Weierstrass semigroups on double covers of plane curves of degree 7^{1}

神奈川工科大学•基礎•教養教育センター 米田 二良 Jiryo Komeda
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

Abstract

We study Weierstrass semigroups of ramification points on double covers of plane curves of degree 7．We treat the cases where the Weierstrass semigroups are generated by at most 5 elements and the ramification point is on a total flex

1 Introduction

Let \mathbb{N}_{0} be the additive monoid of non－negative integers．A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if the complement $\mathbb{N}_{0} \backslash H$ is finite．The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H ，denoted by $g(H)$ ．In this paper H always stands for a numerical semi－ group．A curve means a projective non－singular irreducible algebraic curve over an alge－ braically closed field k of characteritic 0 ．For a pointed curve (C, P) we set

$$
H(P)=\left\{\alpha \in \mathbb{N}_{0} \mid \exists f \in k(C) \text { such that }(f)_{\infty}=\alpha P\right\}
$$

where $k(C)$ is the field of rational functions on $C . H(P)$ is a numerical semigroup of genus $g(C)$ where $g(C)$ is the genus of C ．For positive integers a_{1}, \ldots, a_{s} we denote by $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ the monoid generated by a_{1}, \ldots, a_{s} ．Let C be a plane curve of degree 7 and P be a total inflection point of C ，i．e．，$T_{P} . C=7 P$ where T_{P} is the tangent line at P on C ． Then we have $H(P)=\langle 6,7\rangle$ ．We set

$$
d_{2}(H)=\left\{h^{\prime} \in \mathbb{N}_{0} \mid 2 h^{\prime} \in H\right\},
$$

which is a numerical semigroup．Let $\pi: \tilde{C} \longrightarrow C$ be a double covering of curves with a ramification point \tilde{P} ．Then we have $d_{2}(H(\tilde{P}))=H(\pi(\tilde{P}))$ ．For example，If $C=\mathbb{P}^{1}$ ，then we have $H(\tilde{P})=\langle 2,2 g+1\rangle$ and $d_{2}(H(\tilde{P}))=\mathbb{N}_{0}$ ，where $g=g(\tilde{C})$ ．

We pose the following problem：
DCPHurwitz＇Problem．Let C be a plane curve of degree d and $\pi: \tilde{C} \longrightarrow C$ be a double covering with a ramification point \tilde{P} ．Then determine $H(\tilde{P})$ ．

[^0]If $d=1,2$, then C is isomorphic to \mathbb{P}^{1}. We have $H(\tilde{P})=\langle 2,2 g+1\rangle$ and $d_{2}(H(\tilde{P}))=\mathbb{N}_{0}$, where $g=g(\tilde{C})$. If $d=3$. then C is isomorphic to an elliptic curve. In this case, we have $H(\tilde{P})=\langle 4,6,4 g-3\rangle$ or $\langle 4,6,4 g-1,4 g+1\rangle$ and $d_{2}(H(\tilde{P}))=\langle 2,3\rangle$, where $g=g(\tilde{C})$ (for example, see [6]). For $d \geqq 4$ we introduce our previous results. If $d=4$, then DCPHurwitz' Problem is solved in [5], [2], [3] and [4]. In the case $d=5$, if $g(\tilde{C}) \geqq 15$ and $\operatorname{ord}_{\pi(\tilde{P})}\left(T_{\pi(\tilde{P})} \cdot C\right)=5$ or 4, then DCPHurwitz' Problem is solved in [7]. In the case $d=6$, if $g(\tilde{C}) \geqq 30$ and $\operatorname{ord}_{\pi(\tilde{P})}\left(T_{\pi(\tilde{P})} \cdot C\right)=6$ or 5, then DCPHurwitz' Problem is solved in [8] and [9].

We will investigate the case $d=7$ where $g(\tilde{C}) \geqq 45$ and $\operatorname{ord}_{\pi(\tilde{P})}\left(T_{\pi(\tilde{P})} \cdot C\right)=7$. We get the two results. The first theorem is the following:

Theorem 1.1 Let H be a numerical semigroup of genus $\geqq 45$ and $d_{2}(H)=\langle 6,7\rangle$. Assume that H is generated by at most 4 elements. If $H \neq 2\langle 6,7\rangle+\langle n, n+8\rangle$, then H is attained by a ramification point on a double covers of a plane curve of degree 7. In this case we say that H is DCP7.

To state the second theorem we prepare some notation. Let H be a numerical semigroup with $d_{2}(H)=\langle 6,7\rangle$ and $g(H) \geqq 45$. We set

$$
n=\min \{h \in H \mid h \text { is odd }\} .
$$

We denote $30+\frac{n-1}{2}-g(H)$ by $r(H)$, which is a non-negative inetger less than 16 (see [11]).

Theorem 1.2 Let H be a numerical semigroup with $d_{2}(H)=\langle 6,7\rangle$ and $g(H) \geqq 45$. Assume that H is generated by 5 elements with $r(H) \leqq 6$. Then H is DCP7.

