Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator

Ryusei Yamashita
Tokyo Metropolitan University

This study is based on the paper [5]. We show a reconstruction formula of the convex hull of the defect D from the Dirichlet to Neumann map associated with the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2], assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case.

Let $\Omega \subset R^{n}(n=2,3)$ be a bounded domain where the boundary $\partial \Omega$ is C^{2} and let D be an open set satisfying $\overline{\mathrm{D}} \subset \Omega$ and $\Omega \backslash \overline{\mathrm{D}}$ is connected. The defect D consists of the union of disjoint bounded domains $\left\{D_{j}\right\}_{j=1}^{n}$, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω. Here, let $D_{A}^{2} u:=\sum_{j=1}^{n} D_{A, j}\left(D_{A, j} u\right)$, where $D_{A, j}:=\frac{1}{i} \partial_{j}+A_{j}$ and $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$.

Definition 1. Suppose $q \in L^{\infty}(\Omega), q \geq 0, A \in C^{1}\left(\bar{\Omega}, R^{n}\right)$. For a given $f \in H^{1 / 2}(\partial \Omega)$, we say $u \in H^{1}(\Omega)$ is a weak solution to the following boundary value problem for the magnetic Schrödinger equation

$$
\left\{\begin{array}{l}
D_{A}^{2} u+q u=0 \text { in } \Omega \tag{1.1}\\
u=f \text { on } \partial \Omega
\end{array}\right.
$$

if $u=f$ on $\partial \Omega$ and u satisfies

$$
\int_{\Omega}\left(D_{A} u\right) \cdot \overline{D_{A} \varphi}+q u \bar{\varphi} d x=0
$$

for any $\varphi \in H^{1}(\Omega)$ such that $\left.\varphi\right|_{\partial \Omega}=0$. Here, $\bar{\varphi}$ is the complex conjugate of φ.
The DN map $\Lambda_{q, A}$ is defined as follows.
Definition 2. (Weak formulation of DN map)
The DN map $\Lambda_{q, A}: H^{\frac{1}{2}}(\partial \Omega) \rightarrow H^{-\frac{1}{2}}(\partial \Omega)$ is defined as follows by the duality:

$$
\left\langle\Lambda_{q, A} f, \bar{g}\right\rangle=\int_{\Omega}\left(D_{A} u\right) \cdot \overline{D_{A} v}+q u \bar{v} d x, \quad f, g \in H^{1 / 2}(\partial \Omega)
$$

where $u \in H^{1}(\Omega)$ is the weak solution of (1.1) and $v \in H^{1}(\Omega)$ is any function satisfying $\left.v\right|_{\partial \Omega}=g$.
We define the weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Robin boundary condition on ∂D.
Definition 3. (Robin case)
Suppose $q \in L^{\infty}(\Omega \backslash \bar{D}), q \geq 0, \lambda \in C^{1}(\partial D), \lambda \geq 0$ and $A \in C^{1}\left(\bar{\Omega} \backslash \bar{D}, R^{n}\right)$. Let ν is the outward unit normal vector to $\Omega \backslash \bar{D}$. For a given $f \in H^{1 / 2}(\partial \Omega)$, we say $u \in H^{1}(\Omega \backslash \bar{D})$ is a weak solution to the following value problem for the magnetic Schrödinger equation

$$
\left\{\begin{array}{l}
D_{A}^{2} u+q u=0 \text { in } \Omega \backslash \bar{D}, \tag{1.3}\\
\nu \cdot(\nabla+i A) u+\lambda u=0 \text { on } \partial D, \\
u=f \text { on } \partial \Omega
\end{array}\right.
$$

if $u=f$ on $\partial \Omega$ and u satisfies

$$
\int_{\Omega \backslash \bar{D}}\left(D_{A} u\right) \cdot \overline{D_{A} \varphi}+q u \bar{\varphi} d x+\int_{\partial D} \lambda u \bar{\varphi} d S=0
$$

for any $\varphi \in H^{1}(\Omega \backslash \bar{D})$ such that $\left.\varphi\right|_{\partial \Omega}=0$.
The DN map $\Lambda_{q, A, D}^{(R)}$ is defined as follows.

