Non-relativistic limit of the semi-relativistic Pauli-Fierz model^{*†}

Kyushu University Fumio Hiroshima (廣島文生)

Abstract

The non-relativistic limit of the semi-relativistic Pauli-Fierz Hamiltonian

$$\sqrt{c^2(-i\nabla\otimes\mathbb{1}-A(x))^2+m^2c^4}-mc^2+V\otimes\mathbb{1}+\mathbb{1}\otimes H_{\mathrm{rad}}$$

is considered. Here c denots the speed of light, m the mass of a charged particle, A a quantized radiation field, V an external potential and $H_{\rm rad}$ the free field Hamiltonian. By the limit $c \to \infty$ in the sense of strong semigroup, we derive the Pauli-Fierz Hamiltonian in non-relativistic quantum electrodynamics:

$$\frac{1}{2m}(-i\nabla\otimes\mathbb{1}-A(x))^2+V\otimes\mathbb{1}+\mathbb{1}\otimes H_{\mathrm{rad}}.$$

1 Non-relativistic limit of subordinator

In 1905 Albert Einstein discovered that a particle with momentum $p \in \mathbb{R}^3$ and mass *m* has the kinetic energy $\sqrt{c^2|p|^2 + m^2c^4}$. Since we have

$$\sqrt{c^2|p|^2 + m^2c^4} - mc^2 = \frac{1}{2m}|p|^2 + \mathcal{O}(\frac{|p|^4}{m^3c^2})$$

^{*}I was planning to give a talk at RIMS conference "Mathematical aspects of quantum fields and related topics" held in 26-28 of July 2019, and the title of my talk was going to "Positivity improving and spatial decays of bound states in quantum field theory". I however canceled my talk due to the misfortune of my relative. Here I contribute this article different from the planed title.

[†]This article is dedicated to late Syun'etsu Hiroshima.

intuitively we have

$$\exp\left(-t\left(\sqrt{c^2(-\Delta)+m^2c^4}-mc^2\right)\right) \to \exp\left(-t\frac{1}{2m}(-\Delta)\right)$$

as $c \to \infty$. This intuition becomes substantial by means of the so-called non-relativistic limit discussed in this article. Define

$$H_c = \sqrt{-c^2 \Delta + m^2 c^4} - mc^2 + V.$$

By using the Feynman-Kac formula we can show that $H_c \to H_\infty$ as $c \to \infty$ in a specific sense, and the limit operator is the Schrödinger operator

$$H_{\infty} = -\frac{1}{2m}\Delta + V$$

We call this non-relativistic limit.

Now we introduce a Feynman-Kac formula of e^{-tH_c} . Let $(B_t)_{t\geq 0}$ be 3dimensional Brownian motion on the Wiener space $(\mathscr{X}, \mathcal{B}, \mathcal{W}^x)$, where $\mathscr{X} = C([0, \infty); \mathbb{R}^3)$ is the set of \mathbb{R}^3 -valued continuous paths on $[0, \infty)$, \mathcal{W}^x denotes the Wiener measure such that $\mathcal{W}^x(B_0 = x) = 1$. It is established that

$$(f, e^{-tH_{\infty}}g) = \int_{\mathbb{R}^3} \mathbb{E}^x \left[f(x)g(B_{t/m})e^{-\int_0^t V(B_{s/m})ds} \right] dx.$$
(1.1)

Here $\mathbb{E}^{x}[\ldots] = \int_{\mathscr{X}} \ldots d\mathcal{W}^{x}$ denotes the expectation with respect to \mathcal{W}^{x} .

Next we consider a Feynman-Kac formula of e^{-tH_c} . To do that we need a subordinator in addition to Brownian motion. We recall that $(T_t)_{t\geq 0}$ is a subordinator if and only if it is a one-dimensional Lévy process and $[0,\infty) \ni$ $t \mapsto T_t \in \mathbb{R}$ is almost surely nondecreasing. For every c > 0 consider the subordinator $(T_t^c)_{t\geq 0}$ on a probability space $(\mathcal{S}, \mathcal{F}, P)$ with parameter c such that

$$\mathbb{E}_{P}[e^{-uT_{t}^{c}}] = e^{-t(\sqrt{2c^{2}u + m^{2}c^{4}} - mc^{2})}$$

