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CLASSICAL FIELD EQUATIONS AS EFFECTIVE THEORIES OF 
QUANTUM ELECTRODYNAMICS AND YUKAWA INTERACTIONS 

ZIED AMMARI 

ABSTRACT. In this short note the so-called Bohr correspondence principle is extended to standard 
models of quantum electrodynamics and to the Yukawa theory of strong nuclear forces. The 
main motivation here is to provide firm mathematical foundations to the physics of interacting 
quantum fields at small energy scales and to provide a comprehensive parallel between quantum 
and classical field theories. 
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Quantum electrodynamics is the fundamental theory that describes the interactions between 
matter and radiation through phenomenological models of Quantum Field Theory (QFT). Since 
the fifties enormous progress has been made in the understanding of such theory with for ex
ample the breakthrough of perturbative renormalization and asymptotic freedom, see e.g. [23]. 
Nevertheless, several conceptual and analytical mathematical problems remain open as well as 
outstanding questions like the Millennium Prize Problem of Yang-Mills, see e.g. [17, 21]. On 
the other hand, some of the issues in the general topic of QFT, which have recently aroused the 
interest of the mathematical physics community, concern the relationship between classical and 
quantum field theories. The aim of this brief note, based on joint works with Marco Falconi and 
Fumio Hiroshima [4] and [5], is to explain the rigorous mathematical basis for such a relationship 
related to Bohr's correspondence principle and canonical quantization. 

Specifically, we consider the two cases of electrodynamics and Yukawa interaction. Recall 
that quantum electrodynamics is usually described by it standard model, namely the Pauli-Fierz 
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and classical limit. 
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Hamiltonian, and is widely studied as an interesting example of QFT. Such model consists of non
relativistic spin zero particles interacting with the quantized electromagnetic fields in Coulomb's 
gauge. On the other hand, the Yukawa interaction describes the strong nuclear force as the 
nucleon-meson interaction of a Dirac field with a boson field of positive mass. If one fixes the 
number of nucleons and consider them to be non-relativistic then the Yukawa interaction reduces 
to the so-called Nelson Hamiltonian, see [20]. These two models will be recalled in Section 2 and 
3 respectively and our main results will be stated in Section 4. Let us now give a brief sketch of 
the canonical quantization and Bohr's correspondence principles. 

Canonical quantization: The general goal of constructive QFT is to provide solutions for 
nonlinear quantum field equations like for instance the cp2n equation, 

(D + m)cp(t, x) + >-.cp2n+l(t, x) = 0, (1.1) 

where cp(t; x) and 1r(t; x) = Btcp(t; x) are the unknown quantum fields (distribution-valued opera
tors) satisfying the canonical condition 

[cp(t, x), cp(t, y)] = [1r(t, x), 1r(t, y)] = 0, [1r(t, x), icp(t, y)] = M(x - y). (1.2) 

Such evolution system is Hamiltonian and its energy f-I is a formally conserved quantity. Hence 
f-I can be expressed as a function of the zero-time canonical variables cp(0; x) and 1r(0; x), 

f-I = J ![1r2 (0, x) + lv'efJ(0, x)l 2 + mcp(0, x)2] + _>-._cp(O, x) 2n+2 dx, (1.3) 
2 2n+2 

and the time variation of quantum fields is given by the equation of motion 

in8tcfJ(t; x) = [cp(t; x); H] and in8t1r(t; x) = [1r(t; x); H]. (1.4) 

In particular, if f-I is a self-adjoint operator over a Hilbert space on which a representation of the 
zero-time canonical commutation relation is realized, then one determines the quantum fields at 
any time 

(1.5) 

Hence, solving (1.1) requires on one hand the study of representations of canonical commutation 
relations (1.2) and the study of self-adjointness of the formal operator f-I on the other. 