Definition 4. (DN map of the Robin case)
The DN map $\Lambda_{q, A, D}^{(R)}: H^{\frac{1}{2}}(\partial \Omega) \rightarrow H^{-\frac{1}{2}}(\partial \Omega)$ is defined as follows by the duality:

$$
\left\langle\Lambda_{q, A, D}^{(R)} f, \bar{g}\right\rangle=\int_{\partial D} \lambda u \bar{v} d S+\int_{\Omega \backslash \bar{D}}\left(D_{A} u\right) \cdot \overline{D_{A} v}+q u \bar{v} d x, \quad f, g \in H^{1 / 2}(\partial \Omega),
$$

where $u \in H^{1}(\Omega \backslash \bar{D})$ is the weak solution of (1.3) and $\varphi \in H^{1}(\Omega \backslash \bar{D})$ is any function $\left.\varphi\right|_{\partial \Omega}=g$.
In the special case $\lambda=0$, we denote $\Lambda_{q, A, D}^{(N)}$ instead of $\Lambda_{q, A, D}^{(R)}$.
Remark 1. The weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Dirichlet boundary condition on ∂D and the DN map $\Lambda_{q, A, D}^{(D)}$ can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method. We denote by S^{n-1} the set of n-dimensional unit vectors $(n=2,3)$. For a given $\omega \in S^{n-1}$, we can take an orthogonal unit vector $\omega^{\perp} \in S^{n-1}$, namely $\omega \cdot \omega^{\perp}=0$. Then we can construct a solution $v_{\tau}(x ; \omega):=e^{\tau x \cdot\left(\omega+i \omega^{\perp}\right)}\left(1+r_{\tau}(x ; \omega)\right)$ of $D_{A}^{2} v+q v=0$, where $r_{\tau}(x ; \omega)$ is chosen suitably associated with the parameter $\tau \in R$. This solution is called the complex geometrical optics solutions.

Definition 5. (Indicator function)
Let $t, \tau \in \mathbb{R}$. Then, the indicator function $I_{\omega}(\tau ; t)$ is defined as follows.

$$
I_{\omega}^{(R)}(\tau ; t):=\left\langle\left(\Lambda_{q, A}-\Lambda_{q, A, D}^{(R)}\right)\left(e^{-\tau t} v_{\tau}(x ; \omega)\right), \overline{e^{-\tau t} v_{\tau}(x ; \omega)}\right\rangle
$$

Here, $\overline{v_{\tau}}$ is the complex conjugate of v_{τ}. In the special case $\lambda=0$, we denote $\Lambda_{q, A, D}^{(N)}$ instead of $\Lambda_{q, A, D}^{(R)}$. Also, $I_{\omega}^{(D)}(\tau ; t)$ can be defined by $\Lambda_{q, A, D}^{(D)}$. We define the support function $h_{D}(\omega)$ as follows :

$$
h_{D}(\omega)=\sup _{x \in D} x \cdot \omega, \omega \in S^{n-1}
$$

Then it is well-known that the convex hull $\operatorname{conv}(D)$ of D is obtained as follows.

$$
\operatorname{conv}(D):=\cap_{\omega \in S^{n-1}}\left\{x \in R^{n} \mid x \cdot \omega<h_{D}(\omega)\right\}
$$

Since the indicator function $I_{\omega}(\tau ; t)$ is determined from the DN map, if the support function $h_{D}(\omega)$ is obtained from the indicator function $I_{\omega}(\tau ; t)$, the convex hull $\operatorname{conv}(D)$ of inclusion D can be reconstructed from the observation data on boundary $\partial \Omega$. Now, we give the formula of the reconstruction of the support function from the indicator function under a certain smallness condition for the vector potential A.

Theorem 1. Suppose ∂D is Lipschitz continuous. Let $n=2,3, q \in H^{2}(\Omega), q \geq 0, A \in H^{3}(\Omega)$ and $C(\Omega)\|A\|_{H^{2}(\Omega)} \leq \frac{1}{2}$. Then, we have

$$
\lim _{\tau \rightarrow \infty} \frac{\log \left|I_{w}^{(D)}(\tau ; 0)\right|}{2 \tau}=h_{D}(w), \lim _{\tau \rightarrow \infty} \frac{\log \left|I_{w}^{(N)}(\tau ; 0)\right|}{2 \tau}=h_{D}(w)
$$

