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1 Introduction 

From a representation theoretical point of view, quantum mechanics (resp. 
quantum field theory) may be regarded as representations of canonical com
mutation relations (CCR) and/or canonical anti-commutation relations (CAR) 
with finite (resp. infinite) degrees of freedom. Models in quantum mechanics 
and quantum field theory are constructed based on Hilbert space representa
tions of CCR and/ or CAR. There exist basically two categories for represen
tations of CCR and/or CAR respectively, i.e., reducible and irreducible, and 
each of them is divided into two classes: equivalent and inequivalent. Quan
tum theories based on equivalent representations of CCR and/ or CAR are 
physically equivalent, being different only in the framework of the physical 
picture. On the other hand, quantum theories based on inequivalent irre
ducible representations are essentially different from each other, describing 
non-comparable physical situations. 

We have learned from studies on models in quantum mechanics and quan
tum field theory that inequivalent representations of CCR or CAR are associ
ated with "characteristic" quantum phenomena such as the Aharonov-Bohm 
effect [1, 2, 3], the Bose-Einstein condensation [4, 11, 14] and infrared or ul
traviolet renormalizations in some models in quantum field theory [8] .1 This 
structure is very interesting and the following philosophical point of view is 
suggested: 

The Universe uses inequivalent representations of CCR and/or 
CAR to create "characteristic" quantum phenomena in which 
macroscopic quantities (external magnetic fields, masses, charges, 
particle densities etc.) appear as labels indexing families of mu
tually inequivalent representations of CCR and/or CAR. 

1 For a comprehensive description of inequivalent representations of CCR and CAR in 
correspondence to "characteristic" quantum phenomena, see [10]. 
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From this point of view, it is important to find inequivalent representations 
of CCR and CAR respectively as many as possible and to make clear their 
physical correspondences. 

Complementarily to the contents of the preceding paragraph, we want to 
add a remark which should be kept in mind: Roles of equivalent representa
tions and inequivalent irreducible representations of CCR and/or CAR are 
different. Although equivalent representations are physically equivalent to 
each other as mentioned above, they may be mathematically important. For 
example, there may be mathematical problems which are not so easy to solve 
in a representation, but relatively or very easy to solve in other representa
tions equivalent to the former. 2 From this point of view, it is important also 
to find equivalent representations of CCR and CAR respectively as many as 
possible. 

As is well known, there is a method, called a Bogoliubov transformation, 
which generates a new representation of CCR (resp. CAR) from a given 
representation of CCR (resp. CAR). A necessary and sufficient condition 
for a Bogoliubov transformation to generate a representation equivalent to a 
standard representation, called a Fock representation, has been established 
(see, e.g., [17, 20, 21, 22, 23]). It seems, however, that inequivalent rep
resentations generated by Bogoliubov transformations have not been noted 
very much. In fact, there exist physically interesting examples of inequiva
lent representations; see, e.g., [6] (resp. [7]) in which a family of mutually 
inequivalent irreducible representations of CCR (resp. CAR) is constructed 
and boson masses (resp. fermion masses) appear as the labels of the family. 

A standard Bogoliubov transformation is defined from a pair (T, S) of 
everywhere defined bounded linear operators on a one-particle Hilbert space 
in a Fock space. It would be natural to ask: what happens if T or S is 
unbounded? We call a Bogoliubov transformation with T or S unbounded 
a singular Bogoliubov transformation. Fundamental properties of singular 
Bogoliubov transformations have been studied in [9]. In the present paper, 
we report some basic results in [9]. 

2 A typical example to which such a case applies is a one-dimensional quantum harmonic 
oscillator. The spectrum of the Hamiltonian is easily found in the Born-Heisenberg-Jordan 
representation of the CCR with one degree of freedom rather than in the Schrodinger one 
with the same degree, which is equivalent to the former. In quantum field theory, the Q
space representation (e.g., [5, 15, 19, 24]), which is equivalent to the Fock representation 
of the CCR over a Hilbert space, is very useful. 
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2 Representations of the CCR over an inner 
product space 

In this section we review elementary aspects of representations of CCR. 
Let§ be a complex Hilbert space and~ be a dense subspace of§. Let 