2 The proof of Theorem 1.1

There are our previous results as follows:
Proposition 2.1 ([11]) Let $H=2\langle 6,7\rangle+n \mathbb{N}_{0}$ with an odd integer $n \geqq 35$. Then H is DCP7.

To state the next proposition we need some notation. Let m be the minimum positive integer in H. We set

$$
s_{i}=\min \{h \in H \mid h \equiv i \bmod m\}
$$

for $i=1, \ldots, m-1$. The set $\left\{m, s_{1}, \ldots, s_{m-1}\right\}$ is denoted by $S(H)$, which is called the standard basis for H.

Proposition 2.2 ([7]) Let n be an odd number with $n \geqq 35$. We set $H_{7}=\langle 6,7\rangle$. Let H be a numerical semigroup which is one of the following:
(1) $2_{7}+\langle n, n+2 t\rangle$ with $t=35-l(7-1)$ where l is a positive integer with $l \leqq 5$ and $n \geqq 30+1+2 l$.
(2) $2 H_{7}+\langle n, n+2 t\rangle$ with $t=s_{7-m}-(7-1)$ where m is an integer with $3 \leqq m \leqq 6$ and $n \geqq 30-1+2 m$.
(3) $2 H_{7}+\langle n, n+2 t\rangle$ with $t=s_{7-m}-2(7-1)$ where m is an integer with $3 \leqq m \leqq 5$ and $n \geqq 30-3+4 m$.

Then H is DCP7.
Remark 2.3 By Propositions 2.1 and 2.2 the remaining numerical semigroups H with $d_{2}(H)=\langle 6,7\rangle$ generated by 4 elements, which we do not know whether H is DCP7 or not, are the following:
(1) $2\langle 6,7\rangle+\langle n, n+20\rangle$
(2) $2\langle 6,7\rangle+\langle n, n+8\rangle$
(3) $2\langle 6,7\rangle+\langle n, n+6\rangle$

First, we will prove that $2\langle 6,7\rangle+\langle n, n+20\rangle$ is DCP7.
Lemma 2.4 Let (C, P) be a pointed non-singular plane curve of degree 7 and H be a numerical semigroup with $d_{2}(H)=H(P)$ and $g(H) \geqq 45$. Set $n=\min \{h \in H \mid h$ is odd $\}$. We note that $g(H)=30+\frac{n-1}{2}-r$ with some non-negative integer r. Let Q_{1}, \ldots, Q_{r} be points of C different from P with $h^{0}\left(Q_{1}+\cdots+Q_{r}\right)=1$. Moreover, assume that H has an expression

$$
H=2 d_{2}(H)+\left\langle n, n+2 l_{1}, \ldots, n+2 l_{s}\right\rangle
$$

with positive integers l_{1}, \ldots, l_{s} such that

$$
h^{0}\left(K-\left(l_{i}-1\right) P-Q_{1}-\cdots-Q_{r}\right)=h^{0}\left(K-l_{i} P-Q_{1}-\cdots-Q_{r}\right)
$$

where K is a canonical divisor on C. Then there is a double cover $\pi: \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} over P satisfying $H(\tilde{P})=H$.

See [10] for the details of the proof of Lemma 2.4.
Lemma 2.5 (Cayley-Bacharach) Let C be a non-singular plane curve. Let X_{1} and X_{2} be two plane curves of degree d and e respectively, meeting in a collection Γ of de points of C with multiplicity. Let Y be a curve of degree $d+e-3$ such that the intersection Y.C contains all but one point of Γ. Then Y.C contains that remaining point also.

For example, see p. 671 in [1].
Lemma 2.6 The plane curve of degree 7 defined by the equation

$$
\left(y z^{2}-x^{3}\right)\left(\frac{1}{2} z^{4}+a x^{4}\right)+\left(y z^{2}+x^{3}-2 y^{3}\right)\left(\frac{1}{2} z^{4}+b y^{4}\right)=0
$$

is nonsingular for general a and b.
For the proof of Lemma 2.6 see [10].
Proposition 2.7 The numerical semigroup $H=2\langle 6,7\rangle+\langle n, n+20\rangle$ is DCP7.

Proof. Let C be the non-singular plane curve of degree 7 in Lemma 2.6. We set $P=(0: 0: 1)$. We take six points

$$
\begin{gathered}
Q_{1}=(1: 1: 1), Q_{2}=(1: 1: \omega), Q_{3}=\left(1: 1: \omega^{2}\right), \\
Q_{4}=(1:-1:-1), Q_{5}=(1:-1:-\omega) \text { and } Q_{6}=\left(1:-1:-\omega^{2}\right)
\end{gathered}
$$

where ω is a primitive cubic root of unity. Using Lemma 2.5 we can apply Lemma 2.4. Hence, H is DCP7.