where $u \in \mathbb{R}$ and $\mathbb{E}_{P}[\ldots] = \int_{\mathcal{S}} \ldots dP$. By using the distribution

$$\rho_t^c(s) = \frac{ct}{\sqrt{2\pi}} e^{mc^2 t} s^{-3/2} \exp\left(-\frac{1}{2}\left(\frac{c^2 t^2}{s} + m^2 c^2 s\right)\right) \mathbf{1}_{[0,\infty)}(s)$$

of T_t^c we have

$$\mathbb{E}_P[e^{-uT_t^c}] = \int_{\mathbb{R}} e^{-us} \rho_t^c(s) ds.$$

Substituting $-\frac{1}{2}\Delta$ into *u* formally above, we have

$$\mathbb{E}_P[e^{T_t^c \frac{1}{2}\Delta}] = e^{-t(\sqrt{-c^2\Delta u + m^2c^4} - mc^2)},$$

Adding an external potential V we have the related Feynman-Kac formulae:

$$(f, e^{-tH_c}g) = \int_{\mathbb{R}^3} \mathbb{E}^x [f(x)[\mathbb{E}_P[g(B_{T_t^c})e^{-\int_0^t V(B_{T_s})ds}]]dx.$$
(1.2)

We refer [5] for the detail of (1.2).

Proposition 1.1 ([7, Section 4.6]) Let f be a bounded continuous function on \mathbb{R} . Then

$$\lim_{c \to \infty} \mathbb{E}_P[f(T_t^c)] = f(t/m).$$

It can be allowed to say that $\rho_t^c(s) \to \delta(s - t/m)$ as $c \to \infty$ by Proposition 1.1. We derive the non-relativistic limit of e^{-tH_c} .

Corollary 1.2 Let V be a bounded continuous function. Then

$$s - \lim_{c \to \infty} e^{-tH_c} = e^{-tH_\infty}$$

Proof: We suppose that V is nonnegative without loss of generality. It is enough to show the weak limit

$$\lim_{c \to \infty} (f, e^{-tH_c}g) = (f, e^{-tH_{\infty}}g).$$
(1.3)

Since $H_c \geq 0$ for every c > 0, $||e^{-tH_c}|| \leq 1$ uniformly with respect to c > 0. It is also sufficient to show (1.3) for arbitrary $f, g \in \mathscr{S}(\mathbb{R})$ by a simple limiting argument. Note that by Proposition 1.1 it can be seen that

$$(f, e^{-t(\sqrt{-\Delta+m^2c^4}-mc^2+V)}g) = \int_{\mathbb{R}^3} \mathbb{E}^{x,0}[\bar{f}(x)g(B_{T_t^c})e^{-\int_0^t V(B_{T_s^c})ds}]dx$$

$$\to \int_{\mathbb{R}^3} \mathbb{E}^x[\bar{f}(x)g(B_{t/m})e^{-\int_0^t V(B_{s/m})ds}]dx = (f, e^{-t(-\frac{1}{2m}\Delta+V)}g)$$

as $c \to \infty$. \Box

2 Non-relativistic limit of RPF model

We consider a system of quantum matters minimally coupled to a quantized radiation field. This model describes an interaction between non-relativistic spinless *n*-electrons and photons. Let

$$\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F}$$

be the total Hilbert space describing the joint electron-photon state vectors. $L^2(\mathbb{R}^3)$ describes the state space of a single electron moving in \mathbb{R}^3 and \mathcal{F} that of photons. Here $\mathcal{F} = \mathcal{F}(L^2(\mathbb{R}^3 \times \{1, 2\}))$ is the boson Fock space over Hilbert space $L^2(\mathbb{R}^3 \times \{1, 2\})$ of the set of L^2 -functions on $\mathbb{R}^3 \times \{1, 2\}$. The elements of the set $\{1, 2\}$ account for the fact that a photon is a transversal wave perpendicular to the direction of its propagation, which has two components. \mathcal{H} can be decomposed into infinite direct sum:

$$\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{H}^{(n)},$$

where $\mathcal{H}^{(n)} = L^2(\mathbb{R}^3) \otimes \mathcal{F}^{(n)}$. The Fock vacuum in \mathcal{F} is denoted by Ω as usual. We introduce the free field Hamiltonian on \mathcal{F} . Let $\omega = \omega(k) = |k|$. $\omega(k)$ describes the energy of a single photon with momentum k. The free field Hamiltonian $H_{\rm rad}$ on \mathcal{F} is given in terms of the second quantization

$$H_{\rm rad} = \mathrm{d}\Gamma(\omega).$$

Here ω denotes the multiplication in $L^2(\mathbb{R}^3 \times \{1,2\})$ by $(\omega f)(k,j) = \omega(k)f(k,j)$ for $(k,j) \in \mathbb{R}^3 \times \{1,2\}$.

