Rewriting Systems with Low Derivational Complexity *

Yuji Kobayashi

Laboratory of Mathematics and Games https//:math-game-labo.com

1 Rewriting systems and complexity

Let A be an alphabet, a finite set of letters and let $A^* = \{a_1 a_2 \dots a_n \mid n \ge 0, a_i \in A\}$ be the free monoid generated by A. The empty word in A^* is denoted by 1. We denote by |x| the length n of a word $x = a_1 a_2 \dots a_n \in A^*$.

A rewriting system R on A is a subset of $A^* \times A^*$. An element r = (u, v)of R is called a rule and is written as $u \to v$. R is finite if it is a finite set. For two words x and y in A^* , if $x = x_1 u x_2$, $y = x_1 v x_2$ with $x_1, x_2 \in A^*$, we write as $x \to_r y$. If there are words $x_1, \ldots, x_{k-1} \in A^*$ and rules $r_1, \ldots, r_k \in R$ such that

$$x = x_0 \rightarrow_{r_1} x_1 \rightarrow_{r_2} \cdots \rightarrow_{r_{k-1}} x_{k-1} \rightarrow_{r_k} x_k = y, \tag{1}$$

we write as $x \to_R^k y$ or simply $x \to^k y$. We call (1) a derivation sequence in R of length k and say that y is derived from x for k steps. If there is no sequence of length larger than k starting with x, (1) is called *maximal*.

For $x \in A^*$ the derivational length $\delta_R(x)$ of x is the length of a maximal sequence starting with x, that is,

$$\delta_R(x) = \max\{k \mid \exists y \in A^*, \ x \to_R^k y\}.$$

The (*derivational*) complexity d_R of R is defined by the function that relates the largest length of derivation sequences in R to the length of starting words;

$$d_R(n) = \max\{\delta_R(x) \mid x \in A^*, |x| = n\}$$

(see [1] and [2]). If $\delta_R(x) < \infty$ for all $x \in A^*$, R is called *terminating*. If R is terminating, d_R is a function from \mathbb{N} to \mathbb{N} .

For two functions $f, g: \mathbb{N} \to \mathbb{N}$, we write f = O(g) (resp. $f = \Omega(g)$), if there is a constant C > 0 such that $f(n) \leq Cg(n)$ (resp. $f(n) \geq Cg(n)$) for sufficiently large n. We say f and g are *equivalent*, and write as $f \sim g$ or $f = \Theta(g)$ if f = O(g) and $f = \Omega(g)$.

^{*}this is a preliminary version and a full version will appear elsewhere

Example 1.1. (1) The system $R = \{a \to 1\}$ on $\{a\}$ has linear complexity, in fact, $\delta_R(a^n) = n$ and $d_R(n) = n$.

(2) Any nonempty system R has at least linear complexity, that is, $d_R(n) = \Omega(n)$.

(3) The system $R = \{ab \to ba\}$ on $\{a, b\}$ has quadratic complexity. In fact, $\delta_R(a^n b^n) = n^2$ and $d_R(n) = \frac{1}{4}n^2 = \Theta(n^2)$.

(4) The system $R = \{ab \rightarrow b^2a\}$ on $\{a, b\}$ has exponential complexity. In fact, $\delta_R(a^n b^n) = n(2^n - 1)$ and $\Omega(2^n) = d_R(n) = O(3^n)$.

Kobayashi [2] proved that for any real number $\alpha \geq 2$ there is a finite rewriting system with complexity equivalent to n^{α} , if computational complexity of α is not very high (bounded by C^{2^n} for some C > 1), and posed the following problem.

Question 1.2. For a real number α with $1 < \alpha < 2$, is there a finite rewriting system with complexity equivalent to n^{α} ?

Recently, Talambutsa [3] has given a positive answer for any rational α with $1 < \alpha < 2$. That is, for any rational number $\alpha \ge 1$ there is a finite rewriting system with complexity $\Theta(n^{\alpha})$.

To his end he constructed a supplementary system which is length-preserving and has complexity $\Theta(n \log n)$. In the next section we give a little different system with this complexity whose mechanism will appear in the system with complexity $\Theta(n \log \log n)$ given in the last section.