Proposition 2.8 The numerical semigroup $H=2\langle 6,7\rangle+\langle n, n+6\rangle$ is DCP7.
In this proof we use the plane curve of degree 7 defined by the equation

$$
\left(y z^{2}-x^{3}\right)\left(\frac{1}{2} z^{4}+a x^{4}\right)+\left(y z^{3}+x^{3} z-2 y^{4}\right)\left(\frac{1}{2} z^{3}+b y^{3}\right)=0
$$

for general a and b. See [10] for the details of the proof.
By Remark 2.3, Propositions 2.7 and 2.8 we get Theorem 1.1.

3 The proof of Theorem 1.2

Remark 3.1 ([7]) Any numerical semigroup H with $d_{2}(H)=\langle 6,7\rangle$ and $r(H) \leqq 6$ which is generated by 5 elements is DCP7 except the following four semigroups:

$$
\begin{gathered}
2\langle 6,7\rangle+\langle n, n+22, n+32\rangle, 2\langle 6,7\rangle+\langle n, n+22, n+30\rangle, \\
2\langle 6,7\rangle+\langle n, n+16, n+32\rangle \text { and } 2\langle 6,7\rangle+\langle n, n+16, n+34\rangle .
\end{gathered}
$$

Proposition 3.2 $H=2\langle 6,7\rangle+\langle n, n+16, n+32\rangle$ is $D C P 7$.
Proof. In this case $r(H)=6$. Let (C, P) be a pointed plane curve of degree 7 with $H(P)=\langle 6,7\rangle$. Let L_{P} and L_{P}^{\prime} be distinct lines through P different from T_{P}. Let us take Q_{1}, \ldots, Q_{4} such that the four points lie on the line L_{P}. Let us take Q_{5} and Q_{6} such that the two points lie on the line L_{P}^{\prime}. Let C_{4} be a curve of degree 4 with $C_{4} C \geqq 7 P+E_{6}$ where we set $E_{6}=Q_{1}+\cdots+Q_{6}$. Then we have $C_{4}=T_{P} L_{P} C_{2}$ where C_{2} is a conic containing Q_{5} and Q_{6}. Hence we get

$$
h^{0}\left(K-7 P-E_{6}\right)=h^{0}\left(K-8 P-E_{6}\right) .
$$

Moreover, let C_{4}^{\prime} be a curve of degree 4 with $C_{4}^{\prime} \cdot C \geqq 15 P+E_{6}$. Then we should have $C_{4}^{\prime}=T_{P}^{2} L_{P} L_{P}^{\prime}$, which implies that

$$
h^{0}\left(K-15 P-E_{6}\right)=h^{0}\left(K-16 P-E_{6}\right)=1 .
$$

It follows from Proposition 2.4 that H is DCP7.

Proposition 3.3 Let H be one of the following numerical semigrouips:

$$
2\langle 6,7\rangle+\langle n, n+22, n+32\rangle, 2\langle 6,7\rangle+\langle n, n+22, n+30\rangle \text { and } 2\langle 6,7\rangle+\langle n, n+16, n+34\rangle .
$$

Then it is DCP7.
See [10] for the proof of Proposition 3.3. By Remark 3.1, Propositions 3.2 and 3.3 we obtain Theorem 1.2.

References

[1] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley \& Sons, Inc.,1978
[2] T. Harui and J. Komeda, Numerical semigroups of genus eight and double coverings of curves of genus three, Semigroup Forum 89 (2014), 571-581.
[3] T. Harui and J. Komeda, Numerical semigroups of genus seven and double coverings of curves of genus three, Semigroup Forum 90 (2015), 491-502.
[4] T. Harui and J. Komeda, Numerical semigroups of genus six and double coverings of curves of genus three, Semigroup Forum 91 (2015), 601-610.
[5] J. Komeda, On Weierstrass semigroups of double coverings of genus three curves, Semigroup Forum 83 (2011), 479-488.
[6] J. Komeda, A numerical semigroup from which the semigroup gained by dividing by two is either \mathbb{N}_{0} or a 2-semigroup or $\langle 3,4,5\rangle$, Research Reports of Kanagawa Institute of Technology B-33 (2009), 37-42 .
[7] S.J. Kim and J. Komeda, Weierstrass semigroups on double covers of plane curves of degree 5, Kodai Math. J. 38 (2015), 270-288.
[8] S.J. Kim and J. Komeda, Weierstrass semigroups on double covers of plane curves of degree six with total flexes, Bulletin of the Korean Mathematical Society 55 (2018), 611-624.
[9] S.J. Kim and J. Komeda, Double covers of plane curves of degree six with almost total flexes, Bulletin of the Korean Mathematical Society 56 (2019), 1159-1186.
[10] S.J. Kim and J. Komeda, Weierstrass semigroups on double covers of plane curves of degree 7, Research Reports of Kanagawa Institute of Technology B-44 (2020), 29-36.
[11] J. Komeda and A. Ohbuchi, On double coverings of a pointed non-singular curve with any Weierstrass semigroup, Tsukuba J. Math. Soc. 31 (2007) 205-215.

[^0]: ${ }^{1}$ This paper is an extended abstract and the details were published（see［10］） This work is a collaboration with Seon Jeong Kim This work was supported by JSPS KAKENHI Grant Number18K03228．