On the other hand the charged matter, electron, is governed by Schrödinger operator of the form

$$H_{\rm p} = -\frac{1}{2m}\Delta + V$$

in $L^2(\mathbb{R}^3)$. Here *m* denotes the mass of electron. To introduce the minimal coupling we define quantized radiation fields. Let a(f) and $a^{\dagger}(f)$ be the annihilation operator and the creation operator on \mathcal{F} smeared by $f \in L^2(\mathbb{R}^3 \times \{1,2\})$, respectively. Let us identify $L^2(\mathbb{R}^3 \times \{1,2\})$ with $L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$ by

$$L^{2}(\mathbb{R}^{3} \times \{1,2\}) \ni f(\cdot,1) \cong f(\cdot,1) \oplus 0 \in L^{2}(\mathbb{R}^{3}) \oplus L^{2}(\mathbb{R}^{3}),$$

$$L^{2}(\mathbb{R}^{3} \times \{1,2\}) \ni f(\cdot,2) \cong 0 \oplus f(\cdot,2) \in L^{2}(\mathbb{R}^{3}) \oplus L^{2}(\mathbb{R}^{3}).$$

We set $a^{\sharp}(f \oplus 0) = a^{\sharp}(f, 1)$ and $a^{\sharp}(0 \oplus f) = a^{\sharp}(f, 2)$. Hence we obtain canonical commutation relations:

$$[a(f,j),a^{\dagger}(g,j')] = \delta_{jj'}(\bar{f},g), \quad [a(f,j),a(g,j')] = 0 = [a^{\dagger}(f,j),a^{\dagger}(g,j')].$$

We define the quantized radiation field with a cutoff function $\hat{\varphi}$. Put

$$\varphi_{\mu}(x,j) = \frac{\hat{\varphi}(k)}{\sqrt{\omega(k)}} e_{\mu}(k,j) F e^{-ikx}, \quad \tilde{\varphi}_{\mu}(x,j) = \frac{\hat{\varphi}(-k)}{\sqrt{\omega(k)}} e_{\mu}(k,j) F e^{ikx}$$

for each $x \in \mathbb{R}^3$, j = 1, 2 and $\mu = 1, 2, 3$. Here cutoff function $\hat{\varphi}$ is the Fourier transform of the charge distribution $\varphi \in \mathscr{S}'(\mathbb{R}^3)$. Although physically it should be $\hat{\varphi} = 1/(2\pi)^{3/2}$, we have to introduce cutoff function $\hat{\varphi}$ to ensure that $\wp_{\mu}(x, j) \in L^2(\mathbb{R}^3_k)$ for each x. The vectors e(k, 1) and e(k, 2) are called polarization vectors, that is, (e(k, 1), e(k, 2), k/|k|) forms a right-hand system at each $k \in \mathbb{R}^3$;

$$e(k,i) \cdot e(k,j) = \delta_{ij}, \quad e(k,j) \cdot k = 0, \quad e(k,1) \times e(k,2) = \frac{k}{|k|}.$$

The quantized radiation field with cutoff function $\hat{\varphi}$ is defined by

$$A_{\mu}(x) = \frac{1}{\sqrt{2}} \sum_{j=1,2} \left(a^{\dagger}(\wp_{\mu}(x,j),j) + a(\tilde{\wp}_{\mu}(x,j),j) \right), \quad \mu = 1,2,3.$$

Unless otherwise stated we suppose the following assumptions.

