Assume ∂D is C^2 . Take any $y_0 \in \partial D$, for a given $f \in H^{\frac{1}{2}}(\partial \Omega)$, $v \in H^1(\Omega)$ is a weak solution of (1.1). Let $q = \frac{1}{2}$ when n = 3 and $q = 1 - \epsilon$ for any $0 < \epsilon < 1$ when n = 2. Then, there exist positive constants $C_1 = C_1(\Omega, D, \epsilon), C_2 = C_2(\Omega, L, \epsilon)$ such that

$$\begin{split} &\int_{D} |D_{A}v|^{2} dx - C_{2} \{ \int_{D} |v|^{2} dx + (\int_{\partial D} |y - y_{0}|^{q} |\frac{\partial v}{\partial \nu}| \, dS)^{2} + \int_{\partial D} |v|^{2} \, dS \} \\ &\leq \langle (\Lambda_{q,A} - \Lambda_{q,A,D}^{(R)}) f \, , \, \overline{f} \rangle \\ &\leq C_{1} (\|D_{A}v\|_{L^{2}(D)}^{2} + \|v\|_{L^{2}(D)}^{2}) + C_{2} \{ (\int_{\partial D} (|y - y_{0}|^{q} |\frac{\partial v}{\partial \nu}| \, dS)^{2} + \int_{\partial D} |v|^{2} \, dS \}. \end{split}$$

To prove Proposition 1, we prepare the following two lemmas.

Lemma 1. Let $v \in H^1(\Omega)$ and $u \in H^1(\Omega \setminus \overline{D})$ are weak solutions of (1.1) and (1.3), respectively. We have for w := u - v,

$$\begin{aligned} \langle (\Lambda_{q,A} - \Lambda_{q,A,D}^{(R)})f , \overline{f} \rangle \\ &= \int_{\Omega \setminus \overline{D}} |D_A w|^2 + q|w|^2 \, dx + \int_D |D_A v|^2 + q|v|^2 \, dx - (\int_{\partial D} \lambda u \overline{v} - \lambda |u|^2 + \lambda \overline{u} v \, dS). \end{aligned}$$

We need the following estimate for the Robin case. We follow the argument in [3], where the proof is given for the three-dimensional case.

Lemma 2. Assume ∂D is C^2 . Let $L \ge 0$ be a constant satisfying $\|\lambda\|_{L^{\infty}(\partial D)} \le L$. Take any $y_0 \in \partial D$. For a given $f \in H^{\frac{1}{2}}(\partial \Omega)$, $v \in H^1(\Omega)$ and $u \in H^1(\Omega \setminus \overline{D})$ are weak solutions of (1.1) and (1.3), respectively. Let $q = \frac{1}{2}$ when n = 3 and $q = 1 - \epsilon$ for any $0 < \epsilon < 1$ when n = 2. Then, there exists a positive constant C such that

$$\int_{\partial D} |u - v|^2 dS \le C \|D_A w\|_{L^2(\Omega \setminus \overline{D})} \left(\int_{\partial D} |y - y_0|^q |\frac{\partial v}{\partial \nu}| dS + \||A|^2 + q\|_{L^\infty(D)} \int_D |v| dx + L \int_{\partial D} |v| dS \right)$$

Remark 2. To show Lemma 2, we need to assume that λ is a real-valued function for the case $A \neq 0$. If A = 0, we can allow λ to be a complex-valued function (see Ikehata [3]).

By Lemma 1 and 2, we obtain Proposition 1. To prove the asymptotic formula for the indicator function under the Robin condition on ∂D , we need the following basic lemmas.

Lemma 3. Let $v_{\tau} = v_{\tau}(x;\omega) = e^{\tau x \cdot (\omega+i\omega^{\perp})}(1+r_{\tau}(x;\omega))$ be the complex geometrical optics solution as $\zeta = \tau(\omega - i\omega^{\perp})$, where $\tau > 0$ and $\omega, \omega^{\perp} \in S^{n-1}$ satisfying $\omega \cdot \omega^{\perp} = 0$. Assume $\|A\|_{H^2(\Omega)}$ is sufficiently small. Then, there exists a constant C such that

$$\frac{1}{4}\tau^2 \int_D e^{2\tau x \cdot \omega} dx \le \int_D |D_A v_\tau|^2 dx \le C\tau^2 \int_D e^{2\tau x \cdot \omega} dx$$

