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Abstract 

We study Weierstrass semigroups of ramification points on double covers of plane curves 
of degree 7. We treat the cases where the Weierstrass semigroups are generated by at 
most 5 elements and the ramification point is on a total flex 

1 Introduction 

Let N0 be the additive monoid of non-negative integers. A submonoid H of N0 is called a 
numerical semigroup if the complement N0 \H is finite. The cardinality of N0 \H is called 
the genus of H, denoted by g(H). In this paper H always stands for a numerical semi­
group. A curve means a projective non-singular irreducible algebraic curve over an alge­
braically closed field k of characteritic 0. For a pointed curve (C, P) we set 

H(P) = {a E N0 I 3/ E k(C) such that (f)oo = aP}, 

where k(C) is the field of rational functions on C. H(P) is a numerical semigroup of 
genus g(C) where g(C) is the genus of C. For positive integers a 1, ... , as we denote by 
(a1, ... , as) the monoid generated by a1, ... , as. Let C be a plane curve of degree 7 and 
P be a total inflection point of C, i.e.,Tp.C = 1P where Tp is the tangent line at Pon C. 
Then we have H(P) = (6, 7). We set 

d2(H) = {h' E N0 I 2h' EH}, 

which is a numerical semigroup. Let ,r : C - C be a double covering of curves with a 
ramification point P. Then we have d2(H(P)) = H(n(P)). For example, If C = lP'1, then we 
have H(P) = (2, 2g + 1) and d2(H(P)) = N0 , where g = g(C). 

We pose the following problem: 

DCPHurwitz' Problem. Let C be a plane curve of degreed and ,r : C - C be a double 
covering with a ramification point P. Then determine H(P). 

1 This paper is an extended abstract and the details were published (see [1 OJ) 
This work is a collaboration with Sean Jeong Kim 
This work was supported by JSPS KAKENHI Grant Number18K03228. 



67

If d = 1, 2, then C is isomorphic to lP'1. We have H(F) = (2, 2g + 1) and d2(H(F)) = N0 , 

where g = g(C). If d = 3. then C is isomorphic to an elliptic curve. In this case, we 
have H(F) = (4, 6, 4g - 3) or (4, 6, 4g - 1, 4g + 1) and d2(H(F)) = (2, 3), where g = g(C) 
(for example, see [6]). For d ~ 4 we introduce our previous results. If d = 4, then 
DCPHurwitz' Problem is solved in [5], [2], [3] and [4]. In the cased= 5, if g(C) ~ 15 and 
ordrr(P)(Trr(P)·C) = 5 or 4, then DCPHurwitz' Problem is solved in [7]. In the case d = 6, if 
g(C) ~ 30 and ord,r<i5i(Trr(Pl·C) = 6 or 5, then DCPHurwitz' Problem is solved in [8] and [9]. 

We will investigate the cased= 7 where g(C) ~ 45 and ordrr(Pl(Trr(Pl·C) = 7. We get 
the two results. The first theorem is the following: 

Theorem 1.1 Let H be a numerical semigroup of genus~ 45 and d2(H) = (6, 7). Assume 
that His generated by at most 4 elements. If H * 2(6, 7) + (n, n + 8), then His attained 
by a ramification point on a double covers of a plane curve of degree 7. In this case we 
say that H is DCP7. 

To state the second theorem we prepare some notation. Let H be a numerical semigroup 
with d2(H) = (6, 7) and g(H) ~ 45. We set 

n = min{h E H I h is odd}. 

We denote 30 + n; 1 - g(H) by r(H), which is a non-negative inetger less than 16 (see 

[11 ]). 

Theorem 1.2 Let H be a numerical semigroup with d2(H) = (6, 7) and g(H) ~ 45. As­
sume that H is generated by 5 elements with r(H) ;;; 6. Then H is DCP7. 

2 The proof of Theorem 1. 1 

There are our previous results as follows: 

Proposition 2.1 ([11]) Let H = 2(6, 7) + nN0 with an odd integer n ~ 35. Then H is 
DCP7. 

To state the next proposition we need some notation. Let m be the minimum positive 
integer in H. We set 

si = min{h E H I h = i mod m} 

for i = 1, ... , m - 1. The set {m, s1, ..• , sm-d is denoted by S (H), which is called the 
standard basis for H. 

Proposition 2.2 ([7]) Let n be an odd number with n ~ 35. We set H7 = (6, 7). Let H be 
a numerical semigroup which is one of the following: 

(1) 27 + (n, n + 2t) with t = 35 - 1(7 - 1) where l is a positive integer with l ;;; 5 and 
n ~ 30 + 1 + 21. 
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(2) 2H7 + (n,n + 2t) with t = s7_m - (7 - 1) where m is an integer with 3 ~ m ~ 6 and 
n ~ 30 - 1 + 2m. 

(3) 2H7 + (n, n + 2t) with t = s7_m - 2(7 - 1) where m is an integer with 3 ~ m ~ 5 and 
n ~ 30-3 +4m. 