Assumption 2.1 (Cutoff functions) $\varphi \in \mathscr{S}'(\mathbb{R}^3)$ satisfies that (1) $\hat{\varphi} \in L^1_{\text{loc}}(\mathbb{R}^3)$, (2) $\hat{\varphi}(-k) = \overline{\hat{\varphi}(k)}$, (3) $\sqrt{\omega}\hat{\varphi}, \hat{\varphi}/\sqrt{\omega}, \hat{\varphi}/\omega \in L^2(\mathbb{R}^3)$.

In the case of $\hat{\varphi}/\sqrt{\omega} \in L^2(\mathbb{R}^3)$ and $\overline{\hat{\varphi}(k)} = \hat{\varphi}(-k)$, $A_{\mu}(x)$ is symmetric, and moreover essentially selfadjoint on the finite particle subspace \mathcal{F}_{fin} of \mathcal{F} . We denote the closure of $A_{\mu}(x) [\mathcal{F}_{\text{fin}}$ by the same symbol. Write

$$A_{\mu} = \int_{\mathbb{R}^3}^{\oplus} A_{\mu}(x) dx, \quad A = (A_1, A_2, A_3).$$

 A_{μ} is a selfadjoint operator on

$$D(A_{\mu}) = \left\{ F \in \mathcal{H} \mid F(x) \in D(A_{\mu}(x)) \text{ a.e. and } \int_{\mathbb{R}^3} \|A_{\mu}(x)F(x)\|_{\mathcal{F}}^2 dx < \infty \right\}$$

and acts as $(A_{\mu}F)(x) = A_{\mu}(x)F(x)$ for $F \in D(A_{\mu})$ for a.e. $x \in \mathbb{R}^3$. Since $k \cdot e(k, j) = 0$, the polarization vectors introduced above are chosen in the way that $\sum_{\mu=1}^{3} \nabla_{\mu} \wp_{j}^{\mu}(x) = 0$, implying the Coulomb gauge condition

$$\sum_{\mu=1}^{3} \nabla_{\mu} A_{\mu} = 0.$$

This in turn yields $\sum_{\mu=1}^{3} [\nabla_{\mu}, A_{\mu}] = 0$. Let us define the Pauli-Fierz Hamiltonian. The interaction is obtained by minimal coupling:

$$-i\nabla_{\mu}\otimes \mathbb{1}\mapsto -i\nabla_{\mu}\otimes \mathbb{1}-A_{\mu}$$

to $H_{\rm p} \otimes 1 + 1 \otimes H_{\rm rad}$.

Definition 2.2 (The Pauli-Fierz Hamiltonian) The Pauli-Fierz Hamiltonian of one electron with mass m is defined by

$$H_{\rm PF} = \frac{1}{2m} (-i\nabla \otimes \mathbb{1} - A)^2 + V \otimes \mathbb{1} + \mathbb{1} \otimes H_{\rm rad}.$$

In what follows we omit the tensor notation \otimes for the sake of simplicity. Thus

$$H_{\rm PF} = \frac{1}{2m} (-i\nabla - A)^2 + V + H_{\rm rad}.$$

We introduce classes of external potentials. We say $V \in C_{\text{kato}}$ if and only if $D(\Delta) \subset D(V)$ and there exist $0 \leq a < 1$ and $0 \leq b$ such that $||Vf|| \leq a|| - (1/2)\Delta f|| + b||f||$ for $f \in D(\Delta)$. H_{PH} with $V \in C_{\text{kato}}$ is self-adjoint on $D(-\Delta) \cap D(H_{\text{rad}})$.

Definition 2.3 (Semi-relativistic Pauli-Fierz Hamiltonian) H_{RPF} is defined by

$$H_{\rm RPF} = \sqrt{c^2(-i\nabla - A)^2 + m^2c^4} - mc^2 + V + H_{\rm rad}$$

The functional integration and the self-adjointness of H_{RPF} is shown in [1, 2, 4]. We introduce classes of external potentials which is a counterpart of C_{kato} . We say $V \in C_{\text{rkato}}$ if and only if $D(\sqrt{-\Delta}) \subset D(V)$ and there exist $0 \leq a < 1$ and $0 \leq b$ such that $||Vf|| \leq a ||\sqrt{-\Delta}f|| + b||f||$ for $f \in D(\Delta)$. H_{RPH} with $V \in C_{\text{rkato}}$ is self-adjoint on $D(\sqrt{-\Delta}) \cap D(H_{\text{rad}})$. In the previous section we could see that