Consider the smeared fields 

cp(f) = f cp(0, x)f(x)dx Ifi!.d 
and 1r(f) = f 1r(0,x)f(x)dx, \:/f E L2 (Ra,R) 

Ifi!.d (1.6) 

as self-adjoint operators on a given Hilbert space Yt' then one can check that the Heisenberg 
commutation relations are satisfied: 

[cp(f), cp(g)] = [1r(f), 1r(g)] = 0, [1r(g), icp(f)] = n(f, g) Id. 

To avoid domain problems due to the unboundedness of cp and 1r, it is more convenient to deal 
with the following Wey! commutation relations: 

(i) W(g1, fi)W(g2, h) = ei~o-[(g,J,l,(92 ,hll W(g1 + g2, Ji+ h). 

(ii) W(g, f)* = W(-g, -f), 

where er is the canonical symplectic form over the space L2 (Rd,R) EfJ L2 (Rd,R). In this topic 
it is known that the most relevant representation of Weyl commutation relations is the Fock 
representation acting on the symmetric Fock space, 

Yt' = I's(2') = EB~=O ®~ 2', 
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where :::Z = L2 (1Rd,q '::::' L2(JRd,JR) E8 L2(JRd,JR) and the subscript "s" stands for the symmetric 
tensor product. On such spaces one can rigorously defines the following operators for any f E :::Z: 
Annihilation operator: 

(1.7) 

Creation operator: 

&*(f)fi ®s · · · ®s fn = Jn(n + 1) f ®s Ji··· ®s fn• (1.8) 

Wey! operator: 

W(f) = e Js(&*(f)+a(f)). (1.9) 

Remark that the above Wey! operator depends inn E (0, 1). Hence, the above structures in the 
Fock space determine the zero-time quantum fields qi(O, ·) and 7r(0, ·) using (1.6) and the relations 

qi(f) = &(f) ~r (f) , 7r(f) = &(f) i--;;,* (f) . 

Now a canonical or Wick quantization is a mapping for each polynomial functional b(a, a) of the 
complex classical fields a, a corresponds an operator in the Fock space 

b( a, a) -----+ b( &*' & ) = bWick 

according to the Wick quantization rules so that all the &*'s are in the left and all the &'s are 
in the right. Such procedure can be implemented more systematically using Wick operators with 
homogenous polynomial functionals b defined as 

bWick - J(n - p + q)!n! tcl':fI b- Id®(n-p) 
l@:,'2' - (n - p)! n ®s 

where b(a,a) = (a®q,ba®P) for some p,q EN and b: @f:::Z ➔ @1:::Z is a given operator. For 
instance, the canonical quantization of the total mass and the Klein-Gordon classical energy yield 

where 

{ a(k) a(k)dk 
}IRP 

{ a(k) w(k) a(k)dk 
}-JRd 

-----+ f.r = (a, a)Wick = { &*(k) &(k)dk' 
JJRd 

-----+ Ho= (a, w(k)a)Wick = r &*(k)w(k) &(k)dk, 
JJRd 

w(k) = Jk2 + m2, 

(1.10) 

(1.11) 

and &*(-), &(-) are distributions valued operators defined similarly as in (1.6). Expressing the 
Hamiltonian fI of the qi2n theory in (1.1) according to the above procedure yields an operator or 
a quadratic form over the Fock space. The challenging question remaining is then to show that fI 
corresponds to a well-defined self-adjoint operator. Such task for the qi2n model is at least solved 
in d = 1 with spatial-cutoffs but still unsolved for d = 3 while for d = 2 is solved by a different 
euclidian approach. The above discussion describes briefly the purpose of canonical quantization 
and constructive quantum field theory from a Hamiltonian point of view. 

