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Towards new uncertainty relations 

I Introduction 

-~tt~~ArvAr~r~~~£ 
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Since Heisenberg's paper [4], uncertainty relation is a central topic of quantum measurement 

theory. It is now known that Heisenberg's error-disturbance relation, one of his uncertainty 

relations, 
n 

s(Q)TJ(P) ~ 2 (1) 

is violated in general, where Q and P, respectively, are the position and the momentum of a 

nonrelativistic single-particle system. The error-free linear measurement [13] is constructed in 

the 1980s, and universally valid uncertainty relations [14, 15, 16, 17, 2, 18] are shown. An error 

called the noise-operator based quantum root-mean-square (q-rms) error is used in previous 

investigations. In the paper, we define another q-rms error for discrete observables, and give 

universally valid uncertainty relations for such a q-rms error. 

In Section II, we introduce preliminaries on algebraic quantum theory and quantum mea­

surement theory. Completely positive (CP) instrument and measuring process are defined. In 

Section III, we define a q-rms error for discrete observables, and give universally valid uncer­

tainty relations. 

II Algebraic Quantum Theory and Measurement 

Here we assume the following axiomatic system. 

Axiom 1. A physical system in an experimental situation is described by a W* -probability 

space (B(1-l), p), a pair of a W*-algebra and a normal state on it. 

In this talk, we assume that all Hilbert spaces 1-l are separable. We do not distinguish normal 

states p on B(1-l) and density operators p via the isomorphism 7: B(1-l). ---+ T(1-l) such that 

p(X) = Tr[pX], X E B(1-l). (2) 

We also assume the Born statistical formula. 

Axiom 2. When an observable A of B(1-l) is precisely measured in a normal state p, the 

probability Pr{ A E b. I Ip} that the spectrum of A belonging to b. emerge is given by 

(3) 
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Let A= L aEA(a) be a discrete observable of B(H). 

Postulate 1 (von Neumann-Liiders projection postulate). When a state p is prepared, the state 

after the measurement of A is given by 

LaE~ EA(a)pEA(a) 
Tr[pEA(~)] 

(LaElR EA(a)pEA(a)) . EA(~) 
Tr[pEA(~)] 

Under the repeatability hypothesis, a standard assumption in the 1930s, von Neumann proved 

that this postulate is derived only for nondegenerate discrete observables in his famous book [7]. 

He also constructed a model of quantum measurement called a von Neumann model. Liiders 

[5] generalized the projection postulate for the degenerate case. 

Postulate 2 (Repeatable hypothesis). If an observable A is measured twice in succesion in the 

object system, then we get the same value each time. 

This postulate is valid only for discrete observables. The linear map [A : B(H) --+ {A}' := 

{EA(~) I~ E B(li)}' defined by 

[A(X) = LEA({a})XEA({a}), X E B(H) (4) 
aElR 

is a conditional expectation [22, 6]. It is, however, known that such conditional expectations 

do not exist for the continuous case [1]. Furthermore, there exist measurements of observables 

which cannot be described by (the predual of) conditional expectations. 

Following those investigations, Davies and Lewis [3] abandoned the repreatability hypothesis 

(Postulate 2) and introduced the notion of instrument which describes general state changes 

caused by the measurement. Ozawa [12] introduced the notions of completely positive (CP) 

instrument and of measuring process and established the one-to-one correspondence between 

them in quantum mechanical systems (type I factors). The author and Ozawa introduced the 

normal extension property (NEP) for CP instruments and generalized the above one-to-one 

correspondence between CP instruments with the NEP and measuring processes on general 

von Neumann algebras [8, 9]. The author also developes quantum measurement theory in C*­

algebraic quantum theory [11]. 

T(H) denotes the set of trace-class operators on a separable Hilbert space 1-l. CP(T(H)) 
denotes the set of completely positive linear maps on T(H). Let (S, F) be a measurable space. 