$$\sqrt{-\Delta + m^2 c^4} - mc^2 + V \to -\frac{1}{2m}\Delta + V$$

as $c \to \infty$ strongly in the sense of semigroup. In a similar way to this we shall show the non-relativistic limit of the semi-relativistic Pauli-Fierz Hamiltonian. Using $(T_t^c)_{t\geq 0}$ we can see that

$$(F, e^{-tH_{\mathrm{RPF}}}G) = \int_{\mathbb{R}^3} \mathbb{E}_{\mathcal{W}^x \otimes P} \left[e^{-\int_0^t V(B_{T_s^c}) ds} (\mathcal{J}_0 F(x), e^{-i\hat{A}_{\mathrm{E}}(K_t^{\mathrm{rel}}(c))} \mathcal{J}_t G(B_{T_t^c})) \right] dx,$$

$$(2.1)$$

and the functional integral representation of $e^{-tH_{\rm PF}}$ with mass m is given by

$$(F, e^{-tH_{\rm PF}}G) = \int_{\mathbb{R}^3} \mathbb{E}_{\mathcal{W}^x} \left[e^{-\int_0^t V(B_{s/m})ds} (\mathcal{J}_0 F(x), e^{-i\hat{A}_{\rm E}(K_t)} \mathcal{J}_t G(B_{t/m})) \right] dx.$$
(2.2)

Let $j_t: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^4)$ be such that $j_t^* j_s = e^{-|s-t|\omega(-i\nabla)}$. Let

$$I_{m}^{c} = \bigoplus_{\mu=1}^{3} \sum_{j=1}^{2^{n}} \int_{T_{t_{j-1}}^{c}}^{T_{t_{j}}^{c}} j_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) \circ dB_{s}^{\mu},$$
$$I_{m} = \bigoplus_{\mu=1}^{3} \sum_{j=1}^{2^{n}} \int_{t_{j-1}/m}^{t_{j}/m} j_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) \circ dB_{s}^{\mu}.$$

Then $K_t^{\text{rel}}(c)$ and K_t are defined by the limits: $I_m^c \to K_t^{\text{rel}}(c)$ and $I_m \to K_t$ as $m \to \infty$ strongly in $L^2(\mathscr{X} \times \mathscr{S}) \otimes (\oplus^3 L^2(\mathbb{R}^4))$. The functional integral representation is due to [3] for $e^{-tH_{\text{RFF}}}$ and [4] for $e^{-tH_{\text{RPF}}}$. Using (2.1) and (2.2) we show that $e^{-tH_{\text{RPF}}} \to e^{-tH_{\text{RPF}}}$ as $c \to \infty$ strongly. In what follows we set $\mathbb{E}^{x,0} = \mathbb{E}_{W^x \otimes P}$ and $\mathbb{E}^x = \mathbb{E}_{W^x}$.

Lemma 2.4 It follows that

$$\lim_{c \to \infty} K_t^{\mathrm{rel}}(c) = K_t$$

strongly in $L^2(\mathscr{X} \times \mathcal{S}) \otimes (\oplus^3 L^2(\mathbb{R}^4)).$

Proof: We have

$$\|K_t^{\text{rel}}(c) - K_t\| \le \|K_t^{\text{rel}}(c) - I_n^c\| + \|I_n^c - I_n\| + \|I_n - K_t\|$$

We have

$$\mathbb{E}^{x}[\|\mathbf{I}_{n}^{c} - \mathbf{I}_{k}^{c}\|^{2}] \leq 3T_{t}^{c}\|\hat{\varphi}/\sqrt{\omega}\|^{2} \left(\sum_{j=n+1}^{k} 2^{-j/2}\right)^{2}.$$

Here $\|\cdot\|$ denotes the norm on $\oplus^{3}L^{2}(\mathbb{R}^{4})$. From this we have

$$\mathbb{E}^{x,0}[\|\mathbf{I}_{n}^{c} - K_{t}^{\mathrm{rel}}(c)\|^{2}] \leq 3\mathbb{E}^{0}[T_{t}^{c}]\|\hat{\varphi}/\sqrt{\omega}\|^{2} \left(\sum_{j=n+1}^{\infty} 2^{-j/2}\right)^{2}.$$