Bohr's correspondence principle: A classical Hamiltonian system with an infinite number of 
degrees of freedom is described by pairs of momentum-position canonical variables (P1, q1, · · · , Pn, 
qn, • • •) and the equation of motion is derived from a classical Hamiltonian functional, 

H(p, q) = H(p1, q1, · · · ,Pn, qn, · · ·), 
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as the following system of ODEs 

. 61-l 
qj = ~' 

upj 
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j = l, ... (1.12) 

In such Hamiltonian systems there is usually a natural symplectic form and a compatible complex 
structure allowing to formulate the above equation of motion (1.12) in terms of classical complex 
fields, 

d 61-l 
1-l(p, q) = 1-l(a, a), i dt a(t) = 6a (a(t), a(t)). (1.13) 

There are mainly two approaches to describe the dynamics of such classical Hamiltonian systems: 

(1) The evolution of dynamical states: One considers the equation (1.12) or (1.13) as a Cauchy 
problem with initial data given as phase-space points. Then one try to determine unique 
solutions or trajectories satisfying (1.12) or (1.13) for each initial datum. Within this 
point of view the main issues that are considered are more quantitative and they are re
lated to PDE analysis, for instance well-posedness, Hadamard's stability, scattering and 
blow up. 

(2) The evolution of statistical states: Instead one considers an initial ensemble of data given 
by a probability distribution on the phase-space and then attempts to characterize the 
time evolution of such distribution. This leads to the Liouville equation and thus to a more 
qualitative study concerned with ergodic, chaotic and asymptotic statistical behaviors of 
such dynamical systems. 

This general picture is complemented by few exceptional Hamiltonian systems that have some 
form of integrability or solvability on which specific techniques like the KAM theory are used. 

On the other hand, a quantum mechanical system with infinite degrees of freedom is formally 
described by a Hamiltonian 

1-l(p, fi) = 1-l(p1, fi1, · · · ,Pn, fin,···), 

where the pairs (Pj, (jj) are conjugate canonical variables satisfying the canonical commutation 
relations (CCR's): 

[fij,Pk] = iMj,k, [fij, fik] = [Pj,Pk] = 0. 
or equivalently using quantum complex fields, 

1-l(fi, fi) = 1-l( &*, & ) , 

The equation of motion in this case is given by the Schrodinger equation 

inAiI!n = 1-l(&*, &) iI!n, (1.14) 

and the dynamics of such quantum Hamiltonian system can be described either by: 

(1) Schrodinger picture: Wave functions over Hilbert spaces. 
(2) Heisenberg picture: States over C* or W*-algebras of observables. 

The key issues in this topic are energy levels, resonances, spectral analysis, scattering, KMS states 
and statistical behaviors. Again this formal general landscape is embellished by a few exceptional 
solvable models like Spin chains, Hubbard and Lieb-Liniger models. 

The relationship between classical and quantum fields is given by the following diagram re
flecting the so-called canonical quantization and classical limit: 

Quantization 
Classical field theories======='" Quantum field theories (1.15) 

Classical limit 
and stating that canonical quantization of classical fields yields QFT as explained in the previous 
paragraph while the classical limit recovers the original classical fields. The latter link is the 
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so-called Bohr's correspondence principle. Taking again the formal example of cp2n quantum field 
theory then insightful parallel between these quantum and classical field theories is summarized 
in the following table: 

Classical system Quantum system 

2' = P(JRa) EB P(JRa) rs(2') 
Classical phase space (infinite dim.) Symmetric Fock space 

a(k), a(k) &*(k), &(k) 
Classical variables ( complex fields) Quantum variables (Dist.valued operators) 

b(a, a) : D(b)--+ lR b(a,a)W,ck 
Classical observables ( functionals) Quantum observables ( operators on Fock sp.) 

µ {! 
Classical states (Pro b. on phase sp.) Quantum states ( density matrices on Fock sp.) 

1i(ci, a) fI = 1i(ci,a)Wick 
Classical energy (functional on phase sp.) Quantum Hamiltonian (self-adjoint op. on Fock sp.) 

( 4>11)~0 e-i(t-to)H 

Classical evolution (flow on phase sp.) Quantum evolution ( unitary group on Fock sp.) 