for sufficient large τ and

$$\int_D |v_\tau|^2 dx \le C \int_D e^{2\tau x \cdot \omega} dx.$$

Lemma 4. (cf. Ikehata [2, Proposition 2.3]) Let ∂D is Lipschitz continuous. There exists $C_{\omega} > 0, \tau_{\omega} > 0$ such that

$$\tau^2 \int_D e^{-2\tau(h_D(\omega) - x \cdot \omega)} dx \ge C_\omega \tau^{1 - p_\omega} \quad (\tau \ge \tau_\omega)$$

with

$$p_{\omega} = \begin{cases} 2 & (n=3)\\ 1 & (n=2), \end{cases}$$

for $\omega \in S^{n-1}$. Especially, when we assume furthermore the condition $(D)_{\omega}$ and the graph y = f(s) representing ∂D , satisfies $f(s) \leq g(s) = L|s|^{m_{\omega}}$ near $x_0 \in T(\omega)$. We have following estimate:

$$\tau^2 \int_D e^{-2\tau (h_D(\omega) - x \cdot \omega)} dx \ge \begin{cases} C_w \tau^{1 - \frac{2}{m\omega}} & (n=3) \\ C_w \tau^{1 - \frac{1}{m\omega}} & (n=2) \end{cases}$$

for any $\tau \geq \tau_w$.

Lemma 5. (cf. Ikehata [1, Lemma 4.2]) Assume $(D)_{\omega}$ for $\omega \in S^{n-1}$ and $x_0 \in T(\omega)$ which appeared in the assumption $(D)_{\omega}$.

(1) Let n = 3. Then, there exist constants τ_{ω} and K such that

$$\left(\tau \int_{\partial D} |x - x_0|^{\frac{1}{2}} e^{\tau(x \cdot \omega - h_D(\omega))} dS\right)^2 \le K \tau^{2 - \frac{5}{m_\omega}} \quad (\tau \ge \tau_w).$$

and

$$\int_{\partial D} e^{\tau(x \cdot \omega - h_D(\omega))} dS \le K \tau^{-\frac{2}{m_\omega}}.$$

(2) Let n = 2. Then, for any $0 < \epsilon < 1$, there exist τ_{ω} and K such that

$$\left(\tau \int_{\partial D} |x - x_0|^{1 - \epsilon} e^{\tau (x \cdot \omega - h_D(\omega))} dS\right)^2 \le K \tau^{2 - \frac{4 - 2\epsilon}{m_\omega}} \quad (\tau \ge \tau_\omega)$$

Proof of Theorem 2. By the definition of $I_{\omega}^{(R)}(\tau;t)$ and Proposition 1, we have

$$I_3(\tau) \le I_{\omega}^{(R)}(\tau, 0) e^{-2\tau h_D(\omega)} = I_{\omega}^{(R)}(\tau; h_D(\omega)) \le I_4(\tau),$$

where

$$\begin{split} I_{3}(\tau) &= \int_{D} |D_{A}e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dx - C_{2}(L) \{ \int_{D} |e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dx \\ &+ (\int_{\partial D} |x - x_{0}|^{q} |D_{A}e^{-\tau(h_{D}(\omega))}v_{\tau}| dS)^{2} + \int_{\partial D} |e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dS \}, \\ I_{4}(\tau) &= C_{1}(D) (\int_{D} |D_{A}e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dx + \int_{D} |e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dx) \\ &+ C_{2}(L) \{ (\int_{\partial D} |x - x_{0}|^{q} |D_{A}e^{-\tau(h_{D}(\omega))}v_{\tau}| dS)^{2} + \int_{\partial D} |e^{-\tau(h_{D}(\omega))}v_{\tau}|^{2} dS \} \end{split}$$

Since $x \cdot \omega - h_D(\omega) \leq 0$ ($x \in D$), it follows

$$I_4(\tau) \le C\tau^2.$$

Lemma 4 implies for large $\tau \geq \tau_{\omega}$

$$C\tau^{2} \int_{D} e^{2\tau(x\cdot\omega - h_{D}(\omega))} dx - C' \int_{D} e^{2\tau(x\cdot\omega - h_{D}(\omega))} dx$$
$$\geq \frac{C}{2}\tau^{2} \int_{D} e^{2\tau(x\cdot\omega - h_{D}(\omega))} dx \geq C \begin{cases} \tau^{1-\frac{2}{m\omega}} & (n=3)\\ \tau^{1-\frac{1}{m\omega}} & (n=2). \end{cases}$$