"f/ be a complex inner product space with inner product ( , )"f/ and norm 

II · ll"f/-3 

Definition 2.1 Suppose that, for each f E "f/, a densely defined closed linear 
operator C(J) on§ is given. Then the triple (!#", ~, { C(J), C(J)*IJ E "f/}) 
is called a representation of the CCR over "f/ if the following (i)-(iii) hold: 

(i) (invariance of~) For all f E "Y, 

~ c D(C(J)) n D(C(J)*), C(J)~ c ~, C(J)*~ c ~-

(ii) (anti-linearity in test vectors) For all f, g E "f/ and a, /3 EC, 

C(af + f]g) = a*C(J) + f]*C(g) 

on~, where, for z EC, z* denotes the complex conjugate of z. 

(iii) (the CCR over "f/) For all J, g E "Y, 

[C(J), C(g)*] = (!, g)"f/, [C(J), C(g)] = 0 on ~-

Definition 2.2 Two representations (!#", ~, { C(J), C(J)*IJ E "f/}) and 
( §', ~', { C' (!), C' (!)*If E "f/}) of the CCR over "f/ are said to be equiv
alent if there exists a unitary operator U : §---+ §' such that, for all f E "f/, 

UC(f)u- 1 = C'(f). (1) 

Remark 2.3 Equation (1) implies that UC(J)*u- 1 = C'(J)*, f E "f/. 

Definition 2.4 Let 2l be a set of (not necessarily bounded) linear operators 
on a Hilbert space .°£. 

(i) The set 2l is said to be reducible if there is a non-trivial closed sub
space A off£ (i.e., A =I- {O}, .°£) such that every A E 2l is reduced 
by A (i.e., P .,t{A CAP .,I{, where P .,I{ is the orthogonal projection onto 
A). 

3We sometimes omit the subscript "f/ in ( , )"f/ and norm II· ll"f/-



127

(ii) The set Qt is said to be irreducible if it is not reducible. 

Definition 2.5 A representation(%, £1, {C(f), C(f)*lf E Y}) of the CCR 
over Y is said to be reducible (resp. irreducible) if the set {C(f), C(f)*lf E 

Y} is reducible ( resp. irreducible). 

For a Hilbert space :!£', we denote by ~(:!£') the space of everywhere 
defined bounded linear operators on :!£'. 

Definition 2.6 For a set Qt of linear operators on a Hilbert space :!£', 

Qt':= {TE ~(:!r)ITA CAT, VA E Qt} 

is called the strong commutant of Qt. 

The following fact is well known (see, e.g., [8, Proposition 5.9]): 

Lemma 2. 7 Let Qt be a set of linear operators on :!£'. 

(i) If Qt' = CJ := { cdla E C} (I denotes identity), then Qt is irreducible. 

(ii) If Qt is an irreducible set of densely defined closed linear operators 
on :!£' and *-invariant (i.e., A E Qt====} A* E Qt), then Qt'= CJ. 

3 Fock representation of CCR 

Let ye be a complex Hilbert space and denote by ®~ ye then-fold symmetric 
tensor product Hilbert space of ye_ We set 0~ye := C. The boson Fack 
space over ye is defined by 

§b(ye): = EB~=o ®: ye 

- { w - {w(n)}::'colW1"1 E o;'.Ye, n 2: 0, ~ 11w(n) 112 < 00} . 

The subspace 

is called the finite particle subspace of §b(ye). It follows that § 0 (ye) is 
dense in §b (ye). 
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For each f E £, a densely defined closed linear operator A(f) on 
§b(.Yt'), called the annihilation operator with test vector f E £, is de
fined in such a way that the adjoint A(f)* of A(f), the creation operator 
with test vector f, is of the form: 

D(A(J)') ~ { w E .Tb(£')1 t, llv'nSnU ® w(n-l))II' < 00}. 
(A(f)*W)(O) = 0, 

(A(f)*W)(n) = v'nSn(f 0 w(n- 1l), n;::: 1, 

where Sn denotes the symmetrization operator on then-fold tensor product 
Hilbert space ®n £ of£. The following proposition is well known ( or easy 
to show): 

Proposition 3.1 

(i) For all f E £, %0(£) c D(A(f)) nD(A(f)*) and A(f) and A(f)* 
leave § 0(£) invariant. 