In this respect one naturally expects that complex quantum dynamics out of reach by numerical 
simulations can be approximated by more tractable flow of related nonlinear PDEs governing the 
classical fields. From this duality (1.15) one could in principle deduce accurate expansion of 
quantum correlation functions, eigenvalues asymptotics and scattering amplitudes of quantum 
field theories in the classical regime. To address such questions there are few mathematical 
tools that are non perturbative with respect to the coupling constant; namely the coherent state 
method and the more recent Wigner measure approach. The latter is the main topic of this note 
and is useful for the interesting regimes: 

• Mean field limit N --+ oo in quantum many-body theory where N is the number of 
particles, 

• Classical limit n--+ 0 in QED or QFT where n is the rescaled Planck constant. 

And it can be applied to study the following examples of physical systems and related phenomena: 

• Many-Body theory and Bose-Einstein condensate. 
• Relativistic Quantum field theory ( ( <p )i, P( <p )2 models). 
• Yukawa interaction theory and renormalization. 
• Quantum electrodynamics and Lamb shift. 

Wigner or semiclassical measures: At zero temperature the states describing quantum systems 
are trace class normalized non-negative operators (density matrices) while for classical systems 
states are probability measures over the phase-space. Thus the classical limit implementing the 
Bohr's correspondence principle can be interpreted as a scaling limit that corresponds to an 
arbitrary sequence of scaled quantum states one or several probability measures over the classical 
phase-space called Wigner or semiclassical measures. Such type of convergence is rather weak 
and the non uniqueness of the limit is a natural feature that can be circumvented by selecting 
subsequences. Note that Wigner or semiclassical measures have been extensively studied in finite 
dimension (see e.g. [18] and references therein). This concept has been extended to infinite 
dimensional phase spaces in a series of articles by Ammari and Nier (see e.g. [1, 2, 6, 7]). 

Definition 1.1 (Wigner measures). A probabilityµ over the phase-space 2' is a Wigner measure 
of a family of quantum states ( {!/i) liE(D,l) on the Fock space r 8 ( 2') if there exists a countable subset 

,ff C (0, 1) with OE Jf such that for any~ E 2': 

lim Tr[eli W(~)] = { e../2rne(l,z)dµ(z). 
li➔D,liE<&° } f!Z' 
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Recall that the Weyl operator W(-) depends on n and is given in (1.9). The set of all Wigner 
measures of a given family of quantum states (en) nE(O,l) is denoted by 

J!t(en,n E (0,1)). (1.16) 

Note that we know that the set of Wigner measures J!t(en, n E (0, Ti)) is not empty under 
suitable assumptions of the quantum states. Moreover, usually one can only consider families of 
quantum states with a unique Wigner measure without loss of generality. 

The above concept allows to establish the Bohr's correspondence principle in an effective and 
flexible way. Indeed, the convergence of quantum dynamics towards classical dynamics while 
taking n ➔ 0 can be reformulated as the following question. Consider for instance the above 
example of rp2n theory, hence if the quantum system is in the state en at time to = 0 then its time 
evolution satisfies the Heisenberg equation and yields 

en(t) = e-¼tiI ene¼tiI. 

Suppose now that the family of states (enhE(O,l) admits a unique Wigner measureµ i.e., 

J!t(en, n E (o, 1)) = {µ}, 

then can we determine the Wigner measures of (en(t))nE(O,l) for any time? 

The formal or expected answer is yes and says that the family (en(t)) nE(O,l) admits a unique 
Wigner measure at any time given by the push-forward measure 

(1.17) 

where <l>~ = ( <l>H)b is in our case the flow of the classical field equation related to the rp2n theory 
admitting the following classical energy 

1-l(a, a)= j a(k) Jk2 + m2 a(k) dk + j->..-cp(x) 2n+2 dx. (1.18) 
2n+2 

Remark that our discussion here is formal and in particular the self-adjointenss of fI and the well 
posedness of the nonlinear classical field equation are presumed without proof. Such result can 
also take the following form for all ~ E :!Z, 

lim Tr [en eifiiI W(~) e-if.iI] = { eiv2!Re(0) dµt(z). 
n-+O }fr 

The above Bohr's principle is proved rigorously for the Yukawa interaction with and without 
ultraviolet cutoffs in [3, 4] respectively; and more recently it is considered for non-relativistic 
quantum electro dynamics in [5]. Such results are briefly given in Section 4. 

