The scaling limit of eigenfunctions for 1d random Schrödinger operator

Fumihiko Nakano *

November 28, 2019

Abstract

We report our results on the scaling limit of the eigenvalues and the corresponding eigenfunctions for the 1-d random Schrödinger operator with random decaying potential. The formulation of the problem is based on the paper by Rifkind-Virag [9].

1 Introduction

In this note we consider the following one-dimensional Schrödinger operator with random decaying potential :

$$
H:=-\frac{d^{2}}{d t^{2}}+a(t) F\left(X_{t}\right)
$$

where $a \in C^{\infty}(\mathbf{R}), a(-t)=a(t), a(t)$ is monotone decreasing for $t>0$ and

$$
a(t)=t^{-\alpha}(1+o(1)), \quad t \rightarrow \infty
$$

for some $\alpha>0 . F \in C^{\infty}(M)$ is a smooth function on a torus M such that

$$
\langle F\rangle:=\int_{M} F(x) d x=0
$$

[^0]and $\left\{X_{t}\right\}_{t \in \mathbf{R}}$ is the Brownian motion on M. Since $a(t) F\left(X_{t}\right)$ is a compact perturbation with respect to $(-\triangle)$, the spectrum $\sigma(H) \cap(-\infty, 0)$ on the negative real axis is discrete. The spectrum $\sigma(H) \cap[0, \infty)$ on the positive real axis is [4] :
\[

\sigma(H) \cap[0, \infty) is\left\{$$
\begin{array}{lr}
\text { a.c. } & (\alpha>1 / 2) \\
\text { p.p. on }\left[0, E_{c}\right] \text { and s.c. on }\left[E_{c}, \infty\right) & (\alpha=1 / 2) \\
\text { p.p. } & (\alpha<1 / 2)
\end{array}
$$\right.
\]

where E_{c} is a deterministic constant. For the level statistics problem, we consider the point process $\xi_{L, E_{0}}$ composed of the rescaling eigenvalues $\left\{L\left(\sqrt{E_{j}(L)}-\sqrt{E_{0}}\right)\right\}_{j}$ of the finite box Dirichlet Hamiltonian $H_{L}:=\left.H\right|_{[0, L]}$ whose behavior as $L \rightarrow \infty$ is given by [3, 6, 8]

$$
\xi_{L, E_{0}} \xrightarrow{d} \begin{cases}\operatorname{Clock}\left(\theta\left(E_{0}\right)\right) & (\alpha>1 / 2) \\ \operatorname{Sine}\left(\beta\left(E_{0}\right)\right) & (\alpha=1 / 2) \\ \operatorname{Poisson}(d \lambda / \pi) & (\alpha<1 / 2)\end{cases}
$$

where $\operatorname{Clock}(\theta):=\sum_{n \in \mathbf{Z}} \delta_{n \pi+\theta}$, is the clock process for some random variable θ on $[0, \pi)$, and Sine (β) is the Sine $_{\beta}$-process which is the bulk scaling limit of the Gaussian beta emsemble [10]. For $\alpha=1 / 2, \beta\left(E_{0}\right)=\tau\left(E_{0}\right)^{-1}$ is equal to the reciprocal of the Lyapunov exponent $\tau\left(E_{0}\right)$ such that the solution to the Schrödinger equation $H \varphi=E \varphi$ has the power-law decay : $\varphi(x) \simeq|x|^{-\tau(E)}$, $|x| \rightarrow \infty$. Since $\lim _{E_{0} \downarrow 0} \beta\left(E_{0}\right)=0$ and $\lim _{E_{0} \uparrow \infty} \beta\left(E_{0}\right)=\infty$, small (resp. large) E_{0} corresponds to small (resp. large) repulsion of eigenvalues, which is consistent to the following fact $[1,7]$:

$$
\operatorname{Sine}(\beta) \xrightarrow{d} \begin{cases}\operatorname{Poisson}(d \lambda / \pi) & (\beta \downarrow 0) \\ \operatorname{Clock}(u n i f[0, \pi)) & (\beta \uparrow \infty)\end{cases}
$$

In this note, we consider the scaling limit of the measure corresponding to the eigenfunction of H_{L} under the formulation studied by Rifkind-Virag [9]. To formulate the problem, we need some notations. Let $\left\{E_{j}(L)\right\}_{j}$ be the positive eigenvalues of H_{L}, and $\left\{\psi_{E_{j}(L)}^{(L)}\right\}$ be the corresponding eigenfunctions. We consider the associated random probability measure $\mu_{E_{j}(L)}^{(L)}$ on $[0,1]$.

$$
\mu_{E_{j}(L)}^{(L)}(d t):=C\left(\left|\psi_{E_{j}(L)}^{(L)}(L t)\right|^{2}+\frac{1}{E_{j}(L)}\left|\frac{d}{d t} \psi_{E_{j}(L)}^{(L)}(L t)\right|^{2}\right) d t .
$$