for any $\omega \in S^{n-1}$. Here, the constant $C(\Omega)$ depends only on Ω.
For a given $\omega \in S^{n-1}$, we furthermore assume the following condition $(D)_{\omega}$ for the Robin case.
$(D)_{\omega}$: Suppose ∂D is C^{2} and the set $T(\omega):=\left\{x \in \bar{D} \mid h_{D}(\omega)-x \cdot \omega=0\right\}$ consists of only one point $x_{0} \in \partial D$. Furthermore, we assume that in the neighborhood of x_{0} the boundary ∂D can be expressed as $y=f(s),|s|<\epsilon, s \in R^{n-1}$, and there exists $K_{0}, K_{1}>0, m_{\omega} \geq 2$ such that

$$
K_{0}|s|^{m_{w}} \leq f(s) \leq K_{1}|s|^{m_{w}} \quad(|s|<\epsilon)
$$

Theorem 2. (Robin case) Suppose $\lambda \neq 0, \lambda \geq 0$ and $\lambda \in C^{1}(\partial D)$. Let $n=2,3, q \in H^{2}(\Omega), q \geq 0, A \in$ $H^{3}(\Omega)$ and $C(\Omega)\|A\|_{H^{2}(\Omega)} \leq \frac{1}{2}$. We assume that the condition $(D)_{\omega}$ holds as $2 \leq m_{w}<3$ for some $\omega \in S^{n-1}$. Then, we have

$$
\lim _{\tau \rightarrow \infty} \frac{\log \left|I_{\omega}^{(R)}(\tau ; 0)\right|}{2 \tau}=h_{D}(\omega) .
$$

See [5] for the proof of Theorem 1. We present the basic estimates for the DN maps in the Robin case.

Proposition 1. Let $\lambda \neq 0, \lambda \geq 0$ and $\lambda \in C^{1}(\partial D)$. Let L be a constant satisfying $\|\lambda\|_{L^{\infty}(\partial D)} \leq L$. Assume ∂D is C^{2}. Take any $y_{0} \in \partial D$, for a given $f \in H^{\frac{1}{2}}(\partial \Omega), v \in H^{1}(\Omega)$ is a weak solution of (1.1). Let $q=\frac{1}{2}$ when $n=3$ and $q=1-\epsilon$ for any $0<\epsilon<1$ when $n=2$. Then, there exist positive constants $C_{1}=C_{1}(\Omega, D, \epsilon), C_{2}=C_{2}(\Omega, L, \epsilon)$ such that

$$
\begin{aligned}
& \int_{D}\left|D_{A} v\right|^{2} d x-C_{2}\left\{\int_{D}|v|^{2} d x+\left(\int_{\partial D}\left|y-y_{0}\right|^{q}\left|\frac{\partial v}{\partial \nu}\right| d S\right)^{2}+\int_{\partial D}|v|^{2} d S\right\} \\
& \leq\left\langle\left(\Lambda_{q, A}-\Lambda_{q, A, D}^{(R)}\right) f, \bar{f}\right\rangle \\
& \leq C_{1}\left(\left\|D_{A} v\right\|_{L^{2}(D)}^{2}+\|v\|_{L^{2}(D)}^{2}\right)+C_{2}\left\{\left(\int_{\partial D}\left(\left|y-y_{0}\right|^{q}\left|\frac{\partial v}{\partial \nu}\right| d S\right)^{2}+\int_{\partial D}|v|^{2} d S\right\} .\right.
\end{aligned}
$$

To prove Proposition 1, we prepare the following two lemmas.
Lemma 1. Let $v \in H^{1}(\Omega)$ and $u \in H^{1}(\Omega \backslash \bar{D})$ are weak solutions of (1.1) and (1.3), respectively. We have for $w:=u-v$,

$$
\begin{aligned}
& \left\langle\left(\Lambda_{q, A}-\Lambda_{q, A, D}^{(R)}\right) f, \bar{f}\right\rangle \\
& =\int_{\Omega \backslash \bar{D}}\left|D_{A} w\right|^{2}+q|w|^{2} d x+\int_{D}\left|D_{A} v\right|^{2}+q|v|^{2} d x-\left(\int_{\partial D} \lambda u \bar{v}-\lambda|u|^{2}+\lambda \bar{u} v d S\right)
\end{aligned}
$$

