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Reconstruction of the defect by the enclosure method for inverse 
problems of the magnetic Schrodinger operator 

Ryusei Yamashita 

Tokyo Metropolitan University 

This study is based on the paper [5]. We show a reconstruction formula of the convex hull of the 
defect D from the Dirichlet to Neumann map associated with the magnetic Schri:idinger operator by using 
the enclosure method proposed by Ikehata [2], assuming certain higher regularity for the potentials of the 
magnetic Schri:idinger operator, under the Dirichlet condition or the Robin condition on the boundary 
8D in the two and three dimensional case. 

Let !1 C Rn(n = 2, 3) be a bounded domain where the boundary 8!1 is C2 and let D be an open 
set satisfying D C !1 and !1 \ D is connected. The defect D consists of the union of disjoint bounded 
domains { Dj }:;'=1 , where the boundary of D is Lipschitz continuous. First, we define the DN map for 
the magnetic Schri:idinger equation with no defect Din !1. Here, let D!u := I:;]=1 DA,j(DA,ju), where 

D A,j := t8i + Ai and A= (A1, A2, · · · , An)-

Definition 1. Suppose q E £ 00 (!1),q 2 0,A E C 1 (IT,Rn). For a given f E H 112 (8!1), we say u E H 1 (!1) 
is a weak solution to the following boundary value problem for the magnetic Schri:idinger equation 

if u = f on 8!1 and u satisfies 

{
D! u + qu = 0 in !1, 

u = f on 8!1, 

l (DAu) · DA<p + qu-q5dx = 0 

for any <p E H 1 (!1) such that 'Plan= 0. Here, VJ is the complex conjugate of <p. 

The DN map Aq,A is defined as follows. 

Definition 2. (Weak formulation of DN map) 
The DN map Aq,A: H½(8!1)-+ H-½(8!1) is defined as follows by the duality: 

where u E H 1 (!1) is the weak solution of (1.1) and v E H 1 (!1) is any function satisfying vlan = g. 

(1.1) 

We define the weak solution of the magnetic Schri:idinger equation with a defect D in !1 under the 
Robin boundary condition on 8D. 

Definition 3. (Robin case) 

Suppose q E £ 00 (!1\15),q 2 0,.\ E C 1 (8D),.\ 2 0 and A E C1(!1\15,Rn). Let II is the outward unit 
normal vector to !1 \ 15. For a given f E H 112 (8!1), we say u E H 1 (!1 \ 15) is a weak solution to the 
following value problem for the magnetic Schri:idinger equation 

if u = f on 8!1 and u satisfies 

{
D!u + qu = 0 in !1 \ 15, 
11 • (v' + iA)u + .\u = 0 on 8D, 
u = f on 8!1, 

for any <p E H 1 (!1 \ 15) such that 'Piao= 0. 

The DN map A;~1,n is defined as follows. 

(1.3) 
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Definition 4. (DN map of the Robin case) 

The DN map A~~l,n: H½(an)--+ H-½(an) is defined as follows by the duality: 

(A~EtJinf, g)= f >..uvdS+ f _(DAu)-DAv+quvdx, f,gEH112 (8fl), 
' ' Jan Jn\D 

where u E H 1 (fl \ 15) is the weak solution of (1.3) and <p E H 1 (fl \ 15) is any function 'Piao= g. 

In the special case >.. = 0, we denote A~'J.,n instead of A~~l,n-

Remark 1. The weak solution of the magnetic Schriidinger equation with a defect D in n under the 

Dirichlet boundary condition on 8D and the DN map A~~l,n can be defined in a similar way. 

Next, we introduce an indicator function that plays an important role in the enclosure method. 
We denote by sn-l the set of n-dimensional unit vectors (n = 2, 3). For a given w E sn-l, we can 
take an orthogonal unit vector w.L E sn- 1 , namely w • w.L = 0. Then we can construct a solution 
vT(x; w) := erx•(w+iw_j_)(l + r,.(x;w)) of D!v + qv = 0, where r,.(x;w) is chosen suitably associated with 
the parameter T E R. This solution is called the complex geometrical optics solutions. 

Definition 5. (Indicator function) 
Let t,T E JR.. Then, the indicator function Iw(T;t) is defined as follows. 