Let $J:=[a, b](\subset(0, \infty))$ be an interval, $\mathcal{E}_{J}^{(L)}:=\left\{E_{j}(L)\right\}_{j} \cap J$ be the eigenvalues of H_{L} on J, and $E_{J}^{(L)}$ be the uniform distribution on $\mathcal{E}_{J}^{(L)}$. Our aim is to consider the large L limit of the eigenvalue-eigenvector pairs :

$$
\mathbf{Q}:\left(E_{J}^{(L)}, \mu_{E_{J}^{(L)}}^{(L)}\right) \xrightarrow{d} ?
$$

For d-dimensional discrete random Schrödinger operator, if J is in the localized region, we have $[2,5]$

$$
\left(E_{J}^{(L)}, \mu_{E_{J}^{(L)}}^{(L)}\right) \xrightarrow{d}\left(E_{J}, \delta_{u n i f[0,1]^{d}}\right)
$$

where E_{J} is the random variable obeying $\frac{1_{J}(E)}{N(J)} d N(E)$, where $d N$ is the density of states measure. Rifkind-Virag studied the 1-d discrete Schrödinger operator with critical decaying coupling constant, and obtained that the limit of $\mu_{E_{J}^{(L)}}^{(L)}$ is given by an exponential Brownian motion [9]:

$$
\left(E_{J}^{(L)}, \mu_{E_{j}(L)}^{(L)}\right) \xrightarrow{d}\left(E_{J}, \frac{\exp \left(2 \mathcal{Z}_{\tau\left(E_{J}\right)(t-U)}-2 \tau\left(E_{J}\right)|t-U|\right) d t}{\int_{0}^{1} \exp \left(2 \mathcal{Z}_{\tau\left(E_{J}\right)(s-U)}-2 \tau\left(E_{J}\right)|s-U|\right) d s}\right) .
$$

To state our result, we need notations further. Let $N(E):=\pi^{-1} \sqrt{E}$ be the integrated density of states, $N(J):=N(b)-N(a)$, and

$$
\tau(E):=\frac{1}{8 E} \int_{M}\left|\nabla(L+2 i \sqrt{E})^{-1} F\right|^{2} d x .
$$

where L is the generator of $\left(X_{t}\right)$. Moreover, let E_{J} be the random variable whose distribution is equal to $N(J)^{-1} 1_{J}(E) d N(E)$, let U be the uniform distribution on $[0,1]$, and let \mathcal{Z} be the 2 -sided Brownian motion, where E_{J}, U, and \mathcal{Z} are independent.

Theorem 1.1

$$
\begin{aligned}
& \left(E_{J}^{(L)}, \mu_{E_{j}(L)}^{(L)}\right) \\
& \stackrel{d}{\rightarrow} \begin{cases}\left(E_{J}, 1_{[0,1]}(t) d t\right) & (\alpha>1 / 2) \\
\left(E_{J}, \frac{\exp \left(\left.2 \mathcal{Z}_{\tau\left(E_{J}\right) \log \frac{t}{U}-2 \tau\left(E_{J}\right)\left|\log \frac{t}{U}\right|} \right\rvert\,\right) d t}{\int_{0}^{1} \exp \left(2 \mathcal{Z}_{\tau\left(E_{J}\right) \log \frac{s}{U}}-2 \tau\left(E_{J}\right)\left|\log \frac{s}{U}\right|\right) d s}\right) & (\alpha=1 / 2) \\
\left(E_{J}, \delta_{u n i f[0,1]}(d t)\right) & (\alpha<1 / 2)\end{cases}
\end{aligned}
$$

When $\alpha<1 / 2$, this result is the same as that in [2, 5], while for $\alpha>1 / 2$ ths result is natural. For $\alpha=1 / 2$, this result implies that, the localization center U of the eigenfunction ψ is uniformly distributed and ψ has the power law decay around U with Brownian fluctuation. Since $\lim _{E \downharpoonright 0} \tau(E)=\infty$ and $\lim _{E \uparrow \infty} \tau(E)=0, \psi$ is localized (resp. delocalized) for $E \downarrow 0$ (resp. $E \uparrow \infty$) which is consistent with the previous picture.

2 Sketch of Proof

For the proof, we mostly follow the strategy in [2, 5, 9], except for some technical points.