Definition 1 (CP instrument). A map I : F --+ CP(T(H)) is called a CP instrument for 

(B(H), S) ifit satisfies the following two conditions: 

(1) For all p E T(H), ME B(H) and mutually disjoint sequence {~j} CF, 

00 

Tr[(I(Uj~j)p)M] = LTr[(I(~j)p)M]; 
j=l 

(2) Tr[I(S)p] = Tr[p]for all p E T(H). 

(5) 
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The dual map I : B ( 1i) x F ---+ B ( 1i) of a CP instrument I for ( B ( 1i), S) is defined by 

Tr[pI(M, ~)] = Tr[I(~)pM] 

for all p E T(1i), M E B(1i) and~ E F. 

(6) 

The dual map of an instrument I for (B(1i), S) is characterized by the following conditions: 

(i) For every~ E F, the map Mc-+ I(M, ~) is CP and linear; 

( ii) For all p E T(1i), M E B(1i) and mutually disjoint sequence { ~j} C F, 

00 

Tr[pI(M, Ui~i)] = LTr[pI(M, ~i)]; (7) 
j=l 

( iii) I(l, S) = 1. 

That is to say, a map I : B(1i) x F---+ B(1i) satisfying the above conditions is the dual map 

of a CP instrument I for ( B ( 1i), S). 
We shall define measuring process. 

Definition 2 (Measuring process). A measuring process Mfor (B(1i), S) is a 4-tuple M = 
(K, u, E, U) consisting of 

( 1) a Hilbert space K, 

(2) a normal state u on B(K), 

(3) a spectral measure E : F---+ B(K), and 

(4) a unitary operator U on 1i 0 K. 

This is a generalization of von Neumann model of measurement [7]. 

Example 3. Let A be an observable of B(1i) to be measured. Von Neumann [7] discussed a 

model of measurement consisting of 

(1) a Hilbert space L2 (lll), 
(2) a unitvectore E L2 (lll), 
(3) a meter observable Q = J q dEQ(q), and 

(4) a unitary U = ehA@P on 1i 0 L2 (lll), (0 =/- "'f E lll, [Q, P] = il), 

which defines a CP instrument IA,vN for (B(1i), lll) by 

IA,vN(~)p = TrL2(R)[U(p 0 le)(el)U*(l 0 EQ(~))] 

for all~ E B(lll) and p E T(1i). 

(8) 

By results of Stinespring's paper [21] and the uniqueness theorem of the irreducible normal 

representation of B(1i), the following theorem holds: 

Theorem 4 (Ozawa [12]). Let1i be a Hilbert space and (S, F) a measurable space. Then there 

is a one-to-one correpondence between statistical equivalence classes of measuring processes 

M = (K, u, E, U) for (B(1i), S) and CP instruments I for (B(1i), S), which is given by the 

relation 

I(~)p = Tr,dU(p 0 u)U*(l 0 E(~))] 

for all~ E F and p E T(1i). 

(9) 
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Two measuring processes M 1 = (K1 , CJ1 , E 1 , U1) and M 2 = (K2 , CJ2 , E2 , U2 ) for (M, S) are 

said to be statistically equivalent if IM1 ( ~) = IM2 ( ~) for all ~ E F. 

III New uncertainty relations 

For every CP instrument I for (B(1-l), JR.), II:z.- denotes a POVM on 1-l defined by Ih-(~) = 
I(l, ~) for all~ E F. The n-th moment rrtl of II:z: is defined by 

rrtl = 1 xn dih-(x). 

Here rrtl is defined on dom(rrtl) whose elements ( E 1-l are given by 

1 x 2n d((III:z:(x)() < +oo. 

(10) 

(11) 

For every measuring process M = (K, CJ, E, U) for (B(1-l), JR.), it is also denoted by M = 
(K, CJ, M, U), where Mis an observable on K such that M = J m dE(m). 