Then H is DCP7. 

Remark 2.3 By Propositions 2. 1 and 2.2 the remaining numerical semigroups H with 
d2(H) = (6, 7) generated by 4 elements, which we do not know whether His DCP7 or not, 
are the following: 
(1) 2(6, 7) + (n, n + 20) (2) 2(6, 7) + (n, n + 8) (3) 2(6, 7) + (n, n + 6) 

First, we will prove that 2(6, 7) + (n, n + 20) is DCP7. 

Lemma 2.4 Let (C, P) be a pointed non-singular plane curve of degree 7 and H be a 
numerical semigroup with d2(H) = H(P) and g(H) ~ 45. Set n = min{h E H I his odd}. 

We note that g(H) = 30 + n; 1 - r with some non-negative integer r. Let Q1, ... , Q, be 

points of C different from P with h0(Q1 + • • • + Q,) = 1. Moreover, assume that H has an 
expression 

H = 2d2(H) + (n,n + 211, ... ,n + 2ls) 

with positive integers Zi, ... , ls such that 

where K is a canonical divisor on C. Then there is a double cover 1r : C - C with a 
ramification point P over P satisfying H(P) = H. 

See [1 O] for the details of the proof of Lemma 2.4 . 

Lemma 2.5 (Cayley-Bacharach) Let C be a non-singular plane curve. Let X1 and X2 be 
two plane curves of degree d and e respectively, meeting in a collection r of de points 
of C with multiplicity. Let Y be a curve of degree d + e - 3 such that the intersection Y.C 
contains all but one point off. Then Y.C contains that remaining point also. 

For example, see p. 671 in [1 ]. 

Lemma 2.6 The plane curve of degree 7 defined by the equation 

(yz2-x3)Gz4 + ax4 ) + (yz2 + x3 -2y3)Gz4 + by4) = 0 

is nonsingular for general a and b. 

For the proof of Lemma 2.6 see [1 O]. 

Proposition 2.7 The numerical semigroup H = 2(6, 7) + (n, n + 20) is DCP7. 
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Proof. Let C be the non-singular plane curve of degree 7 in Lemma 2.6. We set 
P = (0: 0: 1). We take six points 

Q1 = (1 : 1 : 1), Q2 = (1 : 1 : w), Q3 = (1 : 1 : w2), 

Q4 = ( 1 : -1 : -1), Qs = ( 1 : -1 : -w) and Q6 = ( 1 : -1 : -w2) 

where w is a primitive cubic root of unity. Using Lemma 2.5 we can apply Lemma 2.4. 
Hence, His DCP7. □ 

Proposition 2.8 The numerical semigroup H = 2(6, 7) + (n, n + 6) is DCP7. 

In this proof we use the plane curve of degree 7 defined by the equation 

(yz2 - x3 ) Gz4 + ax4 ) + (yz3 + x3z - 2y4) Gz3 + by3) = 0 

for general a and b. See [1 0] for the details of the proof. 
By Remark 2.3, Propositions 2.7 and 2.8 we get Theorem 1.1. 

3 The proof of Theorem 1.2 

Remark 3.1 ( [71) Any numerical semigroup H with di(H) = (6, 7) and r(H) ~ 6 which is 
generated by 5 elements is DCP7 except the following four semigroups: 

2(6, 7) + (n, n + 22, n + 32), 2(6, 7) + (n, n + 22, n + 30), 

2(6, 7) + (n, n + 16, n + 32) and 2(6, 7) + (n, n + 16, n + 34). 

Proposition 3.2 H = 2(6, 7) + (n, n + 16, n + 32) is DCP7. 

Proof. In this case r(H) = 6. Let (C, P) be a pointed plane curve of degree 7 with 
H(P) = (6, 7). Let Lp and L~ be distinct lines through P different from Tp. Let us take 
Q1, ... , Q4 such that the four points lie on the line Lp. Let us take Q5 and Q6 such that the 
two points lie on the line L~ . Let C4 be a curve of degree 4 with C4.C ~ 7 P + E6 where 
we set E6 = Q1 + · · · + Q6 • Then we have C4 = TpLpC2 where C2 is a conic containing Q5 

and Q6 • Hence we get 

Moreover, let C~ be a curve of degree 4 with C~.c ~ 15P + E6. Then we should have 
C~ = T'j,LpL~, which implies that 

It follows from Proposition 2.4 that H is DCP7. □ 
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Proposition 3.3 Let H be one of the following numerical semigrouips: 

2(6, 7) + (n, n + 22, n + 32), 2(6, 7) + (n, n + 22, n + 30) and 2(6, 7) + (n, n + 16, n + 34). 

Then it is DCP7. 

See [1 OJ for the proof of Proposition 3.3. By Remark 3.1, Propositions 3.2 and 3.3 we 
obtain Theorem 1.2. 
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