2.1 Step 1 : renormalize the radial coordinate

In what follows, we describe the solution x_{t} to the equation $H x_{t}=\kappa^{2} x_{t}$ in terms of the Prüfer variales :

$$
\binom{x_{t}}{x_{t}^{\prime} / \kappa}=r_{t}(\kappa)\binom{\sin \theta_{t}(\kappa)}{\cos \theta_{t}(\kappa)}
$$

Introducing $\rho_{t}(\kappa)$ defined by $r_{t}(\kappa):=\exp \left(\rho_{t}(\kappa)\right)$, we have

$$
\rho_{t}(\kappa)=\frac{1}{2 \kappa} \operatorname{Im} \int_{0}^{t} e^{2 i \theta_{s}(\kappa)} a(s) F\left(X_{s}\right) d s
$$

Let $\kappa_{\lambda}:=\kappa_{0}+\frac{\lambda}{n}, \kappa_{0}:=\sqrt{E_{0}}, \widetilde{\rho}_{t}^{(n)}(\kappa):=\rho_{n t}(\kappa)-\left\langle F g_{\kappa}\right\rangle \int_{0}^{n} a(s)^{2} d s, g_{\kappa}:=$ $(L+2 i \kappa)^{-1} F, t \in[0,1]$. We then have

Lemma 2.1 If $\alpha=1 / 2$, then

$$
\begin{aligned}
& \widetilde{\rho}_{t}^{(n)}\left(\kappa_{\lambda}\right) \xrightarrow{d} \tilde{\rho}_{t}(\lambda), \quad t \in[0,1], \text { locally uniformly } \\
& d \widetilde{\rho}_{t}^{(n)}\left(\kappa_{\lambda}\right)=\frac{\tau\left(\kappa_{0}^{2}\right)}{t} d t+\sqrt{\frac{\tau\left(\kappa_{0}^{2}\right)}{t}} d B_{t}^{\lambda}, \quad t>0
\end{aligned}
$$

where $\left\{B_{t}^{\lambda}\right\}$ is a family of Brownian motion.

2.2 Step 2 : limit of the local version

Let $\Xi^{(n)}$ be the local version of our problem :

$$
\Xi^{(n)}:=\sum_{j} \delta\left(n\left(\sqrt{E_{j}(n)}-\sqrt{E_{0}}\right), \mu_{E_{j}(n)}^{(n)}\right)
$$

It then follows that
Lemma $2.2 \Xi^{(n)} \xrightarrow{d} \Xi$, where

$$
\Xi= \begin{cases}\sum_{j \in \mathbf{Z}} \delta_{j \pi+\theta} \otimes \delta_{1_{[0,1]}(t) d t} & (\alpha>1 / 2) \\ \sum_{\lambda: \text { Sine }_{\beta}} \delta_{\lambda} \otimes \delta\left(\frac{\exp \left(2 \widetilde{\rho}_{t}(\lambda)\right) d t}{\int_{0}^{1} \exp \left(2 \widetilde{\rho}_{s}(\lambda)\right) d s}\right) & (\alpha=1 / 2) \\ \sum_{j \in \mathbf{Z}} \delta_{P_{j}} \otimes \delta_{\widetilde{P}_{j}}, & (\alpha<1 / 2)\end{cases}
$$

where $\left\{P_{j}\right\}:$ Poisson $(d \lambda / \pi),\left\{\widetilde{P}_{j}\right\}$: Poisson $\left(1_{[0,1]}(t) d t\right)$. The intensity measure of Ξ is given by

$$
\begin{aligned}
& \mathbf{E}[G(\lambda, \nu) d \Xi(\lambda, \nu)] \\
= & \frac{1}{\pi} \begin{cases}\int d \lambda \mathbf{E}\left[G\left(\lambda, 1_{[0,1]}(t) d t\right)\right] \\
\int d \lambda \mathbf{E}\left[G \left(\lambda, \frac{\exp \left(\left.2 \mathcal{Z}_{\tau\left(E_{0}\right) \log \frac{t}{U}-2 \tau\left(E_{0}\right) \log \left|\frac{t}{U}\right|} \right\rvert\,\right) d t}{\left.\int_{0}^{1} \exp \left(2 \mathcal{Z}_{\left.\tau\left(E_{0}\right) \log \frac{s}{U}-2 \tau\left(E_{0}\right) \log \left|\frac{s}{U}\right|\right) d s}\right)\right]}\right.\right. & (\alpha>1 / 2) \\
\int d \lambda \mathbf{E}\left[G\left(\lambda, \delta_{U}\right)\right] & (\alpha>1 / 2)\end{cases}
\end{aligned}
$$

where $U:=$ unif $[0,1]$.

