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A ring R is said to be (right} primtive if it contains a faithful irreducible 
(right) R-module. In order to show the primitivity of a group ring KG, Alexan
der and Nishinaka develop the following useful Property(*) for the group G [l]. 

(*) For each subset M of G consisting of a finite number of elements 
not equal to 1, and for any positive integer m ?: 2, there exist 
distinct a, b, c E G so that if (x11g1x1)(x21g2x2) · · · (x:;;}gmxm) = 
1, where gi E M and Xi E { a, b, c} for all i = 1, ... , m, then 
Xi = Xi+l for some i. 

Equipped with Property (*), Alexander and Nishinaka obtain the following: 

Theorem 1 ([1, Theorem 1.1]). Let G be a group which has a non-Abelian free 
subgroup whose cardinality is the same as that of G, and suppose that G satisfies 
Property (*). Then, if R is a domain with IRI ~ IGI, the group ring RG of G 
over R is primitive. In particular, the group algebra KG is primitive for any 
field K. 

As seen in [1], Theorem 1 immediately implies the primitivity of group rings 
for a large class of groups, generalizing many classical results and obtaining 
several new ones. The present result, published in [9], shows that Theorem 
1 also applies to the non-elementary torsion-free hyperbolic groups. Thus the 
class of groups satisfying Property (*) is indeed quite large and encompasses 
"almost all" groups in a particular statistical sense [7]. 

Let G be a group with finite generating set X. Recall that the Cayley graph 
fx(G) of G with respect to X is an X-digraph with vertex set G and an x
labelled edge directed from g to gx for all g E G and x EX. We may promote 
fx(G) to a geodesic metric space by assigning each edge a length of one. 

When there exists o ?: 0 such that each side of a geodesic triangle in r x ( G) is 
contained in the 15-neighbor hood of the remaining two sides, we say that r x ( G) 
has o-thin triangles. This thin triangle property is independent of the choice of 

* A detailed version of this paper appears in Journal of Algebra 493 (2018) [9]. 
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finite generating set, though 15 may vary. When rx(G) has 15-thin triangles for 
some finite generating set X and 15 2 0, we say G is hyperbolic. A hyperbolic 
group is non-elementary if it is not virtually cyclic. 

Hyperbolic groups enjoy a close relationship between their algebraic and 
geometric properties; see, for instance, [2, 4, 5]. For our purposes, we require the 
so called "big powers property" of torsion-free hyperbolic groups. The version 
stated here follows immediately from a more general version for certain relatively 
hyperbolic groups given in [6]. 

Theorem 2 (The big powers property [6]). Let G be a torsion-free hyperbolic 
group. Let u E G be nontrivial and not a proper power. Let g1 , ... , gk be 
elements of G which do not commute with u. Then there exists N > 0 such that 
if lni I 2 N for i = 0, ... , k then 

The big powers property allows one to programmatically generate large sets 
of nontrivial elements of G, and has seen useful application towards residual 
properties, logic, and algebraic geometry [3, 8, 6]. 

Proposition 3. If G is a non-elementary torsion-free hyperbolic group, then G 
satisfies Property (* ). 

Proof. Let M be a finite subset of G not containing the identity. A classical 
result due to Gromov asserts that the subgroup generated by sufficiently high 
powers of elements of M must be free. Since nontrivial elements of a non
elementary torsion free hyperbolic group have maximal infinite cyclic centraliz
ers, one can therefore find an element u E G which generates its own centralizer 
and commutes with no g EM. 

Let m 2 2 be an integer and consider a finite sequence g1, ... , gm of elements 
from M. Since u commutes with none of the gi and generates its own centralizer, 
the big powers property gives N (g1, ... , gm) > 0 such that 

whenever lni I 2 N for all i = 0, ... , m. 
Since M is a finite set, there are finitely many m-tuples (g1, ... ,gm) of 

elements from M. Therefore, let N > max { N (g1, ... , gm) I g1, ... , gm E M}. 
We now define a = uN, b = u2N, and c = u3N. Since G is torsion-free, these 

elements are distinct. Consider a product 

h no - - l n,,, - n, - - l d {0 ±N ±2N} £ · -w ere u - x 1 , u - Xm, u - XiXi+l an ni E , , or i -

1, ... , m - 1. Note that by choice of x1 and Xm, we have no =/- 0 and nm =/- 0. 
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By the big powers property and choice of N, if ni =/- 0 for all i = 0, ... , m, 
then w =/- l. Therefore, if w = 1, then some ni = 0. Since we cannot have 
no= 0 or nm+l = 0, we have ni = 0 for some i E {1, ... ,m -1}, in which case 
we must have 1 = un' = Xix;_;1, and so Xi = Xi+l· □ 

We immediately obtain the following main result as a corollary to Theorem 
1. 

Theorem 4. If G is a non-elementary torsion-free hyperbolic group, then for 
any countable domain R, the group ring RG of G over R is primitive. In 
particular, the group ring KG is primitive for any field K. 
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