The scaling limit of eigenfunctions for 1d
random Schrodinger operator

Fumihiko Nakano *

November 28, 2019

Abstract

We report our results on the scaling limit of the eigenvalues and the
corresponding eigenfunctions for the 1-d random Schrodinger operator
with random decaying potential. The formulation of the problem is
based on the paper by Rifkind-Virag [9].

1 Introduction

In this note we consider the following one-dimensional Schrodinger operator
with random decaying potential :

2

d
H = —— + a(t)F(X)
where a € C*°(R), a(—t) = a(t), a(t) is monotone decreasing for ¢ > 0 and
alt)=t"*(14+o0(1)), t— o0

for some o > 0. F € C*°(M) is a smooth function on a torus M such that

(F) — /]V Fla)dz =0
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and {X;}cr is the Brownian motion on M. Since a(t)F(X;) is a compact
perturbation with respect to (—A), the spectrum o(H) N (—o00,0) on the
negative real axis is discrete. The spectrum o(H) N [0, 00) on the positive
real axis is [4] :

a.c. (a>1/2)
o(H)N[0,00) is p.p. on [0, E.] and s.c. on [E,,00) (a=1/2)
p.p. (v < 1/2)

where FE, is a deterministic constant. For the level statistics problem,
we consider the point process &, g, composed of the rescaling eigenvalues
{L(y/E — V/Ey)}; of the finite box Dirichlet Hamiltonian Hy, := Hljo
whose behav1or as L — oo is given by [3, 6, §]

Clock(0(Ey))  (a>1/2)

Eom 28 Sine(B(Ey)  (a=1/2)
Poisson(d\/7) (a < 1/2)

where Clock () := > nez Onmo, is the clock process for some random variable
6 on [0, 7), and Sine(B) is the Sineg-process which is the bulk scaling limit of
the Gaussian beta emsemble [10]. For o = 1/2, 8(Fy) = 7(Ep) ™! is equal to
the reciprocal of the Lyapunov exponent 7(Ej) such that the solution to the
Schrédinger equation Hy = Eo has the power-law decay : ¢(z) ~ |o|~7®

|z] — oo. Since limpg, ;o B(Ey) = 0 and limpgy 0 B(Ep) = oo, small (resp.
large) Ey corresponds to small (resp. large) repulsion of eigenvalues, which
is consistent to the following fact [1, 7] :

: d [ Poisson(d\/) (810)
Sine(f) = { Clock(unif[0,m)) (87T o)

In this note, we consider the scaling limit of the measure corresponding to
the eigenfunction of H;, under the formulation studied by Rifkind-Virag [9].
To formulate the problem, we need some notations. Let {E;(L)}; be the
positive eigenvalues of Hy,, and {1/1 (L) } be the corresponding eigenfunctions.

We consider the associated random probability measure uﬁ;ﬁ)( L) on [0, 1].

2
) "

Hi ) = C (Ii/)g;)u (L) + m ’ Uy (1)



Let J := [a,b](C (0,00)) be an interval, S‘(]L) = {E;(L)}; N J be the eigen-
values of Hy, on J, and EgL) be the uniform distribution on 8§L). Our aim is
to consider the large L limit of the eigenvalue-eigenvector pairs :
) &) (L) d
Q: (EJ ’ME‘(JL)> =7
For d-dimensional discrete random Schrodinger operator, if J is in the local-
ized region, we have [2, 5]

L L d
(Eg )7M(ES)L)> - (EJ»(;unif[O,l}d)

where F; is the random variable obeying 1]{[%?)) dN(E), where dN is the den-
sity of states measure. Rifkind-Virag studied the 1-d discrete Schrodinger
operator with critical decaying coupling constant, and obtained that the

limit of /L(EL()L) is given by an exponential Brownian motion [9] :
J

eXp<2ZT(EJ)(t_U) - 2T(EJ) |t - U|>dt

Js
fol exp <QZT(EJ)(57U) —27(Ey)|s — U\)ds

L L d
(50, 8) % B

To state our result, we need notations further. Let N(E) := 7~'v/E be the
integrated density of states, N(.J) := N(b) — N(a), and

() :ZSLE/MW(LHNE)*FW

where L is the generator of (X;). Moreover, let E; be the random variable
whose distribution is equal to N(J)™'1;(E)dN(FE), let U be the uniform
distribution on [0, 1], and let Z be the 2-sided Brownian motion, where E;,
U, and Z are independent.