2.3 Step 3 : averaging over the reference energy

Following [9], we introduce

$$
\begin{aligned}
g_{1}(x) & :=(1-|x|) 1(|x| \leq 1) \\
G_{L}(E) & :=\sum_{E_{j}(L) \in J} g_{1}\left(L\left(\sqrt{E_{j}(L)}-\sqrt{E_{0}}\right)\right) \cdot g_{2}\left(E_{j}(L), \mu_{E_{j}(L)}^{(L)}\right)
\end{aligned}
$$

where $g_{2} \in C_{b}(\mathbf{R} \times \mathcal{P}(0,1))$. We compute $\int \frac{d N(E)}{N(J)} \mathbf{E}\left[G_{L}(E)\right]$ by the following two ways, and then equate them by the Fubini theorem, which leads to the
conclusion.
(1) Since $\int \frac{d N(E)}{N(J)} g_{1}=1 /(L \pi)$, we have

$$
\begin{aligned}
& \mathbf{E}\left[\int \frac{d N(E)}{N(J)} G_{L}(E)\right] \\
= & \frac{1}{N(J)} \frac{1}{\pi L} \mathbf{E}\left[\sum_{E_{j}(L) \in J} g_{2}\left(E_{j}(L), \mu_{E_{j}(L)}^{(L)}\right)\right] \\
= & \mathbf{E}\left[\frac{1}{\sharp\left\{\text { eigenvalues of } H_{L} \text { on } J\right\}(1+o(1))} \cdot \frac{1}{\pi} \cdot \sum_{E_{j}(L) \in J} g_{2}\left(E_{j}(L), \mu_{E_{j}(L)}^{(L)}\right)\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int \frac{d N(E)}{N(J)} \mathbf{E}\left[G_{L}(E)\right] \\
&= \int \frac{d N(E)}{N(J)} \mathbf{E}\left[\sum_{E_{j}(L) \in J} g_{1}\left(L\left(\sqrt{E_{j}(L)}-\sqrt{E_{0}}\right)\right) \cdot g_{2}\left(E_{j}(L), \mu_{E_{j}(L)}^{(L)}\right)\right] \\
& \sim \int \frac{d N(E)}{N(J)} \mathbf{E}\left[\int g_{1}(\lambda) g_{2}(E, \mu) d \Xi^{(L)}(\lambda, \mu)\right] \\
& \rightarrow \int \frac{d N(E)}{N(J)} \mathbf{E}\left[\int g_{1}(\lambda) g_{2}(E, \mu) d \Xi(\lambda, \mu)\right] \\
&= \int \frac{d N(E)}{N(J)} \frac{1}{\pi}\left\{\int d \lambda \mathbf{E}\left[g_{2}\left(E, \frac{\exp \left(2 \mathcal{Z}_{\tau\left(E_{0}\right) \log \frac{t}{U}}-2 \tau\left(E_{0}\right) \log \left|\frac{t}{U}\right|\right) d t}{\int_{0}^{1} \exp \left(2 \mathcal{Z}_{\tau\left(E_{0}\right) \log \frac{s}{U}}-2 \tau\left(E_{0}\right) \log \left|\frac{s}{U}\right|\right) d s}\right)\right]\right. \\
&(\alpha=1 / 2) \\
& \int d \lambda \mathbf{E}\left[g_{2}\left(E, \delta_{U}\right)\right](\alpha>1 / 2)
\end{aligned}
$$

This work is partially supported by JSPS KAKENHI Grant Number .26400145(F.N.)

References

[1] Allez, R., Dumaz, L., : From sine kernel to Poisson statistics, Elec. J. Prob. 19(2014), 1-25.
[2] Killip, R., Nakano, F., : Eigenfunction statistics in the localized Anderson model, Annales Henri Poincaré. 8, no. 1 (2007), 27-36.
[3] Kotani, S., Nakano, F., : Level statistics for the one-dimensional Schrödinger operator with random decaying potentials, Interdisciplinary Mathematical Sciences, Vol. 17(2014), 343-373.
[4] Kotani, S. Ushiroya, N. : One-dimensional Schrödinger operators with random decaying potentials, Commun. Math. Phys. 115(1988), 247-266.
[5] Nakano, F., : Distribution of localization centers in some discrete random systems, Rev. Math. Phys. 19(2007), 941-965.
[6] Nakano, F., : Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble, J. Stat. Phys. 156(2014), 66-93.
[7] Nakano, F., : Limit of $\operatorname{Sine}_{\beta}$ and Sch $_{\tau}$ processes, RIMS Kokyuroku, 1970(2015), $83-89$.
[8] Kotani, S., Nakano, F., : Poisson statistics for the one-dimensional Schrödinger operator with random decaying potentials, Elec. J. of Prob. 22(2017), no.69, 1-31.
[9] Rifkind, B., Virág, B, : Eigenvectors of the 1-dimensional critical random Schrödinger operator, Geom. Funct. Anal. 28 (2018), 1394-1419.
[10] Valkó, B., Virág, V. : Continuum limits of random matrices and the Brownian carousel, Invent. Math. 177(2009), 463-508.

[^0]: *Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan. e-mail : fumihiko@math.gakushuin.ac.jp