2 System with complexity $n \log n$

Consider an alphabet

$$A_1 = \{a, \bar{a}, h, p, v, w\}$$

and a system

$$R_0 = \{a^2 h \to h\bar{a}, wh \to wp, p\bar{a} \to ap\}$$

over A_1 . Let $x = wa^n hv$ with even number $n \ge 0$, then we have a derivation sequence

$$x = wa^n hv \to wa^{n-2}h\bar{a}v \to^{\frac{n}{2}-1} wh\bar{a}^{\frac{n}{2}}v \to wp\bar{a}^{\frac{n}{2}}v \to^{\frac{n}{2}} wa^{\frac{n}{2}}pv$$

in R_0 . This is a maximal sequence starting with x, in which h travels for n/2 steps from right to left, and at the left end it changes to p and returns to the original position (the pair (h, p) shuttles once between v and w). Thus,

$$\delta_{R_0}(x) = n + 1.$$

Adding a new rule $r_0 = (apv, ahv)$ to R_0 , set

$$R_1 = R_0 \cup \{apv \to ahv\}.$$

Suppose $n = 2^i$ with $i \ge 1$ and let $x = wa^n hv$, then we have a maximal derivation sequence

$$x \to_{R_0}^{n+1} wa^{\frac{n}{2}} pv \to_{r_0} wa^{\frac{n}{2}} hv \to_{R_0}^{\frac{n}{2}+1} wa^{\frac{n}{4}} pv \to_{r_0} wa^{\frac{n}{4}} hv \to_{R_0} \dots \to_{r_0} wahv$$

$$\delta_{R_1}(x) = 2^i + 2^{i-1} + \dots + 2 + 2i = 2^{i+1} + 2i - 2 = \Theta(n).$$
(2)

Next, let $A_2 = \{b, \overline{b}, f, q, v, w\}$, and consider a system

$$R_2 = \{ fb \to \overline{b}f, \ fw \to qw, \ \overline{b}q \to qb \}.$$

For a word $x = vfb^n w \ (n \ge 1)$ we have a maximal sequence

$$x \to v\bar{b}fb^{n-1}w \to^{n-1} v\bar{b}^n fw \to v\bar{b}^n qw \to^n vqb^n w$$

in R_2 . In the sequence the pair (f, q) shuttles once between w and v, and we have

$$\delta_{R_2}(x) = 2n + 1. \tag{3}$$

Now let

$$A_3 = A_1 \cup A_2 = \{a, \bar{a}, b, b, h, p, f, q, v, w\},\$$

and define a system R_3 by adding a rule $r_1 = (apvq, ahvf)$ to the union of R_0 and R_1 , that is,

$$\begin{aligned} R_3 &= R_0 \cup R_2 \cup \{r_1\} \\ &= \{a^2h \to h\bar{a}, wh \to wp, p\bar{a} \to ap, fb \to \bar{b}f, fw \to qw, \bar{b}q \to qb, apvq \to ahvf\} \end{aligned}$$

Let $n = 2^i \ (i \ge 1)$ and $x = wa^n hv f b^n w \in A_2^*$. We have a maximal sequence

$$x \rightarrow_{R_0}^{n+1} wa^{\frac{n}{2}} pvfb^n w \rightarrow_{R_2}^{2n+1} wa^{\frac{n}{2}} pvqb^n w \rightarrow_{r_1} wa^{\frac{n}{2}} hvfb^n w \rightarrow_{R_0}^{\frac{n}{2}+1} wa^{\frac{n}{4}} pvfb^n w \rightarrow_{R_2}^{2n+1} wa^{\frac{n}{4}} pvqb^n w \rightarrow_{r_1} wa^{\frac{n}{4}} hvfb^n w \rightarrow_{R_0} \dots \rightarrow_{r_1} wahvfb^n w \rightarrow_{R_2}^{2n+1} wahvqb^n w.$$

$$(4)$$

in R_3 . In (4) the movements in the left side and in the right of v synchronize, one shuttle of (h, p) in the left corresponds to one shuttle of (f, q) in the right. The number of the shuttlings of (h, p) is $i = \log_2 n$ and the number of derivation steps in them is O(n) by (2) above. The number of applications of the rule r_1 is i, and the number of shuttlings of (f, q) in the right side is also i. Hence, the number of steps in the shuttling s of (f, g) is $(2n + 1) \log_2 n$ by (3). The length of the sequence (4) is the sum of these numbers of steps and is dominated by the last number, and hence we see $\delta_{R_3}(x) = \Theta(n \log n)$. Because (4) gives the maximum length relative to the length of the starting word among all sequences in R_3 (the details are omitted), we see

$$d_{R_3}(n) = \Theta(n \log n).$$

Talambutsa asked about the existence of a finite system with complexity strictly between $\Theta(n)$ and $\Theta(n \log n)$. In the next section we give a system with complexity $n \log \log n$.