We need the following estimate for the Robin case. We follow the argument in [3], where the proof is given for the three-dimensional case.
Lemma 2. Assume ∂D is C^{2}. Let $L \geq 0$ be a constant satisfying $\|\lambda\|_{L^{\infty}(\partial D)} \leq L$. Take any $y_{0} \in \partial D$. For a given $f \in H^{\frac{1}{2}}(\partial \Omega), v \in H^{1}(\Omega)$ and $u \in H^{1}(\Omega \backslash \bar{D})$ are weak solutions of (1.1) and (1.3), respectively. Let $q=\frac{1}{2}$ when $n=3$ and $q=1-\epsilon$ for any $0<\epsilon<1$ when $n=2$. Then, there exists a positive constant C such that

$$
\begin{aligned}
& \int_{\partial D}|u-v|^{2} d S \leq \\
& C\left\|D_{A} w\right\|_{L^{2}(\Omega \backslash \bar{D})}\left(\int_{\partial D}\left|y-y_{0}\right|^{q}\left|\frac{\partial v}{\partial \nu}\right| d S+\left\||A|^{2}+q\right\|_{L^{\infty}(D)} \int_{D}|v| d x+L \int_{\partial D}|v| d S\right)
\end{aligned}
$$

Remark 2. To show Lemma 2, we need to assume that λ is a real-valued function for the case $A \neq 0$. If $A=0$, we can allow λ to be a complex-valued function (see Ikehata [3]).

By Lemma 1 and 2, we obtain Proposition 1. To prove the asymptotic formula for the indicator function under the Robin condition on ∂D, we need the following basic lemmas.
Lemma 3. Let $v_{\tau}=v_{\tau}(x ; \omega)=e^{\tau x \cdot\left(\omega+i \omega^{\perp}\right)}\left(1+r_{\tau}(x ; \omega)\right)$ be the complex geometrical optics solution as $\zeta=\tau\left(\omega-i \omega^{\perp}\right)$, where $\tau>0$ and $\omega, \omega^{\perp} \in S^{n-1}$ satisfying $\omega \cdot \omega^{\perp}=0$. Assume $\|A\|_{H^{2}(\Omega)}$ is sufficiently small. Then, there exists a constant C such that

$$
\frac{1}{4} \tau^{2} \int_{D} e^{2 \tau x \cdot \omega} d x \leq \int_{D}\left|D_{A} v_{\tau}\right|^{2} d x \leq C \tau^{2} \int_{D} e^{2 \tau x \cdot \omega} d x
$$

for sufficient large τ and

$$
\int_{D}\left|v_{\tau}\right|^{2} d x \leq C \int_{D} e^{2 \tau x \cdot \omega} d x
$$

Lemma 4. (cf. Ikehata [2, Proposition 2.3])
Let ∂D is Lipschitz continuous. There exists $C_{\omega}>0, \tau_{\omega}>0$ such that

$$
\tau^{2} \int_{D} e^{-2 \tau\left(h_{D}(\omega)-x \cdot \omega\right)} d x \geq C_{\omega} \tau^{1-p_{\omega}} \quad\left(\tau \geq \tau_{\omega}\right)
$$

with

$$
p_{\omega}= \begin{cases}2 & (n=3) \\ 1 & (n=2)\end{cases}
$$

for $\omega \in S^{n-1}$. Especially, when we assume furthermore the condition $(D)_{\omega}$ and the graph $y=f(s)$ representing ∂D, satisfies $f(s) \leq g(s)=L|s|^{m_{\omega}}$ near $x_{0} \in T(\omega)$. We have following estimate:

$$
\tau^{2} \int_{D} e^{-2 \tau\left(h_{D}(\omega)-x \cdot \omega\right)} d x \geq \begin{cases}C_{w} \tau^{1-\frac{2}{m_{\omega}}} & (n=3) \\ C_{w} \tau^{1-\frac{1}{m_{\omega}}} & (n=2)\end{cases}
$$

for any $\tau \geq \tau_{w}$.