Here, v,. is the complex conjugate of v,.. In the special case >.. = 0, we denote A~'J.,n instead of A~~l,n• 

Also, I~D\T;t) can be defined by A~~l,n- We define the support function hn(w) as follows: 

hn(w) = supx·w, w E sn- 1 . 
xED 

Then it is well-known that the convex hull conv(D) of D is obtained as follows. 

Since the indicator function Iw(T; t) is determined from the DN map, if the support function hn(w) is 
obtained from the indicator function Iw ( T; t), the convex hull conv(D) of inclusion D can be reconstructed 
from the observation data on boundary an. Now, we give the formula of the reconstruction of the support 
function from the indicator function under a certain smallness condition for the vector potential A. 

Theorem 1. Suppose 8D is Lipschitz continuous. Let n = 2,3,q E H 2 (fl),q:;;, 0,A E H 3(fl) and 
C(fl)IIAIIH2(0) <::: ½- Then, we have 

r loglJ,SDJ(T;O)I h () r loglJ,SN\T;O)I h () 
,.!_.~ 2T = D W , ,.!_.~ 2T = D W , 

for any w E sn-l _ Here, the constant C(fl) depends only on n. 

For a given w E sn- 1 , we furthermore assume the following condition (D)w for the Robin case. 

(D)w: Suppose 8D is C 2 and the set T(w) := {x E 15 I hn(w) - x · w = 0} consists of only one point 
x 0 E 8D. Furthermore, we assume that in the neighborhood of x 0 the boundary 8D can be expressed as 
y = f(s), lsl < E, s E Rn-l, and there exists Ko, K1 > 0, mw :;;, 2 such that 

Theorem 2. (Robin case) Suppose>.. f= 0,>..:;;, 0 and>.. E C 1 (8D). Let n = 2,3,q E H 2 (fl),q:;;, 0,A E 
H 3 (fl) and C(fl)IIAIIH2(0) <::: ½- We assume that the condition (D)w holds as 2 <::: mw < 3 for some 
w E sn-l _ Then, we have 

(R) 
lim log IIw (T; O)I = hn(w). 
r➔oo 2T 

See [5] for the proof of Theorem 1. We present the basic estimates for the DN maps in the Robin 
case. 
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Proposition 1. Let>. cl 0,.\ :::> 0 and>. E C 1 (8D). Let L be a constant satisfying 11>-IIL=(an) .::: L. 

Assume 8D is C2 . Take any y0 E 8D, for a given f EH½ (80), v E H 1 (0) is a weak solution of (1.1). 
Let q = ½ when n = 3 and q = 1 - E for any 0 < E < 1 when n = 2. Then, there exist positive constants 
C1 = C1(0,D,E),C2 = C2(0,L,E) such that 

r IDAvl 2dx-C2{ r lvl2dx+( r IY-YolqlaavldS) 2 + r lvl2dS} 
Jn Jn kn v kn 

(R) -
<::'. ((Aq,A - Aq,A,nlf , f) 

2 2 1 av 212 .::: C1(IIDAvllL2(n) + llvllL2(n)l + C2{( (IY-Yolql-8 I dS) + lvl dS}. 
an v an 

To prove Proposition 1, we prepare the following two lemmas. 

Lemma 1. Let v E H 1 (0) and u E H 1 (0 \ D) are weak solutions of (1.1) and (1.3), respectively. We 
have for w := u - v, 

(R) -
((Aq,A - Aq,A,nlf , f) 

= 1 -ID AWl2 + qlwl2 dx + r ID AVl2 + qlvl2 dx - ( r AUV - >-lul2 + >.uv dS). 
~n h kn 

We need the following estimate for the Robin case. We follow the argument in [3], where the proof is 
given for the three-dimensional case. 

Lemma 2. Assume 8D is C2. Let L :::> 0 be a constant satisfying 11>-IIL=(an).::: L. Take any y0 E 8D. 

Foragivenf E H½(aO), v E H 1 (0) andu E H 1 (0\I5) are weak solutions of(l.l) and(l.3), respectively. 
Let q = ½ when n = 3 and q = 1- E for any 0 < E < 1 when n = 2. Then, there exists a positive constant 
C such that 

r lu-vl 2dS <::'. 
lan 

CIIDAwllL2(!1\D) (Ian IY - Yolql ~~ I dS + II IAl2 + qllL=(n) L lvl dx + L hn lvl dS) • 

Remark 2. To show Lemma 2, we need to assume that .\ is a real-valued function for the case A cl 0. 
If A= 0, we can allow.\ to be a complex-valued function (see Ikehata [3]). 