Since $\mathbb{E}^0[T_t^c] = t/m$ which is independent of c > 0, we obtain that

$$\mathbb{E}^{x,0}[\|\mathbf{I}_n^c - K_t^{\text{rel}}(c)\|^2] \le 3\frac{t}{m} \|\hat{\varphi}/\sqrt{\omega}\|^2 \left(\sum_{j=n+1}^{\infty} 2^{-j/2}\right)^2$$

and we conclude that

$$\mathbb{E}^{x,0}[\|\mathbf{I}_n^c - K_t^{\text{rel}}(c)\|^2] \to 0$$
(2.3)

as $n \to \infty$ uniformly in c. Let $\varepsilon > 0$ be arbitrary. There exists n_0 such that for all $n > n_0 \mathbb{E}^{x,0}[||K_t^{\text{rel}}(c) - \mathbf{I}_n^c||^2] < \varepsilon^2$ and $\mathbb{E}^{x,0}[||\mathbf{I}_n - K_t||^2] < \varepsilon^2$ uniformly in c. Now we estimate $||\mathbf{I}_n^c - \mathbf{I}_n||$. We have

$$\mathbf{I}_{n}^{c} - \mathbf{I}_{n} = \bigoplus_{\mu=1}^{3} \sum_{j=1}^{2^{n}} \left(\int_{T_{t_{j-1}}^{c}}^{T_{t_{j}}^{c}} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) dB_{s}^{\mu} - \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) dB_{s}^{\mu} \right).$$

We note that $s \to \int_a^s j_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}$ and $s \to \int_s^b j_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}$ are almost surely continuous. Hene

$$(S,T) \to \mathbb{E}^{x} \left[\left(\int_{S}^{T} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) dB_{s}^{\mu}, \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_{s}) dB_{s}^{\mu} \right) \right]$$

is continuous. This implies that for every j,

$$\mathbb{E}^{x,0} \left[\left(\int_{T_{t_{j-1}}^c}^{T_{t_j}^c} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}, \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right) \right]
\rightarrow \mathbb{E}^x \left[\left(\int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}, \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right) \right]
= \frac{(t_j - t_{j-1})}{m} \| \hat{\varphi} / \sqrt{\omega} \|^2$$
(2.4)

as $c \to \infty$. Hence

$$\mathbb{E}^{x,0}[\|\mathbf{I}_{n}^{c}-\mathbf{I}_{n}\|^{2}] = 3\sum_{j=1}^{2^{n}} \mathbb{E}^{x,0}\left[\left\|\int_{T_{t_{j-1}}^{c}}^{T_{t_{j}}^{c}} \mathbf{j}_{t_{j-1}}\tilde{\varphi}(\cdot-B_{s})dB_{s}^{\mu} - \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}}\tilde{\varphi}(\cdot-B_{s})dB_{s}^{\mu}\right\|^{2}\right].$$

Since we have

$$\begin{split} \mathbb{E}^{x,0} \left[\left\| \int_{T_{t_{j-1}}^c}^{T_{t_j}^c} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} - \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right\|^2 \right] \\ &= \mathbb{E}^{x,0} \left[\left\| \int_{T_{t_{j-1}}^c}^{T_{t_j}^c} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right\|^2 \right] + \mathbb{E}^{x,0} \left[\left\| \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right\|^2 \right] \\ &- 2 \mathbb{E}^{x,0} \left[\left(\int_{T_{t_{j-1}}^c}^{T_{t_j}^c} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}, \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right) \right] \\ &= \frac{1}{m} \| \hat{\varphi} / \sqrt{\omega} \|^2 (\mathbb{E}^0 [T_{t_j}^c - T_{t_{j-1}}^c] + t_j - t_{j-1}) \\ &- 2 \mathbb{E}^{x,0} \left[\left(\int_{T_{t_{j-1}}^c}^{T_{t_j}^c} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu}, \int_{t_{j-1}/m}^{t_{j}/m} \mathbf{j}_{t_{j-1}} \tilde{\varphi}(\cdot - B_s) dB_s^{\mu} \right) \right]. \end{split}$$

Note that $\mathbb{E}^{0}[T_{t_{j}}^{c} - T_{t_{j-1}}^{c}] = t_{j} - t_{j-1}$ and (2.4). We can see that

$$\mathbb{E}^{x,0}[\|\mathbf{I}_n^c - \mathbf{I}_n\|^2] \to 0$$

as $c \to \infty$. We have

$$\lim_{c \to \infty} (\mathbb{E}^{x,0}[\|K_t^{\text{rel}}(c) - K_t\|]^2)^{1/2} \le 2\varepsilon + \lim_{c \to \infty} (\mathbb{E}^{x,0}[\|\mathbf{I}_n^c - \mathbf{I}_n\|])^{1/2} = 2\varepsilon.$$

Thus the lemma is proven. \Box

The main result of this article is the next theorem.

