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Abstract

The non-relativistic limit of the semi-relativistic Pauli-Fierz Hamil-
tonian

Ve(—iVel—Ax)2 +m2ct —mc> + V@ 1+ 1® Hyag

is considered. Here ¢ denots the speed of light, m the mass of a charged
particle, A a quantized radiation field, V' an external potential and
H.,q the free field Hamiltonian. By the limit ¢ — oo in the sense
of strong semigroup, we derive the Pauli-Fierz Hamiltonian in non-
relativistic quantum electrodynamics:

1
oo (CiVel- A)? +V @1+ 1® Hpg.

1 Non-relativistic limit of subordinator

In 1905 Albert Einstein discovered that a particle with momentum p € R?
and mass m has the kinetic energy 1/c?|p|? + m2c*. Since we have

4
VEE|p)2 + m2ct —me* = i]]D|2 + O( ) )
2m m3c2’’

*I was planning to give a talk at RIMS conference “Mathematical aspects of quantum
fields and related topics” held in 26-28 of July 2019, and the title of my talk was going
to “Positivity improving and spatial decays of bound states in quantum field theory”. I
however canceled my talk due to the misfortune of my relative. Here I contribute this
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intuitively we have

exp (- t(/E(—A) 1 m2d — m02)> s exp (- tﬁ(—A))

as ¢ — oo. This intuition becomes substantial by means of the so-called
non-relativistic limit discussed in this article. Define

H.=vV—-A+m?2ct —m* +V.

By using the Feynman-Kac formula we can show that H., — H,, as ¢ — o0
in a specific sense, and the limit operator is the Schrodinger operator

1
H,o=—A+V.
2m

We call this non-relativistic limit.

Now we introduce a Feynman-Kac formula of e~*#¢. Let (B;);>o be 3-
dimensional Brownian motion on the Wiener space (£, B, W*), where 2~ =
C([0,00); R3) is the set of R3-valued continuous paths on [0, c0), W* denotes
the Wiener measure such that W*(By = x) = 1. It is established that

(f, e M=g) = /R3 E” [ f(2)g(Byym)eJo ¥ Berm)®] da. (1.1)

Here E*[.. ] = [, ...dW?" denotes the expectation with respect to W*.

Next we consider a Feynman-Kac formula of e7*%¢. To do that we need
a subordinator in addition to Brownian motion. We recall that (7});>0 is a
subordinator if and only if it is a one-dimensional Lévy process and [0, c0) >
t — T, € R is almost surely nondecreasing. For every ¢ > 0 consider the
subordinator (7});>o on a probability space (S, F, P) with parameter ¢ such
that

Ep[e_uTtu] _ e—t(\/202u+m2c4—mc2)
where v € R and Ep[...] = [;...dP. By using the distribution

t ) 1 [ c2t?
)= et o (4 (%))

of TY we have

Bele ) = [ e pilds
R



Substituting —%A into u formally above, we have

]EP[GTiC%A] _ e—t(\/ —c2Au+m?2cf—mc?)

9

Adding an external potential V' we have the related Feynman-Kac formulae:
(f,e Meg) = / E*[f(2)[Eplg(Bre)e oV Er) 4] da (1.2)
R3

We refer [5] for the detail of (1.2).

Proposition 1.1 ([7, Section 4.6]) Let f be a bounded continuous func-
tion on R. Then

lim Ep[f(17)] = /(t/m).

c— 00

It can be allowed to say that pf(s) — d(s —t/m) as ¢ — oo by Proposi-
tion 1.1. We derive the non-relativistic limit of e~*e.

Corollary 1.2 Let V' be a bounded continuous function. Then

s — lim e te = ¢7tHe,
CcC— 00

Proof: We suppose that V' is nonnegative without loss of generality. It is
enough to show the weak limit

lim (f,e™"eg) = (f,e"=yg). (1.3)

c—00

—tH.