Theorem 1.1
(L) (L)
(EJ 7MEJ(L))
(EJ, 1[071] (t)dt) (a > 1/2)
exp| 2Z_ oe £ —27(EJ) log £ )dt
4, Ey, gm0 7 (@ =1/2)

1
Jo exp ZZT(EJ)IOgIsj—QT(EJ)’log %|)ds

(E, Sunifo.n (dt)) (< 1/2)
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When a < 1/2, this result is the same as that in [2, 5], while for a > 1/2
ths result is natural. For a = 1/2, this result implies that, the localization
center U of the eigenfunction 9 is uniformly distributed and v has the power
law decay around U with Brownian fluctuation. Since limg o 7(E) = oo and
limpgoo 7(E) = 0, ¢ is localized (resp. delocalized) for E | 0 (resp. £ T 00)
which is consistent with the previous picture.

2 Sketch of Proof

For the proof, we mostly follow the strategy in [2, 5, 9], except for some
technical points.

2.1 Step 1 : renormalize the radial coordinate

In what follows, we describe the solution z; to the equation Hz; = k%z; in
terms of the Prifer variales :

FARTED

Introducing p;(x) defined by r;(k) := exp(p:(k)), we have

1 b
pi(K) = %Im i W (s)F(X,)ds

Let Ky := Ko + %, ko = VEo, ﬁi")(n) = put(k) — (Fgy) fona(s)zds, Gr =
(L +2ik)~'F, t € [0,1]. We then have

Lemma 2.1 If a =1/2, then

2 (k) KR p(N), t€[0,1], locally uniformly
2 D
dp™ (ky) = @dt + @dBﬁ, t>0

where { B} is a family of Brownian motion.
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2.2 Step 2 : limit of the local version

Let =™ be the local version of our problem :

)
Z < VE; (- “g)m))
It then follows that

—(n) d —
Lemma 2.2 =" 5 = where

> jez Ojn+o @ 01 (1)t (> 1/2)
== _exp(2pi(N)dt _
== Zonsing, N € 5(1‘5 eXP(2ﬁs(A))d8> (a=1/2)
Y jez 0p;, © 05, (a<1/2)

where {P;} : Poisson(d\/w), {P;} : Poisson(1pq)(t)dt). The intensity mea-
sure of = is given by

E [G(\, v)d=E(\, V)]
JAXE [G (X, 1p(t)dt)] (a>1/2)

N VR
[01 exp QZT(EO)IOg%—QT(EO)IOg’%’)dS

[dAE[G (), 6p)] (@ >1/2)

1
=—{ [E |G|

where U := unif|0, 1].

2.3 Step 3 : averaging over the reference energy

Following [9], we introduce

() = (1= [z))1(|z] < 1)

Gu(E):== Y o (L (\/%— JE)) (L) 1))

E;j(L)eJ

where g € C,(RxP(0,1)). We compute [ dzjvv((ﬁ) [G1L(E)] by the following

two ways, and then equate them by the Fubini theorem, which leads to the
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conclusion.

(1) Since [ djjvv((f))gl = 1/(Ln), we have

| [ o)
- Nb WlL L(%:EJQQ( ) )<L>)]
=k |:1j{ eigenvalues of I11TL on J }(1+o(1) % 'Ej(ZL):ngz (E (L), M%L)(L)>]
(2)
dN(E)
T EGHE)
dN( /5
- ]]VV(J) E(L)eJ ( ( \/E())) ( ME (L))]
~ [ S| [ a0nE w0
~ [ B e[ [ e mazonn]
[ AXE [go (B 1o <t%dt>] ) (> 172
_ [dN(E)1 exP | 22, (50) 10g 4 27(Eo) log| ;| ) dt B
~ ) N« JarE {92 b folexp(QZT(E;)logtr27(E0)10g|U>d$)] (@=172)

JANE g5 (E, dv)] (o >1/2)
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