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Abstract 

We announce results that are to be described in full in an article titled "Homoge
nization of diffusion processes in Coulomb environments and a phase transition" and 
in a follow-up article. The results are summarized as follows: 
• Homogenization in periodic Coulomb environments d = 2. 
• A phase transition of the effective constant in two dimensions. 
• Homogenization in periodic Coulomb environments d ::>: 3. 
• Homogenization in the Ginibre environment. 

1 lntrod uction 

The results of a paper "Homogenization of diffusion processes in Coulomb environments and 
a phase transition" [9] and another forthcoming paper are announced. In these papers, we 
shall present full details of the context of this paper . 

We consider a diffusion process X in Coulomb environments for which the drift terms of 
the diffusion are given as a sum of Coulomb forces. We study the diffusive scaling limit of 
X. 

(1) 

If X describes Brownian motion B of a particle initially at the origin, then it obeys the 
scaling law EBt;,2 = Bt in distribution. Therefore, the limit (1) exists. In general, the 
coefficient of X is stationary in space and mean free with respect to an invariant measure, 
then we expect the limit (1) exists and converges to a constant multiple of the Brownian 
motion. The limit constant is called the effective conductivity and this scaling limit is 
called the homogenization of the diffusion processes. We shall study instances when the 
random environments are derived from a Coulomb potential with inverse temperature /3. 
We investigate whether the effective constant vanishes depending on /3. 

Let d 2':: 2 and (J"(d) be the surface volume of the unit ball. 

dd) = 21rd12 /r(d/2). 
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Let \]id be O'(d)/2 times the fundamental solution of the Laplacian -½~ in JB:.d_ 

(2) 

We denote the d-dimensional Coulomb potential by \JI. The Coulomb force derived by \JI is 
then 

(3) 

The normalizing constant in (2) is chosen in such a way that (3) has a simple expression [8]. 
For v 1 , ... , vd E JB:.d we define the d-dimensional lattice lL and torus 'l1' by 

d 

lL = {L n;v;; n; E Z (i = 1, ... , d)}, 
i=l 

d 

'l1' = {Lt;v;; t; E [O, 1) (i = 1, ... ,d)}. 
i=l 

We choose v; such that l'll'I = 1. 

(4) 

At each site on the lattice lL, we place a single particle of unit charge. The total Coulomb 
force acting at x E JB:.d ( without inverse temperature) is 

b(x) = lim '°' -V\J!d(x - s;) = lim '°' Ix - s;ld" 
q--+oo ~ q--+oo ~ X - S; 

lx-sil<q, lx-sil<q, 
siEL siEL 

Then b( x) is a periodic function with singularity at each site s; E lL. Mathematically, 

Here '{)q(x) = 'P(x/q), 0 :S 'P :S 1, 'P(x) = 'P(lxl), and 'PE C0 (JB:.d), 

'P(x) = {1 lxl :S 1 
o lxl :2: 2. 

(5) 

We place a particle xx = {X[} in JB:.d with the same charge as each sites;. We suppose 
X = {Xt} is a diffusion process given by an stochastic differential equation. For x E JB:.d, let 
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Xf E JRd be the solution of 

Xt=x. 

Here B denotes d-dimensional Brownian motion and /3 the inverse temperature. 

Lemma 1. There exists a symmetric matrix 'lff such that for all x 

lim EX(;0 2 = ~Bt weakly in C([O,oo);!Rd) c➔oo V 1'~£I 

0 < 'Y~ff < E for all /3 2: 0. 

Remark 1. (1) The constant matrix ,'~ff corresponds to an effective conductivity. 
(2) lff is given by a solution of Poisson's equation and the variational formula (cf. [6]). 

(6) 

(7) 

(8) 

(3) The positivity of the effective conductivity O < 'Y~ff follows from a comparison with 
the periodic homogenization of reflecting barrier Brownian motion. We refer to [4, 5] for 
details regarding the homogenization of reflecting barrier Brownian motion. We have proved 
homogenization on random stationary open sets in ]Rd_ Its special cases are the periodic 
homogenization of reflecting barrier Brownian motion. 

We present a quick review of the homogenization of reflecting barrier Brownian motion. 
This problem was initiated by Hiroshi Tanaka [13], who proved the periodic homogenization 
on the half domain of ]Rd having a reflecting boundary condition imposed on the boundary 
of the domain. Bhattacharaya [1] and Ochi [3] proved the periodic homogenization with 
periodic balls as obstacles and a particle that is reflected at the boundary of such obstacles. 
Zhikov [15] and the author [4] proved homogenization for a domain with randomly placed 
stationary obstacles. In [4, 5], the author proved the non-degeneracy of the limit using 
an isoperimetric inequality. Tanemura [14] proved the non-degeneracy of the limit for the 
Poisson blob model (percolation domains). Rhodes [10] and Chen, Crydon, and Kumagai 
[2] studied the homogenization of reflecting barrier Brownian motion in conical domains. 