Theorem 2.5 (Non-relativistic limit) Suppose that V is bounded and continuous. Then for every $t \ge 0$ it follows that

$$\mathbf{s} - \lim_{c \to \infty} e^{-tH_{\mathrm{RPF}}} = e^{-tH_{\mathrm{PF}}}.$$

Proof: Suppose that $F, G \in C_0^{\infty}(\mathbb{R}^3) \otimes \mathcal{F}_{rad}$. From Lemma 2.4 and

$$(F, e^{-tH_{\rm RPF}}G) = \int_{\mathbb{R}^3} \mathbb{E}^{x,0} \left[e^{-\int_0^t V(B_{T_s^c})ds} (\mathcal{J}_0 F(x), e^{-i\hat{A}_{\rm E}(K_t^{\rm rel}(c))} \mathcal{J}_t G(B_{T_t^c})) \right] dx$$

it follows that

$$\lim_{c \to \infty} (F, e^{-tH_{\mathrm{RPF}}}G) = \int_{\mathbb{R}^3} \mathbb{E}^x \bigg[e^{-\int_0^t V(B_{s/m})ds} (\mathcal{J}_0 F(x), e^{-i\hat{A}_{\mathrm{E}}(K_t)} \mathcal{J}_t G(B_{t/m})) \bigg] dx$$
$$= (F, e^{-tH_{\mathrm{PF}}}G).$$

Since $H_{\text{RPF}} \geq \inf_{x \in \mathbb{R}^3} V(x) = g \geq -\infty$, $e^{-H_{\text{RPF}}} \leq e^{-tg}$. Let $F, G \in \mathcal{H}_{\text{PF}}$. There exists $F_n, G_n \in C_0^{\infty}(\mathbb{R}^3) \otimes \mathcal{F}_{\text{rad}}$ such that $F_n \to F$ and $G_n \to G$ strongly as $n \to \infty$. By the uniform bound $e^{-tH_{\text{RPF}}} \leq e^{-tg}$, we can show $\lim_{c \to \infty} (F, e^{-tH_{\text{RPF}}}G) = (F, e^{-tH_{\text{PF}}}G)$. Finally since the weak convergence of $e^{-tH_{\text{RPF}}}$ implies the strong convergence, the theorem follows. \Box

Remark 2.6 Theorem 2.5 has been already published in [6, Theorem 3.137]. Although this article was planed to be published in 2019, it delayed however by 2 years and then [6] has been published before the publication of this article. Hence this is not the reprint of [6].

References

- T. Hidaka and F. Hiroshima. Self-adjointness of semi-relativistic Pauli-Fierz models. *Rev. Math. Phys.*, 27:1550015, 18 pages, 2015.
- [2] T. Hidaka, F. Hiroshima, and I. Sasaki. Spectrum of semi-relativistic Pauli-Fierz Hamiltonian II. to be published in J. Spectral Theory, arXiv: 1609. 07651, 2019.
- [3] F. Hiroshima. Functional integral representation of a model in quantum electrodynamics. *Rev. Math. Phys.*, 9:489–530, 1997.
- [4] F. Hiroshima. Functional integral approach to semi-relativistic Pauli-Fierz models. Adv. Math., 259:784–840, 2014.
- [5] F. Hiroshima, T. Ichinose, and J. Lörinczi. Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian. *Rev. Math. Phys.*, 24:1250013,40pages, 2012.
- [6] F. Hiroshima and J. Lőrinczi. Feynman-Kac type theorems and its applications. vol. 2. De Gruyter, 2020.
- [7] J. Lörinczi, F. Hiroshima, and V. Betz. Feynman-Kac type theorems and its applications, vol. 1. De Gruyter, 2020.