On the other hand, Lemma 5 implies for large $\tau \geq \tau_\omega$

$$\begin{split} \int_{\partial D} \left| e^{\tau(x \cdot (\omega + i\omega^{\perp}) - h_D(\omega))} (1+r) \right|^2 dS &\leq C \int_{\partial D} e^{2\tau(x \cdot \omega - h_D(\omega))} dS \\ &\leq \begin{cases} C \tau^{-\frac{2}{m_\omega}} & (n=3) \\ C & (n=2). \end{cases} \end{split}$$

Furthermore, since there exists a constant C such that $|r(x)| \leq C$, $|\nabla r(x)| \leq C\tau$ ($x \in D$), we can estimate as follows:

$$\begin{split} & \left(\int_{\partial D} |x-x_0|^q \left| \frac{\partial}{\partial \nu} \left(e^{\tau(x\cdot(\omega+i\omega^{\perp}))-\tau h_D(\omega)}(1+r(x)) \right) \right| dS \right)^2 \\ \leq & \left(\int_{\partial D} |x-x_0|^q \left(|\tau(\omega+i\omega^{\perp})\cdot\nu(1+r(x))| + |\nabla r(x)| \right) e^{\tau(x\cdot\omega-h_D(\omega))} dS \right)^2 \\ \leq & C \left(\tau \int_{\partial D} |x-x_0|^q e^{\tau(x\cdot\omega-h_D(\omega))} dS \right)^2 \leq \begin{cases} CK\tau^{2-\frac{5}{m\omega}} & (n=3)\\ CK\tau^{2-\frac{4-2\epsilon}{m\omega}} & (n=2). \end{cases} \end{split}$$

Combining these estimates, we have for $\tau \geq \tau_{\omega}$

$$I_{3}(\tau) \geq \begin{cases} \frac{C}{2}\tau^{1-\frac{2}{m_{\omega}}} - C\tau^{-\frac{2}{m_{\omega}}} - CK\tau^{2-\frac{5}{m_{\omega}}} & (n=3)\\ \frac{C}{2}\tau^{1-\frac{1}{m_{\omega}}} - C - CK\tau^{2-\frac{4-2\epsilon}{m_{\omega}}} & (n=2). \end{cases}$$

Note that $1 - \frac{2}{m_{\omega}} > 2 - \frac{5}{m_{\omega}}$ for n = 3 and $1 - \frac{1}{m_{\omega}} > 2 - \frac{4-2\epsilon}{m_{\omega}}$ for n = 2, since $2 \le m_{\omega} < 3$. Here, we take $0 < \epsilon < 1$ sufficiently small such that $3 - 2\epsilon > m_{\omega}$. So, for τ_{ω} large enough, there exists a positive constant C such that

$$I_3(\tau) \ge \begin{cases} C\tau^{1-\frac{2}{m_\omega}} & (n=3)\\ C\tau^{1-\frac{1}{m_\omega}} & (n=2) \end{cases}$$

for $\tau \geq \tau_{\omega}$. Thus, it follows

$$C\tau^{\alpha} \le e^{-2\tau h_D(\omega)} I_{\omega}^{(R)}(\tau, 0) \le C\tau^2 \quad (\tau \ge \tau_{\omega}),$$

where

$$\alpha := \begin{cases} 1 - \frac{2}{m_{\omega}} & (n=3)\\ 1 - \frac{1}{m_{\omega}} & (n=2) \end{cases}$$

Then, we have

$$\log C + \alpha \log \tau \le -2\tau h_D(\omega) + \log |I_{\omega}^{(R)}(\tau, 0)| \le \log C + 2\log \tau \quad (\tau \ge \tau_{\omega})$$

Now, we can conclude

$$\lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(R)}(\tau, 0)|}{2\tau} = h_D(\omega).$$

References

- M. Ikehata, How to draw a picture of an unknown inclusion from boundary measurements, J. Inv. Ill-Posed Problems, 7 (1999), pp. 255-271.
- M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements, J. Inv. Ill-Posed Problems, 8 (2000), pp. 367-378.
- [3] M. Ikehata, Two sides of probe method and obstacle with impedance boundary condition, Hokkaido Math. J., 35 (2006), pp. 659-681.
- [4] M. Ikehata, Direct reconstruction of solutions to inverse problems, (in Japanese), Hokkaido University technical report series in mathematics, (2005).
- [5] K. Kurata and R. Yamashita, Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator, (preprint).

Department of Mathematical Sciences Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo, 192-0397 Japan. yamashita@uitec.ac.jp