2. NON-RELATIVISTIC ELECTRODYNAMICS 

We briefly review below the standard model of non-relativistic quantum electrodynamics. 

2.1. Pauli-Fierz Hamiltonian. The dynamics of a quantum extended charge interacting with 
the quantized electromagnetic field in Coulomb's gauge is usually described by the Pauli-Fierz 
Hamiltonian, see [22]. Such operator is proved to be essentially self-adjoint under some regularity 
assumptions on the charge distribution, see for instance [11 , 14, 15, 16, 19]. 

The particle-field Hilbert space is: 

Q = L2 (1R~, C) ® r s (L2 (1Rt C2 )) , (2.1) 

where r s ( ·) stands for the symmetric Fock space. The particle's momentum and position operators 
are respectively: 

p = -in'iJ x , q_ = X , 
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while the creation-annihilation operators for f E L 2 (JR3 , C2) are given by: 

2 

&(f) = L 1 J(k,j) &(k,j) dk, 
j=l JR,3 

2 

&*(!) = L 1 f(k,j) &*(k,j) dk, 
j=l JR,3 

with &(k, j) and &* (k, j) are the annihilation-creation fields satisfying the canonical commutation 
relations: 

[&(k,j),&*(k',j')] = n8(k- k') tljj'. 
In this framework the Hamiltonian of free fields is 

2 

H1="fL3lkl &*(k,j)&(k,j)dk. 

Consider now a smooth function 'P : JR3 ➔ C representing the Fourier transform of the particle's 
charge distribution and satisfying the assumption: 

I· 1-1<p(-), I ·I½ <p(·) E L2 (JR3 ' C). 

The quantum electromagnetic vector potential A'P = (Aip,l, Aip,2 , Aip,3) is defined by 

2 

Aip,l(q) = L r lkl-½ ec(k, j) ( <p(k) e-ik•q &*(k,j) + cp(k) eik•q &(k, j)) dk ' 
j=l jJR,3 

where { e( ·, j) h=1,2 are the polarization vectors satisfying for a.e. k E JR3 , 

e(k, j) · k = 0, e(k, j) · e(k, j) = 8j,j' 'vj =/=- j'. 

The Pauli-Fierz Hamiltonian is then given by 

, 1 ( , )2 , 
Hpp= 2 j)-Aip +H1 . 

(AO) 

(2.2) 

The Pauli-Fierz Hamiltonian is self-adjoint according to the following result of F. Hiroshima. 

Proposition 2.1 ([16]). Assume (AO), then fIPF is self-adjoint on '!J(p2) n '!J(Hj)-

This in particular gives the existence and uniqueness of quantum dynamics related to the 
Pauli-Fierz model of non-relativistic quantum electrodynamics. 

2.2. Newton-Maxwell equation. The dynamics of an extended classical non-relativistic charge 
coupled to the classical electromagnetic field is described by the Newton-Maxwell equation. The 
latter is a coupled system of an ODE and a PDE consisting in Newton's equation for the particle 
and Maxwell's equation for the field. Consider the same function <p as in (AO) and assume for 
simplicity that it satisfies 

'P E %oo(JR3 \ {O})' (AO') 
to avoid ultraviolet and infrared problems. More general conditions will be considered in [5]. 
Denote by (q,p) E JR3 x JR3 ~ JR6 the phase-space coordinates of the particle and by (E,B) 
JR,3 ➔ JR,3 x JR,3 the electromagnetic field. Define the smeared fields 