There is a difficulty in treating homogenization of reflecting barrier Brownian motion, as 
spatial shifts do not act on the whole domain. Because of this difficulty, we can not construct 
the so-called corrector using spatial shifts as for the standard homogenization problem. We 
adopt instead Kipnis-Varadhan theory. 
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2 Defect lattice homogenization and a phase transition 

For simplicity, we assume throughout this paper that in Lemma 1 '~ff is a matrix corre
sponding to an effective conductivity and satisfies 

(Al) ,~ff is a scalar matrix. 

Remark 2. Assumption (Al) is not restrictive. If lL is a d-dimensional cubic lattice or a 
triangular lattice in d = 2, then (Al) holds. 

We remove m-sites {t1 , ... , tm} from lL. Let lL0 be a defect lattice such that 

For x E 11', let ~x E !Rd be the solution of 

d~;-x dB (3 1· L ~x - S; d 
Lt = t + - 1m I X 12 t, 2 q--+oo Y: - S; 

IYt-sil<q t 
siELo 

Theorem 1 (a phase transition in /3 in two dimension). Assumed= 2 and (Al). Let 

Then 10(/3) /m is a critical point in the following sense: 

. x {not 0 hm E~;0 2 = 
c--+oo 0 

Moreover, 0 < ,o(/3) < 2. 

if /3 < ,o(/3) /m 
if /3 ?_ ,o(/3)/m. 

(9) 

(10) 

(11) 

Remark 3. (1) Clearly, 10(0) = 2 because Brownian motion is invariant under diffusive 
scaling. Therefore, if 10(/3) is strictly decreasing in /3, then there exists a unique 1 (lL) such 
that 1(lL) = 10 ((3). The critical value 1(lL) depends only on the lattice. 
(2) Theorem 1 indicates that the strength of the long-range interaction of the Coulomb 
potential. If we replace the Coulomb by a potential of Ruelle's class, the limit is always non
degenerate. Here, we recall that by definition a potential of Ruelle's class has an integrable 
tail [11, 12]. 
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In the previous theorem, the limit dynamics starts at the origin. We consider a different 
type of initial condition. Specifically, 

We also specify the limit stochastic differential equation, for which it convenient to introduce 
xe:,x and ye:,x, 

(12) 

Then by a straightforward calculation we have 

xg,x = X (13) 

(14) 

Remark 4. Note that the stochastic differential equations (13) and (14) are similar to (6) 
and (9). This similarity stems from the following invariance of the logarithmic function 

v'log(x/E) = v'log(x) for all E,x > 0. (15) 

This property plays a critical role in the present analysis. Another function that has the 
same invariance as (15) is the Heaviside step function H, specifically, 

v'H(x/E) = v'H(x) for all E,x > 0, (16) 

and play a critical role in the homogenization of reflecting barrier Brownian motion on conical 
domains. 

Consider a subsidiary stochastic differential equation in JR2 . 

Y - 1/3 m/3 Ul 
dUt - y,~ffdBt - 2 IU[l 2 dt, u; =y. (17) 

Theorem 2. Assumed= 2 and (Al). Assume that the initial starting points Ye: are set o 

limye: = y E 1R2. 
e:-+0 
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Then 

Let a= inf{t > O; U[ = O}. Then 

lim ye,Ye = UY. 
E-+0 

P(a<oo)=l forall/3>0. 

Furthermore, 

P(Ul = 0 for all t ::>-a)= 1 for /3 ::>- ,o(/3)/m. 

We next consider the higher dimensional case. 

Theorem 3. Let d ::>- 3 and assume the initial starting points y0 satisfy 

limy0 = y-=/ 0. 
e-+0 

Then for each O :S /3 < oo 

1. ~,,-e,y, - {lrE + lm Lt - /elf t Y-
e-+0 

3 Diffusion in Ginibre environment 

Let S be a configuration space over !Rd, 

(18) 

We equip S with vague topology under which S becomes a Polish space. A probability 
measureµ on S is called a point process (or a random point field) on !Rd. Point processes 
describe unlabeled particle systems with no accumulation in any compact set. There are a 
plurality of ways to formulate their configurations. Indeed, we may regard a configuration as 
a set consisting of countable points. The advantage of the former formulation is its natural 
topology. 

A lattice lL can be regarded as a periodic point process, with each site Si regarded as a 
particle. 