Since H,. > 0 for every ¢ > 0, |le < 1 uniformly with respect to ¢ > 0. It
is also sufficient to show (1.3) for arbitrary f,g € .#(R) by a simple limiting
argument. Note that by Proposition 1.1 it can be seen that

(VAT = | B0 g
;

— / E7[f(2)g(Byjm)e oV Bormdds)dy = (f, e~ amAV)g)
RB

as ¢ — oo. [



2 Non-relativistic limit of RPF model

We consider a system of quantum matters minimally coupled to a quantized
radiation field. This model describes an interaction between non-relativistic
spinless n-electrons and photons. Let

H=LR)®F

be the total Hilbert space describing the joint electron-photon state vectors.
L*(R3) describes the state space of a single electron moving in R and F that
of photons. Here F = F(L*(R3x{1,2})) is the boson Fock space over Hilbert
space L?(IR? x {1,2}) of the set of L?-functions on R3 x {1,2}. The elements
of the set {1,2} account for the fact that a photon is a transversal wave
perpendicular to the direction of its propagation, which has two components.
‘H can be decomposed into infinite direct sum:

H = @?LO:OH(H) )

where H™ = L?(R3) ® F™. The Fock vacuum in F is denoted by Q as
usual. We introduce the free field Hamiltonian on F. Let w = w(k) = |k|.
w(k) describes the energy of a single photon with momentum k. The free
field Hamiltonian H,,q on F is given in terms of the second quantization

Hrad = dF(W)

Here w denotes the multiplication in L*(R*x{1,2}) by (wf)(k,j) = w(k)f(k,7)
for (k,j) € R® x {1,2}.

On the other hand the charged matter, electron, is governed by Schrodinger
operator of the form

1

in L?(R?). Here m denotes the mass of electron. To introduce the minimal
coupling we define quantized radiation fields. Let a(f) and af(f) be the
annihilation operator and the creation operator on F smeared by f € L*(R?x
{1,2}), respectively. Let us identify L?(R3 x {1,2}) with L*(R3) & L*(R?)
by

L*(R? x {1,2}) > f(-,1) = f(-,1) ® 0 € L*(R?) ® L*(R?),
L*(R* x {1,2}) 2 f(-,2) 2 0@ f(-,2) € L*(R®) & L*(R®).

I



We set a*(f ® 0) = a*(f,1) and a*(0 @ f) = a*(f,2). Hence we obtain
canonical commutation relations:

[a<f7j)7 aT(g7]’)] = 6jj’(.f_7 g)u [Cl(f,j), a‘(g7j/)] =0= [GT(fvj)a aT(gvjl)}
We define the quantized radiation field with a cutoff function ¢. Put

(k)
w(k)

- —ikx ~ . p _k . ikx
eu(k,j)Fe k . oulz,j) = i >€M(1€,j)F€k

oulz, j) = (k)

for each x € R3, j = 1,2 and p = 1,2, 3. Here cutoff function ¢ is the Fourier
transform of the charge distribution ¢ € .#/(R3). Although physically it
should be ¢ = 1/(2m)%2, we have to introduce cutoff function ¢ to ensure
that o, (z,7) € L*(R}) for each z. The vectors e(k, 1) and e(k,2) are called
polarization vectors, that is, (e(k, 1), e(k, 2), k/|k|) forms a right-hand system
at each k € R3;

k

e(k,i)-e(k,j) =05, e(k,j)-k=0, ek 1) xe(k,2) = Ik

The quantized radiation field with cutoff function ¢ is defined by
40) = 7= 3 (oulen o) + a0l ).d)) s =123
j=1,2
Unless otherwise stated we suppose the following assumptions.

Assumption 2.1 (Cutoff functions) ¢ € '(R?) satisfies that (1) $ €
loc( ) (2) ()0< ) (k)f (3) \/C‘_‘J@v@/\/aa @/w € LQGRS)

In the case of ¢/\/w € L*(R?) and ¢(k) = ¢(—k), A,(x) is symmetric, and
moreover essentially selfadjoint on the finite particle subspace Fg, of F. We
denote the closure of A,(z)[z,, by the same symbol. Write

D
AN = A;AZC)C[.’L’, A = (Al,AQ,Ag).