3 System with complexity $n \log \log n$

Let

$$A_4 = \{b, \overline{b}, \overline{\overline{b}}, c, \overline{c}, f, q, v, w\},\$$

and consider a system R_4 over A_4 similar to R_2 :

$$R_4 = \{ f\bar{b} \to \bar{\bar{b}}f, \ fc \to \bar{c}f, \ fw \to qw, \ \bar{\bar{b}}q \to qb, \bar{c}q \to qc \}.$$

For a word $x = v f \overline{b}^m c^n w (m, n \ge 0)$ we have a maximal sequence

$$x \to^{m+n} v \bar{\bar{b}}^m \bar{c}^n f w \to v \bar{\bar{b}}^m \bar{c}^n q w \to^{m+n} v q b^m c^n w.$$
⁽⁵⁾

In (5) the pair (f,q) shuttles once between w and v, and we have

$$\delta_{R_4}(x) = 2(m+n) + 1.$$

Next, let

$$A_5 = \{b, \overline{b}, \overline{b}, c, g, r, v, w\},\$$

and

$$R_5 = \{ gb \to \overline{b}g, \ g\overline{b} \to \overline{\overline{b}}g, \ gc \to r\overline{b}^2, \overline{b}r \to rb, \ \overline{\overline{b}}r \to r\overline{b} \}$$

Let $x = vgb^mc^nw$ with $m \ge 0, n \ge 1$. Then, we have

$$x \to^m v \bar{b}^m g c^n w \to v \bar{b}^m r \bar{b}^2 c^{n-1} w \to^m v r b^m \bar{b}^2 c^{n-1} w$$

In this sequence the pair (g, r) shuttles once between v and c, and

$$\delta_{R_5}(x) = 2m + 1$$

Let $A_6 = A_1 \cup A_5$ and let R_6 be the union of R_0 and R_5 adding a rule $r_2 = (apvrb, ahvg);$

$$R_6 = R_0 \cup R_5 \cup \{apvrb \to ahvg\}$$

Let $i, j > m \ge 0$ and $n = 2^i$. For a word $x = wa^n hvgb^m c^j w \in A_6^*$ we have

$$x \to_{R_0}^{n+1} wa^{2^{i-1}} pvgb^m c^j w \to_{R_5}^{2m+1} wa^{2^{i-1}} pvrb^m \bar{b}^2 c^{j-1} w \to_{r_2} wa^{2^{i-1}} hvgb^{m-1} \bar{b}^2 c^{j-1} w \to_{R_5}^{2^{i-1}+2(m+2)} wa^{2^{i-2}} pvrb^{m-1} \bar{b}^4 c^{j-2} w$$
(6)
 $\to_{r_2} \dots \to_{R_5} wa^{2^{i-m-1}} pvr \bar{b}^{2m+2} c^{j-m-1} w = y.$

In this situation we write $x \Longrightarrow^{(6)} y$. In (6) the pairs (h, p) and (g, r) both shuttle m + 1 times between v and w, and the number of steps in the shuttlings of (g, r) is

$$\delta_{R_6}(x) = 2(m + (m+1) + \dots + (m+m)) + m + 1 = \Theta(m^2).$$
(7)

Finally, let

$$A_7 = A_1 \cup A_4 \cup A_5 = \{a, \overline{a}, b, \overline{b}, \overline{b}, c, \overline{c}, h, p, f, q, g, r, v, w\},\$$

and let $r_3 = (apvqb, ahvg)$ and $r_4 = (apvr\bar{b}, ahvf\bar{b})$. Define

$$\begin{array}{rcl} R_7 &=& R_0 \cup R_4 \cup R_6 \cup \{r_3, r_4\} \\ &=& \left\{ \begin{array}{l} a^2h \to h\bar{a}, \ wh \to wp, \ p\bar{a} \to ap, \\ &f\bar{b} \to \bar{b}f, \ fc \to \bar{c}f, \ fw \to qw, \ \bar{b}q \to qb, \ \bar{c}q \to qc, \\ &gb \to \bar{b}g, \ g\bar{b} \to \bar{b}g, \ gc \to r\bar{b}^2, \ \bar{b}r \to rb, \ \bar{b}r \to r\bar{b}, \\ &apvrb \to ahvg, \ apvqb \to ahvg, \ apvr\bar{b} \to ahvf\bar{b} \end{array} \right\}. \end{array}$$