By Lemma 1 and 2, we obtain Proposition 1. To prove the asymptotic formula for the indicator 
function under the Robin condition on 8D, we need the following basic lemmas. 

Lemma 3. Let v,. = v,.(x; w) = e,-x-(w+iw_j_)(l + r,.(x; w)) be the complex geometrical optics solution as 
( = r(w - iw.L ), where r > 0 and w, w.L E sn-l satisfying w · w.L = 0. Assume IIAIIH2(0) is sufficiently 
small. Then, there exists a constant C such that 

ir2 L e2,-x-w dx <::'. L IDAv,-l2dx <::'. Cr2 L e2,-x-wdx 

for sufficient large r and 

L lv,.12dx <::'. CL e2Tx-w dx. 

Lemma 4. (cf. Ikehata [2, Proposition 2.3]) 
Let 8D is Lipschitz continuous. There exists Cw > 0, Tw > 0 such that 

with 

T2 L e-2,-(hv(w)-x·w) dx;:, CwTl-pw (r;:, Tw) 

(n= 3) 
(n= 2), 

for w E sn-l_ Especially, when we assume furthermore the condition (D)w and the graph y = f(s) 
representing 8D, satisfies f(s) <::'. g(s) = Llslmw near x 0 E T(w). We have following estimate: 

(n = 3), 
(n = 2) 

for any T :::> Tw. 
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Lemma 5. (cf. Ikehata [1, Lemma 4.2]) 
Assume (D)w for w E sn-l and x 0 E T(w) which appeared in the assumption (D)w-

(I) Let n = 3. Then, there exist constants Tw and K such that 

and 

(2) Let n = 2. Then, for any O < E < 1, there exist Tw and K such that 

Proof of Theorem 2. By the definition of Ifl\ T; t) and Proposition 1, we have 

fa(T):::; Jf;,Rl(T,O)e- 2rhv(w) = Jf;,R)(T;hD(w)):::; J4(T), 

where 

la(T) = l 1nAe-r(hv(w))vrl2 dx - C2(L){l le-r(hv(w))vrl 2 dx 

+ ( r Ix - xolqlDAe-r(hv(w))vrl dS) 2 + r 1cr(hv(w))vrl2 dS}, 
laD laD 

l4(T) = C1(D)(l lDAe-r(hv(w))vrl 2 dx + l le-r(hv(w))vrl 2 dx) 

+ C2(L){( r Ix -xolqlDAe-r(hv(w))vrl dS) 2 + r le-r(hv(w))vrl 2 dS}. 
laD laD 

Since x · w - hD(w):::; 0 (x ED), it follows 

Lemma 4 implies for large T;:, Tw 

CT2 l e2r(x•w-hv(w)) dx _ C' l e2r(x•w-hv(w)) dx 

;:, ~2 T2 {D e2r(x•w-hv(w)) dx;:, C { T1-,,;w (n = 3) 
lr Tl-,,;w (n=2). 

On the other hand, Lemma 5 implies for large T;:, Tw 

laDler(x·(w+iw.L)-hv(w))(l + r{ dS:::; C lD e2r(x•w-hv(w)) dS 

< { CT-,,;w (n = 3) 
- C (n = 2). 

Furthermore, since there exists a constant C such that lr(x)I :::; C, l'vr(x)I :::; GT (x ED), we can estimate 
as follows: 

(laD Ix - xolql :v (er(x-(w+iw.L))-rhv(wl(l + r(x))) I dS) 2 

:::; (laD Ix -xolq (IT(w + iwj_) · v(l + r(x))I + l'vr(x)l)er(x•w-hv(w)) dS) 
2 

(n = 3) 
(n = 2). 
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Combining these estimates, we have for T :::> Tw 

{ 
c 1-__2__ C _ __2_ CK 2--'L -T rnw - T rnw - T Tnw 

h(T):::,. 2 C 1-___L 2-4-2< 
2 T =w -C-CKT =w 

(n = 3) 
(n = 2). 

Note that 1 - ...l... > 2 - ...2.... for n = 3 and 1 - ...L > 2 - 4- 2< for n = 2, since 2 < mw < 3. Here, we 
take O < E < 1 ;i'i'fficientlym;mall such that 3 - 2t> mw. So~for Tw large enough, there exists a positive 
constant C such that 

for T :::> Tw. Thus, it follows 

where 

a:= { 

Then, we have 

Now, we can conclude 
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