(ii) {A(f), A(f)*IJ E £} satisfies the CCR over£: 

[A(f), A(g)*] = (!, g).Yt', [A(f), A(g)] = O (f, g E £) 

on %0(.Yt'). 

This proposition shows that, for any subspace !P of£, 

is a representation of the CCR over !?J. It is called the Fock representation 
of the CCR over !?J. Concerning irreducibility of 7rF(!?J), we have: 

Proposition 3.2 Let P be a dense subspace of£. Then 7rF(P) is irre
ducible. 

Proof See [8, Theorem 5.14]. I 

4 Standard Bogoliubov transformations 

The main topic of the present paper is a singular Bogoliubov transformation. 
But, for comparison, we first review a standard Bogoliubov transformation [8, 
17, 20, 21, 22, 23]. 
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Let J be a conjugation on .ff and suppose that there exist linear operators 
T, S E SB ( £) satisfying 

T*T-S*S=I, T*JS=S*JT. (2) 

Let!» be a dense subspace of£. Then it is easy to see that A(TJ)+A(JSJ)* 
is a densely defined closable operator. Hence one can define 

A(f) := A(TJ) + A(JSJ)*, f E !», 

where, for a closable operator C, we denote its closure by C. It is easy to 
prove the following lemma: 

Lemma 4.1 The triple 

is a representation of the CCR over t!J. 

The correspondence: (A(·), A(·)*) ----t (A(·), A(·)*) is called a Bogoliubov 
transformation, which preserves the CCR over t!J. 

The following proposition is essentially known: 

Proposition 4.2 Assume that .ff is separable and that S is not Hilbert
Schmidt. Then 1rx(!») is inequivalent to any direct sum representation of 
7rp(t!J). 

The operators T and S may satisfy additional conditions: 

TT* - JSS* J = I, JST* = TS* J. (3) 

The following theorem is well known. 

Theorem 4.3 Assume that .ff is separable and suppose that (2) and (3) 
hold. Then 1rx(t!J) is equivalent to 1rp(t!J) if and only if S is Hilbert-Schmidt. 

5 Singular Bogoliubov transformations 

In what follows, we present only results. For proofs of them, see [9]. 
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5.1 Definitions 

Let T and S be densely defined (not necessarily bounded) linear operators 
on £ such that there exists a dense subspace ~ c D(T) n D(S) and the 
following equations hold: 

(Tf,Tg)- (Sf,Sg) = (J,g), 
(Tf, JSg) = (Sf, JTg), f,g E ~, 

where J is a conjugation on£. 
For each f E ~, one can define 

B(J) := A(TJ) + A(JSJ)*. 

Conditions ( 4) and (5) imply the following proposition: 

Proposition 5.1 

is a representation of the CCR over~-

(4) 
(5) 

(6) 

We call the correspondence TB: (A(·), A(·)*) f----+ (B(·), B(·)*) a singular 
Bogoliubov transformation if Sor T is unbounded (then both T and Sare 
unbounded). 

Remark 5.2 Suppose that T or S is bounded. Then both T and S are 
bounded and 

r*r - s*s = 1 r* 1s = s* JT. 
' 

Hence, in this case, (4) and (5) are equivalent to (2) with (T, S) replaced by 
(T, S) and TB becomes a standard Bogoliubov transformation. 

5.2 Inequivalence to any direct sum representation of 
the Fock representation 7rF(~) 

To discuss if 7rB(~) is inequivalent to 1rp(~), we first present a general fact: 

Lemma 5.3 Let§ be a Hilbert space and~ be a dense subspace of£. Let 

1rc(~) :=(.ff,~, {C(J), C(J)*lf E ~}) 

be a representation of the CCR over~- Suppose that 1rc(~) is equivalent to 
a direct sum representation EB;;=11rp(~) of 7rp(~) with N < oo or N = oo. 
Then there exists a non-zero vector S1 E n1E~D(C(J)) such that C(J)O = 
0, f E ~-
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Remark 5.4 A non-zero vector O E nfE'»D(C(f)) such that C(f)O = 
0, f E !?J is called a vacuum vector for 1r0 (!!J). 