Lemma 5. (cf. Ikehata [1, Lemma 4.2])
Assume $(D)_{\omega}$ for $\omega \in S^{n-1}$ and $x_{0} \in T(\omega)$ which appeared in the assumption $(D)_{\omega}$.
(1) Let $n=3$. Then, there exist constants τ_{ω} and K such that

$$
\left(\tau \int_{\partial D}\left|x-x_{0}\right|^{\frac{1}{2}} e^{\tau\left(x \cdot \omega-h_{D}(\omega)\right.} d S\right)^{2} \leq K \tau^{2-\frac{5}{m_{\omega}}} \quad\left(\tau \geq \tau_{w}\right)
$$

and

$$
\int_{\partial D} e^{\tau\left(x \cdot \omega-h_{D}(\omega)\right.} d S \leq K \tau^{-\frac{2}{m_{\omega}}} .
$$

(2) Let $n=2$. Then, for any $0<\epsilon<1$, there exist τ_{ω} and K such that

$$
\left(\tau \int_{\partial D}\left|x-x_{0}\right|^{1-\epsilon} e^{\tau\left(x \cdot \omega-h_{D}(\omega)\right.} d S\right)^{2} \leq K \tau^{2-\frac{4-2 \epsilon}{m_{\omega}}} \quad\left(\tau \geq \tau_{\omega}\right)
$$

Proof of Theorem 2. By the definition of $I_{\omega}^{(R)}(\tau ; t)$ and Proposition 1, we have

$$
I_{3}(\tau) \leq I_{\omega}^{(R)}(\tau, 0) e^{-2 \tau h_{D}(\omega)}=I_{\omega}^{(R)}\left(\tau ; h_{D}(\omega)\right) \leq I_{4}(\tau),
$$

where

$$
\begin{aligned}
I_{3}(\tau) & =\int_{D}\left|D_{A} e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d x-C_{2}(L)\left\{\int_{D}\left|e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d x\right. \\
& \left.+\left(\int_{\partial D}\left|x-x_{0}\right|^{q}\left|D_{A} e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right| d S\right)^{2}+\int_{\partial D}\left|e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d S\right\}, \\
I_{4}(\tau) & =C_{1}(D)\left(\int_{D}\left|D_{A} e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d x+\int_{D}\left|e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d x\right) \\
& +C_{2}(L)\left\{\left(\int_{\partial D}\left|x-x_{0}\right|^{q}\left|D_{A} e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right| d S\right)^{2}+\int_{\partial D}\left|e^{-\tau\left(h_{D}(\omega)\right)} v_{\tau}\right|^{2} d S\right\} .
\end{aligned}
$$

Since $x \cdot \omega-h_{D}(\omega) \leq 0(x \in D)$, it follows

$$
I_{4}(\tau) \leq C \tau^{2}
$$

Lemma 4 implies for large $\tau \geq \tau_{\omega}$

$$
\begin{aligned}
& C \tau^{2} \int_{D} e^{2 \tau\left(x \cdot \omega-h_{D}(\omega)\right)} d x-C^{\prime} \int_{D} e^{2 \tau\left(x \cdot \omega-h_{D}(\omega)\right)} d x \\
\geq & \frac{C}{2} \tau^{2} \int_{D} e^{2 \tau\left(x \cdot \omega-h_{D}(\omega)\right)} d x \geq C \begin{cases}\tau^{1-\frac{2}{m_{\omega}}} & (n=3) \\
\tau^{1-\frac{1}{m_{\omega}}} & (n=2) .\end{cases}
\end{aligned}
$$

On the other hand, Lemma 5 implies for large $\tau \geq \tau_{\omega}$

$$
\begin{aligned}
\int_{\partial D}\left|e^{\tau\left(x \cdot\left(\omega+i \omega^{\perp}\right)-h_{D}(\omega)\right)}(1+r)\right|^{2} d S & \leq C \int_{\partial D} e^{2 \tau\left(x \cdot \omega-h_{D}(\omega)\right)} d S \\
& \leq\left\{\begin{array}{cc}
C \tau^{-\frac{2}{m_{\omega}}} & (n=3) \\
C & (n=2) .
\end{array}\right.
\end{aligned}
$$