Definition 5. Let A, B be observables of B(1-l). When a CP instrument I for (B(1-l), JR.) in 

the state p, the error s0 (A) of A and the disturbance TJo(B) of B, respectively, are defined as 

follows: 

so(A) 2 = c:o(A,I,p) 2 = Tr[(rr¥l -Arr¥l - rr¥l A+ A2)(p)] 

= Tr[(U*(l 0 M)U - A 0 1)2 (p 0 CJ)], (12) 

TJo(B) 2 = TJo(B,I,p) 2 = Tr[(I(B2 , R) - BI(B,JR.) -I(B, JR.)B + B 2)(p)] 

= Tr[(U*(B 0 l)U - B 0 1)2(p 0 CJ)] (13) 

c:0 (A) and T/o ( B) satisfies the following inequality called the Branciard-Ozawa error-disturbance 

relation: 

Theorem 6. 

where DAB is defined by 

(15) 

Branciard [2] proved this inequality for vector states. For vector states p = 17/J) ( 7,/J I, DAB is 

equal to 
1 . 

CAB:= 21Tr[p(-z[A, B])]I. (16) 

After his study, Ozawa [18] showed Eq. (14) for any states. 

It is known that there are many quantum generalizations of error and disturbance, which are 

not mutually equivalent in general. From now on, we show a similar uncertainty relation for 

another error and disturbance. 
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Let A be a discrete observable on 1-l and I a CP instrument for (B(1-l), JR). We define a joint 

distribution of the successive measurement of A and I in this order by 

(17) 

for all .6., r E B(JR). 

Definition 7. Let A, B be discrete observables of B(1-l). When a CP instrument I for (B(1-l), JR) 
in the state p, the error sm(A) of A and the disturbance rJm(B) of B, respectively, are defined 

as follows: 

sm(A)2=sm(A,I,p)2= { (a-m)2dµ}A(m,a) 
JJR2 

= Tr[(U*(l 0 M)U - A 0 1)2(£A(P) 0 u)], (18) 

rJm(B) 2 = rJm(B,I, p) 2 = { (b' - b) 2 dTr[I(EB(b'), JR)EB(b)£B(p)] 
JJR2 

= Tr[(U*(B 0 l)U - B 0 1)2(£B(P) 0 u)]. (19) 

sm(A) satisfies the following relation [20]: 

(20) 

where m = mt is an invariant mean on R We define Gauss' error c:0 (µ) for a probability 
measure on JR2 by 

(21) 

Let (S1 , F 1) and (S2 , F 2 ) be measurable spaces. Two POVMs II1 : F 1 -t B(1-l) and II2 : 

F 2 -t B(1-l) are commuting in p if 

(22) 

for all .6. E F 1 and r E F 2 . Let A be an observable of B(1-l). II1 and A are commuting in p if 
so are II1 and EA in p. If a POVM II : B(JR) -t B(1-l) and an observable A are commuting in 

p, there exists a probability measure µ~r,A on lR.2 such that 

for all .6., F E B(JR). 

Theorem 8 ([20, Theorem 3]). sm(A) satisfies the following conditions: 

(1) sm(A) is defined by IIr, A and p (the operational definability). 

(2) IJII7 and A are commuting in p, E'm(A) coincides with Gauss' errorc:a(µ~r,A). 

(3) IJI precisely measures A in p, then sm(A) = 0 (the soundness). 

(4) If sm(A) = 0, then I precisely measures A in p (the completeness). 

s0(A) does not satisfy (4). sm(A) and rJm(B) then satisfy the following relation: 

(23) 
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Theorem 9. 

where EAB is defined by 

(24) 

and 

(25) 

To show this theorem, the methods in [18, 10] are used. 

Next, we give a similar inequality for simultaneous measurements. Let M = (/C, CJ, E, U) be 

a measuring process for (B(H), ffi.2 ), and M1 , M2 observables on /C such that 

(26) 

For a measuring process M = (/C, CJ, E, U) for (B(H), ffi.2), the q-rms errors Em(A) and Em(B) 
of discrete observables A and B are defined by 

Em(A) 2 = Tr[(U*(l ® M1)U - A® l)2(£A(P) ® CJ)], 

Em(B)2 = Tr[(U*(l ® M2)U - A® l)2(£s(P) ® CJ)], 

(27) 

(28) 

respectively. Similarly, we can define Em(A) and Em(B) for CP instruments I for (B(1i), ffi.2). 

The q-rms errors Em(A) and Em(B) satisfies the following inequality: 

Theorem 10. 
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