We recall the notion of a correlation function. Let m be a Radon measure on ]Rd_ Function 
pn(xn) is called an n-correlation function ofµ with respect to m if 

1 n( )Iln ( ) 1nm s(A)! 
k1 km p Xn m dxi = (s(A·) - k-)!dµ 

A 1 X···XAm i=l 5 i=l ' ' 
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for any disjoint A; E B(JRd), ki EN such that k1 + ... +km= n. 
A point process µ is called a determinantal point process generated by ( K, m) if its 

n-correlation function pn with respect to m is given by 

We now introduce the Ginibre point process, which is a determinantal point process on 
JR2 . For convenience, we regard JR2 as re by the obvious correspondence: JR2 3 (x,y) f---t 

x + J=Ty E re. We set 

K(x, y) = exfl 

Then µgin is a determinantal point process generated by (K, g). 
It is well known that µgin is a translation- and rotation-invariant point process on JR2 . 

Furthermore, µgin can be regarded as a Gibbs measure with interaction potential 

- 2log lxl. 

Very loosely, µgin is a translation-invariant measure on (JR2 )"'1 such that 

(20) 

Naturally, the representation (20) is not rigorous because it contains an infinite product of 
Lebesgue measures. To justify (20), we introduce a notion of logarithmic derivative ofµ [7]. 

Let µx be the (reduced) Palm measure ofµ conditioned at x 

Let µ[1] be the (reduced) I-Campbell measure on ]Rd x S. 

(21) 

We say a function f defined on Sis local if f is u[1rR]-measurable. Here 7fR: 5--+ Sis such that 
7rR(s) = s(· n SR) and SR = {lxl < R}. For a local function f which is u[1rRo]-measurable 
and R such that Ro :S R there exists a symmetric function JR defined on I::'.=o(sRr such 
that J(s) = ]R(s1, ... , sm) for s = I::1 6si E SR, where SR= {s ES; s(SR) = m}. We say 
f is smooth if JR is smooth for all R 2 R0 . We note that JR is unique because of symmetry. 
We easily see that f is smooth if and only if JR is smooth for some R > R 0 . 
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Definition 1. We call dµ E L1 (JR.d x S, µ[11) the logarithmic derivative of µ if 

r v' xf dµ[l] = - r fdµdµ[l] 
J'/il.dxS J'/il.dxS 

(22) 

for all f E C0 (:JR.d) @ V 0 • Here, v' x is the derivative operator on JR.d, and V 0 is the space of 
all bounded, local smooth functions on S. 

Very informally, the logarithmic derivative is given by 

(23) 

The conventional method to define infinite volume Gibbs measures for given interaction 
potentials is to use the Dobrushin-Lanford-Ruelle equation. This formulation is, however, 
not available for Coulomb potentials. The significance of the notion of the logarithmic 
derivative is that it also makes sense for these long-ranged potentials. 

In [7], we calculated the logarithmic derivative dµg,n of the Ginibre point process is 

d ( ) 1 ~ X - S; . Ll (l1])2 s [1]) 
/-'gin x,s = 2 im L I 12' 1n Joe .II"- X ,µgin ' 

q--+oo lx-s,l<q X - S; 

(24) 

where s = ~i 08 ,, (see [7]). Note that the sum in (24) is a conditional convergence be
cause of the long-range nature of the logarithmic interaction potential. Therefore, to prove 
convergence is a sensitive problem. We use the rigidity of the Ginibre point process such 
that, for the variance of the number of particles in the disks {lsl :S: R}, its order of growth 
is suppressed to order R. We remark that the order of growth of the same quantity for 
translation-invariant Poisson point processes on JR.2 is R 2 • 

The equality (24) is rigorous and justifies (20) because, taking (23) into account, we have 

For a configuration s = ~i 08 ,, we write lL[s] = { s;}. For µgin,0-a.s. s we consider 

d X d 1· ~ Xt - S; d 
xt = Bt + 1m L 1xx 12 t, 

q➔r:x; IXf-sil<q t - Si 
Xt=x. (25) 

siEL[s] 

Here µgin,o is the reduced Palm measure of µ.,n conditioned at the origin. Using the loga
rithmic derivative dµg,n (x, s), we can rewirte (25) as 

(26) 
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We remark that the solution xx = { xn depends on s although we suppress it from the 
notation. 

Theorem 4. In µgin, 0 -probability ins E S, 

lim cX't;,:2 = 0 weakly in C([0, oo ); 11~.2). 
e-+oo 

That is, for any bounded continuous function F on C([0, oo ); JR.2) and c > 0, 

lim µgin,o({s; IE[F(sX';,:2)] - F(O)I ~ c}) = 0. 
e-+oo 

Here O denotes the O = (0, 0)-valued, constant path. 

• The proof is completely different from the periodic case. 
• We expect that the same phase transition holds for this case as for the periodic case. 

(27) 

(28) 

• I have not yet prove the positivity of the effective constant for the original Ginibre point 
process. That is, "for µg;n-a.s. s". 

• If this is done, then the rest of the proof is the same as for the periodic case. 
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