Eip=cp*E, Bip=cp*B, 

and the particle's current Jq,p(-) = pcp(q- •), then the Newton-Maxwell equation takes the form: 

{ 
~: p, p = Eip(q) _+~ x Bip(q) 

E - v' X B - Jq,p ' B - - v' X E 

{
v'. E = cp(q - ·) 

v'·B=O 

(N-M) 
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One can introduce the vector potential A for the electromagnetic field and chose the Coulomb 
gauge to reformulate (N-M) in terms of A, A and (q,p) only. Moreover, one can introduce new 
complex canonical variables (a, a) instead of A, A. Indeed, define for j E {1, 2}, 

(2.3) 

where {e(·,j)}j=1,2 are the polarization vectors satisfying (2.2) and ff denotes the Fourier trans
form. Then one can write 

such that 

2 

A(x) = L v'2~eff-1 (e(·,j) I· 1-½a(·,j))(x) 
j=l 

2 

A(x) = L v'2~mff-1 (e(-,j) I· l½a(-,j))(x) 
j=l 

A'P=ip*A. 

(2.4) 

(2.5) 

Using such new canonical variables (q,p, a, a) one can reformulate the Newton-Maxwell equation 
as a classical Hamiltonian system with an energy functional: 

and a classical equation of motion: 

q(t) = 8/HNM(q,p, a, a), 

iota(-, j) = Oa1lNM( q, p, a, a) . 

Specifically, if we consider ( q, p) and a(-) as the unknowns, the explicit equation of motion takes 
the form: 

q=p-A'P(q) 
3 

jJ = L (PP - A<p,P(q)) v' A<p,P(q) 
P=l 

3 1 1 

iota(·, j) = I · la(·, j) - L lei" I · 1- 2 rp(·) ep(·, j) (PP - A'P,p(q)) 
P=l y2 

(N-M*) 

Global well-posedness of (N-M) on various spaces has been studied in the literature, see for 
instance [8, 9, 10]. The natural functional space for the field a(-) is L2 (JR,3, C2 ). Therefore, we 
recall existence and uniqueness of (N-M*) solutions on the space 

:!l'NM = lR,3 X lR,3 EBL2(JR,3, C2) . 
..___,__... '-v----' 

(q,p) o{) 

Proposition 2.2. For each initial datum (qo,Po, ao) E :!l'NM there exists a unique global solution 
(q(t),p(t),a(t, ·)) E '6'(R,JR,6 EB L2(JR,3, C2)) of (N-M*). The map 

<l>:VM(qo,Po, ao) = (q(t),p(t), a(t, •)) 

defines the Hamiltonian flow of the Newton-Maxwell equation. 

3. YUKAWA INTERACTION MODEL 

In this section we consider the quantum non- relativistic Yukawa field theory and the Schrodinger
Klein-Gordon classical system. 
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3.1. Reduced Yukawa Hamiltonian. The formal Hamiltonian of the reduced Yukawa model 
is understood as a non-relativistic boson field interacting with a meson field according to an 
Yukawa type interaction given by 

{!yu = L3 u*(x) (-~x )u(x)dx + L3 &*(k)w(k)&(k)dk 

+-1 -3 { u*(x) ~(&*(k)e-ik·x +&(k)eik·x)u(x)dxdk, 
(27!')2 }IR,a 2w(k) 

(3.1) 

where w(k) = ✓k2 + m 2 , m > 0 is the meson mass and u«, &tt are respectively the creation
annihilation operators of the particle and meson fields satisfying the CCR's: 

[u(x), u*(y)] = n 8(x - y); [&(k), &*(k')] = n 8(k - k'). 