R3

A, is a selfadjoint operator on

D(AH):{FGH} F(z) € D(A,(z)) ae. and/ | A, (x ||fd96<oo}



and acts as (A, F)(z) = A,(x)F(x) for F € D(A,) for a.e. € R* Since
k- e(k,j) = 0, the polarization vectors introduced above are chosen in the
way that Zi:l V.. (x) = 0, implying the Coulomb gauge condition

This in turn yields Zizl[vu, A,] = 0. Let us define the Pauli-Fierz Hamil-
tonian. The interaction is obtained by minimal coupling:

-V, ®1— —iV,01-A4,
to H, ® 1+ 1® Hyaq.
Definition 2.2 (The Pauli-Fierz Hamiltonian) The Pauli-Fierz Hamil-
tonian of one electron with mass m is defined by

1
HPF:2—(—iV®]1—A)2+V®]1+]1®Hrad-
m

In what follows we omit the tensor notation ® for the sake of simplicity.
Thus

1
Hpp = —(—iV — A + V + Hya.
2m

We introduce classes of external potentials. We say V € Ciao if and only
it D(A) € D(V) and there exist 0 < a < 1 and 0 < b such that |V f|| <
all = (1/2)Af|| + b f|| for f € D(A). Hpy with V' € Ciuyo is self-adjoint on
D(—=A)N D(Hyaa)-

Definition 2.3 (Semi-relativistic Pauli-Fierz Hamiltonian) Hgpr is de-
fined by

Happ = \/c2(—iV — A2+ m2ct — me® +V + Hyag.

The functional integration and the self-adjointness of Hgrpr is shown in [1,
2, 4]. We introduce classes of external potentials which is a counterpart of
Crato- We say V € Ciaro if and only if D(v/—A) € D(V) and there exist
0 <a<1and0 < bsuch that [|[Vf] < al[v/=Af| +b||f]|| for f € D(A).
Hgpy with V' € Cyao is self-adjoint on D(v/—A) N D(H,aq). In the previous
section we could see that

1
\/—A+m2c4—m02+V—>—2—A+V
m



as ¢ — oo strongly in the sense of semigroup. In a similar way to this
we shall show the non-relativistic limit of the semi-relativistic Pauli-Fierz
Hamiltonian. Using (7f):>o we can see that
(F,e @) = / Eyyesop (e 0 VB (3o F(x), e~ Ao 3, G( By )] e,
R3
(2.1)

and the functional integral representation of e *#PF with mass m is given by

(F, e tHrr ) :/ Eyye [efot V(Bs/m)dS(JoF(x):eiiAE(Kt)JtG(Bt/m)) dz.
R3
(2.2)

Let j; : L2(R%) — L2(R*) be such that jij, = e S7tw(=V) | Let

@z/ 190~ B) 0B

p=1 j=1

32 tj/m
L=@Y [ et B)eds:

p=1 j=1 tj-1/m

Then K'(c) and K; are defined by the limits: I¢, — K(c) and 1, — K;
as m — oo strongly in L?(2 x 8) ® (3L*(R*)). The functional integral
representation is due to [3] for e *#7F and [4] for e 'rPF Using (2.1) and
(2.2) we show that e tHrer — e=trPP a5 ¢ — 0o strongly. In what follows
we set E*0 = Eypyegp and E* = Eyye.

Lemma 2.4 It follows that
lim K%(c) = K,
00

strongly in L*(Z° x 8) « (O3LA(RY)).