Lemma 5.5 (absence of vacuum vectors for 7rB(!!J)) Assume that£ is sep
arable. Suppose that T is unbounded and T!!J is dense in£. Then there 
exist no non-zero vectors OE nfE'»D(B(f)) such that B(f)O = 0, f E !?J. 

Theorem 5.6 Assume that £ is separable. Suppose that T is unbounded 
and T!!J is dense in £. Then 7rB(!!J) is inequivalent to any direct sum 
representation of the Fack representation 7rp ( !?J). In particular, if 7rB ( !?J) is 
irreducible, then 7rB ( !?J) is inequivalent to 7rp ( !?J). 

5.3 Irreducibility 

Assumption (I) There exists a dense subspace f?J1 of £ such that the 
following (i) and (ii) hold: 

(i) !?J1 C D(TT*) n D(JSS* J) n D(ST*) n D(JTS* J). 

(ii) T* f!J1 c !!J, ( S* J) f?J1 c !!J and 

TT* - JSS* J = I, ST* J = JTS* on f?J1 . 

Lemma 5. 7 Suppose that Assumption (I) holds. Then, for all f E f?J1 , 

A(f) = B(T* J) - B(S* J J)* on %0(£). (8) 

Theorem 5.8 Suppose in addition to (4) and (5) that Assumption (I) holds. 
Then 7rB ( !?J) is irreducible. 

The subset 
,YfJ := {f E £1 J f = f} 

becomes a real Hilbert space and each f E £ is uniquely written as 

with f1, h E ,YfJ. 
Another criterion for the irreducibility of 7rB(!?J) is given as follows: 

Theorem 5.9 Suppose in addition to (4) and (5) that 

JS C S J, JT C T J. 

Let !!JJ :=!?Jn ,YfJ, R := (1 + i)T + (1- i)S and suppose that R!!JJ is dense 
in£. Then 1rB(!!J) is irreducible. 
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6 A general class of singular Bogoliubov trans
formations 

Let K and L be injective (not necessarily bounded) symmetric operators on 
a Hilbert space £ such that 

is dense in£ and, for a conjugation Jon£, 

J K c K J, J L c LJ. 

Then one can define densely defined linear operators 

T± := !(K-1£ ± KL- 1 ) 
2 

with D(T±) = !flK,L· It follows from (10) that 

JT± C T±J. 

Lemma 6.1 For all f, g E :flK,L, 

(T+f, T+g) - (T_f, T_g) = (!, g) , 
(T+f, JT_g) = (T_f, JT+g) . 

(9) 

(10) 

(11) 

(12) 
(13) 

Let !fl be a dense subspace of £ such that !fl C :flK,L. Then one can 
define a densely defined closed linear operator 

BK,L(f) := A(T+f) + A(JT_f)*, f E !fl. (14) 

Proposition 6.2 

is a representation of the CCR over !fl. 

If T+ or T_ is unbounded, then the correspondence: (A(·), A(·)*) f--+ 

(BK,L(·), BK,L(·)*) is a singular Bogoliubov transformation. 
A simple application of Lemma 5.5 and Theorem 5.6 yields the following 

theorem: 

Theorem 6.3 Let JC be separable. Suppose that T+ is unbounded and T+ffl 
is dense. Then: 
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(i) There exists no non-zero vector O E nfE'PD(BK,L(f)) such that 
BK,L(f)O = 0, f E ~-

(ii) The representation 7rK,L(~) is inequivalent to any direct sum repre
sentation of the Fack representation 1rp(~)- In particular, if 7rK,L(~) 
is irreducible, then 7rK,L ( ~) is inequivalent to 1rp ( ~). 

With regard to irreducibility of 7rK,L(~), we have the following result. 

Theorem 6.4 Supposethat(K-1L+iKL-1)(~n,.Ytj) is dense in&. Then 
7rK,L(~) is irreducible. 

Proof We need only to apply Theorem 5.9 to the case where T = T+, 
S = T_. In this case R = K- 1 L + iKL-1 . I 

Example 6.5 An example of singular Bogoliubov transformations in the 
form 7rK,L(~) is associated with the Casimir effect [12, 16, 18, 25] in the 
context of a quantum scalar field. See [8] for mathematical details. A singular 
Bogoliubov transformation appears also in a quantum scalar field theory [6]. 
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