The number of non-relativistic particles is a conserved quantity for the formal Hamiltonian (3.1) 
and hence one can decompose fI Yu as direct sum over fixed number of particles. In an influential 
article E. Nelson constructed in 1964 a renormalization procedure allowing to define quantum 
dynamics from the formal expression (3.1) by means of dressing transformations and cancellation 
of the infinite self-energy, see [20]. In particular, there exists a bounded from below self-adjoint 
operator fIYu implementing the Yukawa dynamics and related to the quadratic form (3.1), see [4] 
for details. The dressing transformation involved in this renormalization procedure consists of a 
unitary transformation 

Uoo = ein-'T= , 

where T00 is a self-adjoint operator given as 

Too = L3 u*(x) ( &*(k)goo(k)e-ik·x + &(k)goo(k)eik·x) )u(x)dx, 

and 

(k) ___ i _ 1 1- Xo-o(k) 
900 - (27!')3/2 J2w(k) 2k~ + w(k) , 

(3.2) 

(3.3) 

(3.4) 

for some fixed value O < /TQ and a cutoff function Xo-o (-) = x( ;;=;;) with x E '!&'000 (JE.3 ) such that 
x = 1 around the origin. 

3.2. Schrodinger-Klein-Gordon system. The Schrodinger-Klein-Gordon (S-KG) equation with 
Yukawa coupling is a well studied system of non-linear PDEs, see e.g. [12, 13], given as: 

i8tu = --u + Au 
2M · {. ~ 

(D + m5)A = -lul 2 ' 

(3.5) 

where mo, M > 0 are positive masses. Introducing the complex fields (a, a) according to the 
relations 

(3.6) 

(3.7) 

one can reformulate the S-KG equation (3.5) with these complex fields (a, a) instead of the 
vector potentials (A, A) as for the Newton-Maxwell equation. In particular, the S-KG equation 
is a Hamiltonian system with the following energy functional: 

1isKa(u, a)= \ u, (- 2ir )u) L2 +(a, wa:)£2+ (21r~3;2 La ~ ( a(k)e-ik·x+a(k)eik·x) lu(x)l 2 dxdk. 
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And hence the equation of motion takes the form: 

{
iBtu = - 2~u + Au 

. 1 
iBta = wa + v'2w.F(lul 2 ) 

(S-KG) 

Moreover, it is well known that such system is well posed on its energy space, see [4] for more 
details. 

Proposition 3.1. For any initial condition (uo,ao) E P(v'='K) EB P(Jw) there exists a unique 
global solution (u, a) E 't'(JR, P( v'='K)EBP( Jw)) of the Schrodinger-Klein-Gordon system (S-KG) 
satisfying (uo,ao) = (u(0),a(0)). Moreover, the map 

<I>tKG: (uo, ao) E P( v'='K) EB P( vw) --+ (u, a) E 't'(JR, P( v'='K) EB P( vw)). 
defines a global flow of the (S-KG) system. 

4. MAIN RESULTS 

The three results below reflect the Bohr's correspondence principle in electrodynamics and 
Yukawa theory. 

4.1. First contribution. Recall that the space Q is given in (2.1 ) and the scaled number oper
ator N is defined similarly as in (1.10). The following formal statement will appear in [5]. 

Theorem 4.1 (Dynamical Pauli-Fierz model). Assume (AO') and let ( 1/in) nE(0,l) be a family of 
normalized vectors on the Hilbert space Q satisfying : 

A2 

:lC1 > o, Vn E (O, 1), II(~ + H1) vinllQ :s: C1, 

( 2 A 2 ) :lC2>0,VnE(0,1), V'n,(ii +N)1/i1,Q:S:C2, 
and admitting a single Wigner measure µ. Then the evolved quantum states 

f2n(t) = e-*thPF lvin)(vinl e*thPF 

has a unique Wigner measure given by: 

µt = (<'f>i:,,_NM)#µ, 

with <I>i:,,_NM is the flow of the Newton-Maxwell equation. 

(Al) 

(A2) 

4.2. Second contribution. The relationship between the Yukawa Hamiltonian H Yu and the 
classical (S-KG) system is altered by the renormalization procedure and it is not obvious even 
formally how these quantum and classical theories are still related. Nevertheless, we are able 
in [4] to prove the following Bohr's correspondence principle. Recall that the operators N, Ho 
defined on the Fock space I'8 (L2 (JR3)) are given in (1.10)-(1.11). We denote by L;(JR3n) the space 
of symmetric square integrable functions. 