Proof: We have

17 () = Koll < 1B (e) = Tl + 1T, = Ll + (1T, — G-



We have

k 2
E*[||T;, - ;IP] < 3Tfu¢/m2< > 2‘”) .

j=n+1

Here || - || denotes the norm on &3 L%*(R*). From this we have

B[ — K(0)]|?) < SEV[] Hso/fHQ( 2.2 ”2> |

j=n+1

Since E°[T¥] = t/m which is independent of ¢ > 0, we obtain that

T c re t N > . 2
E*[|[T; — Ki*'(o)|P) < 3E|lw/ﬁllz< > 2 ]/2)

j=n+1

and we conclude that
E*°(L;, — Ki(e)[?] = 0 (2.3)

as n — oo uniformly in c¢. Let € > 0 be arbitrary. There exists ng such that
for all n > ng E*O[|| K7 (c) — I¢]|?] < &2 and E*°[||T,, — K¢||*] < &2 uniformly
in ¢. Now we estimate ||IS —I,||. We have

3 2"

Tth t;/m
I; o In = @Z (/ jtj—l@(' - BS)ng o /t jtj—l@(' - BS)dBQL)'

p=1 j j—1/m

We note that s — ["j,._,@(- — B,)dBY and s — fsbjtj_ltﬁ(- — By)dB" are
almost surely continuous. Hene

T tj/m
(Sa T) — E* |:(/5’ .jtj—l@(. - Bs)dBéLa/ jtj_lé(‘ - Bs>ng):|
t

j—1/m

is continuous. This implies that for every j,

thj tj/'m
E{( [ et o, [ A —Bs)dBé‘ﬂ
c ti—1/m

tj—1

t;/m . B t;/m . ~
— E* |:</ ,]tj—lgo(' - BS)dB57/ th71¢(' - BS)dB5>:|
tj—1/m tj—1/m

=Gt /o) (24)



as ¢ — 0o. Hence

E””’O[HIC — L[]

Since we have

(1]

— Ew,O |:

|

Tf. tj/m
‘ / ’ jtj—l@(. - BS)ng - / jtjfl(lzj(‘ - BS>ng
c t

t]‘,1 j-1/m
2:|

j—1/m
J 2 0 tj/m . ~

/ O | AT
e tj_1/m

j—1

thj tj/m
o[ ([ oot maas, [ s ot - s
c ti—1/m

tj—1

1 ~ C C
Z:;ﬁﬂw/xﬂ;HQUEoﬂ}j—‘7§,J‘+tj—'%>1)

0 thj ) B tj/m ) B
— 2E* |:</ .]tj—lgo(. - BS)dBéLJ/ / th—lgo(. - BS>ng>:| :
< tj,1 m

tj—1

t]-/m
th (- — BdBY — / i @ — BB
t

T

Note that E°[Ty — T¢ ] =1t; —t;1 and (2.4). We can see that
E*V[|[T5, — T[] — 0
as ¢ — 0o. We have

lim (B[ K7 (c) — Koll))/? < 26+ lim (E7[|T; = 1, [)"/2 = 2=.

c— 00
Thus the lemma is proven. [J
The main result of this article is the next theorem.
Theorem 2.5 (Non-relativistic limit) Suppose that V' is bounded and con-
tinuous. Then for every t > 0 it follows that

s — lim e tHrPr — o—tHrr

c— 00

Proof: Suppose that F,G € C§°(R?) ® Fraq. From Lemma 2.4 and

(F, 67tHRpFG) _ /3 E=0 |:€ fot V(BTSC)dS(JOF(a?), efi/lE(K{el(c))JtG(Bth)) dx
R



10

it follows that

Cc— 00

lim (F, eftHRPFG) = /R3 E* |:€ Jo V(Bs/m)ds(JoF(I>, 67iAE(Kt)JtG(Bt/m)) dx

= (F, e PP ().

Since Hrpp > infyeps V(z) = g > —o0, e fIrer < 7. Tet F,G € Hpr.
There exists F,, G, € CF(R?) ® Faq such that F,, - F and G, — G
strongly as n — oo. By the uniform bound e rFF < ¢7% we can show
lim, o (F, e tHrrr Q) = (F, e Pr G). Finally since the weak convergence of
e~tHrPr jmplies the strong convergence, the theorem follows. [J

Remark 2.6 Theorem 2.5 has been already published in [6, Theorem 3.137].
Although this article was planed to be published in 2019, it delayed however
by 2 years and then [6] has been published before the publication of this
article. Hence this is not the reprint of [6].
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