Furthermore, since there exists a constant C such that $|r(x)| \leq C,|\nabla r(x)| \leq C \tau(x \in D)$, we can estimate as follows:

$$
\begin{aligned}
& \left(\int_{\partial D}\left|x-x_{0}\right|^{q}\left|\frac{\partial}{\partial \nu}\left(e^{\tau\left(x \cdot\left(\omega+i \omega^{\perp}\right)\right)-\tau h_{D}(\omega)}(1+r(x))\right)\right| d S\right)^{2} \\
\leq & \left(\int_{\partial D}\left|x-x_{0}\right|^{q}\left(\left|\tau\left(\omega+i \omega^{\perp}\right) \cdot \nu(1+r(x))\right|+|\nabla r(x)|\right) e^{\tau\left(x \cdot \omega-h_{D}(\omega)\right)} d S\right)^{2} \\
\leq & C\left(\tau \int_{\partial D}\left|x-x_{0}\right|^{q} e^{\tau\left(x \cdot \omega-h_{D}(\omega)\right)} d S\right)^{2} \leq\left\{\begin{array}{cc}
C K \tau^{2-\frac{5}{m_{\omega}}} & (n=3) \\
C K \tau^{2-\frac{4-2 \epsilon}{m_{\omega}}} & (n=2) .
\end{array}\right.
\end{aligned}
$$

Combining these estimates, we have for $\tau \geq \tau_{\omega}$

$$
I_{3}(\tau) \geq\left\{\begin{array}{cl}
\frac{C}{2} \tau^{1-\frac{2}{m_{\omega}}}-C \tau^{-\frac{2}{m_{\omega}}}-C K \tau^{2-\frac{5}{m_{\omega}}} & (n=3) \\
\frac{C}{2} \tau^{1-\frac{1}{m_{\omega}}}-C-C K \tau^{2-\frac{4-2 \epsilon}{m_{\omega}}} & (n=2)
\end{array}\right.
$$

Note that $1-\frac{2}{m_{\omega}}>2-\frac{5}{m_{\omega}}$ for $n=3$ and $1-\frac{1}{m_{\omega}}>2-\frac{4-2 \epsilon}{m_{\omega}}$ for $n=2$, since $2 \leq m_{\omega}<3$. Here, we take $0<\epsilon<1$ sufficiently small such that $3-2 \epsilon>m_{\omega}$. So, for τ_{ω} large enough, there exists a positive constant C such that

$$
I_{3}(\tau) \geq \begin{cases}C \tau^{1-\frac{2}{m_{\omega}}} & (n=3) \\ C \tau^{1-\frac{1}{m_{\omega}}} & (n=2)\end{cases}
$$

for $\tau \geq \tau_{\omega}$. Thus, it follows

$$
C \tau^{\alpha} \leq e^{-2 \tau h_{D}(\omega)} I_{\omega}^{(R)}(\tau, 0) \leq C \tau^{2} \quad\left(\tau \geq \tau_{\omega}\right)
$$

where

$$
\alpha:= \begin{cases}1-\frac{2}{m_{\omega}} & (n=3) \\ 1-\frac{1}{m_{\omega}} & (n=2)\end{cases}
$$

Then, we have

$$
\log C+\alpha \log \tau \leq-2 \tau h_{D}(\omega)+\log \left|I_{\omega}^{(R)}(\tau, 0)\right| \leq \log C+2 \log \tau \quad\left(\tau \geq \tau_{\omega}\right)
$$

Now, we can conclude

$$
\lim _{\tau \rightarrow \infty} \frac{\log \left|I_{\omega}^{(R)}(\tau, 0)\right|}{2 \tau}=h_{D}(\omega)
$$

References

[1] M. Ikehata, How to draw a picture of an unknown inclusion from boundary measurements, J. Inv. Ill-Posed Problems, 7 (1999), pp. 255-271.
[2] M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements, J. Inv. Ill-Posed Problems, 8 (2000), pp. 367-378.
[3] M. Ikehata, Two sides of probe method and obstacle with impedance boundary condition, Hokkaido Math. J., 35 (2006), pp. 659-681.
[4] M. Ikehata, Direct reconstruction of solutions to inverse problems, (in Japanese), Hokkaido University technical report series in mathematics, (2005).
[5] K. Kurata and R. Yamashita, Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator, (preprint).

Department of Mathematical Sciences
Tokyo Metropolitan University,
Minami-Ohsawa 1-1, Hachioji, Tokyo, 192-0397 Japan.
yamashita@uitec.ac.jp