Theorem 4.2 (Dynamical Yukawa theory). Let (fin)nEN be a sequence such that nn E (0, 1), 
limfin = 0 and (nfin)nEN is bounded. Let (gn)nEN be a family of density matrices on L;(JR3n) ® 
r s ( L2 (JR3)) satisfying: 

:JC> 0, 'vn EN, Tr[gn (N + U00 HoU00 )] :S: C. 

Then: 

{i) M(gn,n EN)-/- 0. 
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(ii) For any t E JR, 

M(e-it,;;-HYu f2n it,;;-HYu,n EN)= { (<T>tKc)#µ, µ E M(en,n EN)}. (4.1) 

Furthermore, suppose that M (en, n E N) = {µ} then for any~ E L2 EB L2 and any t E JR, 

lim Tr[e-it,;;-HYu f2n eit,;;-HYu W(~)] = J, eiv2~e({,z)d(<T>tKc)#µ(z)' 
k-+oo £2<JJ£2 

where W(·) is the Weyl operator rescaled with n,,, similarly as in (1.9). 

4.3. Third contribution. In the case where an ultraviolet cutoff and a particle confinement 
is imposed in the Yukawa interaction model of Section 3, we are able to prove a further result 
concerning the convergence of the ground state energy towards the infimum of the Schrodinger
Klein-Gordon energy functional when n--+ 0. Consider for instance a cutoff function x E '6"000 (JR3) 

such that x = 1 in a neighborhood of the origin. Then the corresponding Schrodinger-Klein
Gordon equation with ultraviolet cutoff takes the form: 

{
iotu = -~u +Vu+ Axu 

iota= wa + ~(uu) 
v2w 

with w(k) = ✓k2 + m 2 , m > 0, and the real field Ax given by: 

Ax(x) = - 1-3 { ~ (a(k)e-ik·x + a(k)eik·x)dk. 
(27r)2 }m,3 ✓2w(k) 

Here V is a confining potential satisfying 

VE Lfoc(JR.3 ,JR+), lim V(x) = +oo. 
lxl-+oo 

(A3) 

Using the canonical quantization explained in Section 1, one can define the ultraviolet-cutoff 
quantum Nelson-Yukawa Hamiltonian: 

iJ.NY = 1isKGx(u, &) = 13 u*(x) (-~x+V(x) )u(x)dx + 13 &*(k)w(k)&(k)dk 

+-1-3 { u*(x) x(k) (a*(k)e-ik•x + &(k)eik·x)u(x)dxdk, 
(21r)2 J-JR6 ✓2w(k) 

(4.2) 

related to the classical energy of Schrodinger-Klein-Gordon equation with cutoff Yukawa type 
interaction, 

1isKGx(u, a)= 1
3 

u(x) (-~x+V(x) )u(x)dx + 1
3 

ii(k)w(k)a(k)dk 

+-1- 3 { u(x) x(k) (a(k)e-ik•x + a(k)eik•x)u(x)dxdk. 
(21r)2 }JR6 ✓2w(k) 

(4.3) 

The number of particle is conserved and taking (H.NY)IL~(JR3n) one retrieves the Nelson Hamil
tonian. In particular, it is known that such expression defines a bounded from below self-adjoint 
operator. In this framework the following result is proved in [3]. 

Theorem 4.3 (Ground state energy limit). Assume that m > 0, x E '6"000 (JR3 ) and V satisfying 
(A3). Then the ground state energy of the Nelson-Yukawa Hamiltonian iJ.NY has the following 
limit, for any >. > 0, 

(4.4) 
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where the infimum on the right hand side is taken over all u E E1( ✓-b.+ V) and a E E1( Jw) 
with the constraint I lul 1£2(JR3) = ,\. 
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