Let $n = 2^{i} (i \ge 1)$ and $x = wa^{n} hv f \overline{b} c^{n} w$. We have a maximal sequence

$$\begin{array}{l} x \quad \rightarrow_{R_{0}}^{n+1} wa^{2^{i-1}} pvf\bar{b}c^{n}w \rightarrow_{R_{4}}^{2n+3} wa^{2^{i-1}} pvqbc^{n}w \rightarrow_{r_{3}} wa^{2^{i-1}} hvgc^{n}w \\ \rightarrow_{R_{0}}^{2^{i-1}+1} wa^{2^{i-2}} pvgc^{n}w \rightarrow_{R_{6}} wa^{2^{i-2}} pvr\bar{b}^{2}c^{n-1}w \rightarrow_{r_{4}} wa^{2^{i-2}} hvf\bar{b}^{2}c^{n-1}w \\ \rightarrow_{R_{0}}^{2^{i-2}+1} wa^{2^{i-3}} pvf\bar{b}^{2}c^{n-1}w \rightarrow_{R_{4}}^{2n+3} wa^{2^{i-3}} pvqb^{2}c^{n-1}w \\ \rightarrow_{r_{3}} wa^{2^{i-3}} hvgbc^{n-1}w \Longrightarrow^{(6)} wa^{2^{i-5}} pvr\bar{b}^{4}c^{n-3}w \\ \rightarrow_{r_{4}} wa^{2^{i-6}} hvgb^{3}c^{n-3}w \Longrightarrow^{(6)} wa^{2^{i-10}} pvr\bar{b}^{8}c^{n-7}w \\ \rightarrow_{R_{7}} \cdots \rightarrow_{R_{7}} wahvsb^{2^{j-1}-k}\bar{b}^{2}kc^{n-\ell}w \end{array}$$

in R_7 . Here, $0 \le k \le 2^{j-1}$, j is the number of the shuttlings of the pair (f, q), ℓ is the number of shuttlings of (g, r), and s = q if k = 0 and s = r otherwise. Moreover, the pair (g, r) shuttles 2^{t-1} times after the *t*-th shuttling of (f, q) for t < j and shuttles k times after the last j-th shuttling of (f, q). Thus we see

$$\ell = 1 + 2 + \dots + 2^{j-2} + k$$

Now, in the left side of the letter v in (8), the pair (h, p) shuttles $i = \log_2 n$ times, and corresponding to it, in the right side the pairs (f, q) and (g, r) shuttle i + 1 times together. Hence,

$$i+1 = j+\ell = j+2^{j-1}-1+k,$$
(9)

and so

$$j = \Theta(\log i) = \Theta(\log \log n).$$

Thus, the number of the steps in the shuttlings of (f,g) in (8) is $(2n+3)j = \Theta(n \log \log n)$. On the other hand, the number of the steps in the shuttlings of (g,r) is $O(\ell^2)$ by (7) and by (9) it equals $O(2^{2j}) = O(i^2) = O(\log^2 n)$, and the number of the steps in the shuttlings of (h, p) is O(n) by (2). Further, the rules r_2, r_3 and r_4 are applied $i = O(\log n)$ times altogether. To estimate $\delta_{R_7}(x)$, we can ignore these numbers and we may only take the shuttling of (g, r) into account. Thus, we see $\delta_{R_7}(x) = \Theta(n \log \log n)$. Because words of the form of x give the maximum derivation length relative to the length of the words, we finally have

$$d_{R_7}(n) = \Theta(n \log \log n).$$

References

- D. Hofbauer, C. Lautermann, Termination proofs and the length of derivations, RTA 1989, LNCS 355, (1989), 167–177.
- [2] Y. Kobayashi, The derivational complexity of string rewriting systems, Theoret. Comp. Sci., 438 (2012), 1–12.
- [3] A. Talambutsa, On subquadratic derivational complexity of semi-Thue systems, Proc. Computer Science in Russia-2020, LNCS, to appear.