Injective hulls of bi S-sets

Kunitaka Shoif
Department of Mathematics, Shimane University
Matsue, Shimane, 690-8504 Japan

In this paper, we study the injective hull of bi S-sets. In particular, we discuss descriptions of the injective hull of bi S-sets.

1 Injective hulls of bi S-sets

Let S be a semigroup and S^{1} a semigroup S adjoined with an identity element.
A set M is a bi S-set M if M has associative operations of S on both sides.
Let $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ denote the set of all mappings $f: S^{1} \times S^{1} \rightarrow M$ is a S-biset as follows :
$(s f t)((a, b))=f((a s, t b))$ for all $a, b, s, t \in S$.
Define the map $\Phi: M \rightarrow \operatorname{Map}\left(S^{1} \times S^{1}, M\right)\left(m \longmapsto f_{m}\right)$, where $f_{m}((a, b))=a m b$ for all $a, b \in S$ and $m \in M$. Then Φ is an S-isomorphism and M is identified with $\Phi(M)$ as bi S-sets.

A bi S-set M is injective if for any S-homomorphism ξ vof a bi S-set A to M and an injective S homomorphism α of A to a bi S-set B, there exists an S-homomorphism σ of B to M with $\alpha \sigma=\xi$.

Result [1, Theorem 6]. $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ is an injective bi S-set.
Let M, N be bi S-sets such that M is a bi S-subset of N. Then M is large in N if any congruence σ of N with the restriction of σ to M being the identity relation is the identity relation itself.

By Theorem 10 of [1], $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ contains a maximal large bi S-set $I(M)$ of M. Then $I(M)$ is the injective hull of $M . I(M)$ is a retraction of $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$. Actually, there exists an S-homomorphism α of $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ to $I(M)$ with the restriction of α to $I(M)$ is an identity map of $I(M)$. In other words, there exists a congruence ξ on $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ such that $\operatorname{Map}\left(S^{1} \times S^{1}, M\right) / \xi$ is S-isomorhic to $I(M)$ and the restriction of ξ to M is the identity relation of M.

Here we consider a description of ξ.
Define a relation ξ^{\prime} on $\operatorname{Map}\left(S^{1} \times S^{1}, M\right)$ as follows :
$f \xi^{\prime} g$ if and only if (i) $I_{f}=\left\{(s, t) \in S^{1} \times S^{1} \mid s f t \in M\right\}$ and I_{g} are equal to each other and (ii) for any $(s, t) \in I_{f}=I_{g}, s f t=s g t$.

Then ξ^{\prime} is a congruence and the restriction of ξ_{M} of ξ to M is the identity relation. In particular, the set $\left\{f \in \operatorname{Map}\left(S^{1} \times S^{1}, M\right) \mid I_{f}\right.$ is empty $\}$ is a single ξ^{\prime}-class and is dented by O.

If M does not contain any element m with $S m S=\{m\}$, then O is a single ξ-class. $O \cup M$ is a large extension of M.
Suppose that M contains an element m with $S m S=\{m\}$. Let $\xi^{\prime \prime}=\xi^{\prime} \cup\{(m, x),(x, m) \mid x \in O\}$. Then $\xi^{\prime \prime}$ is a congruence and $\xi^{\prime} \subset \xi^{\prime \prime} \subseteq \xi$.

Example Let $X=\{1,2\}$. Then $\mathcal{T}(X)=\left\{x=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right), y=\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right), 1=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right), g=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\right\}$.
We use notation \mathcal{T}_{2} in stead of $\mathcal{T}(\{1,2\})$.
Then for any $f \in \operatorname{Map}\left(\mathcal{T}_{2} \times \mathcal{T}_{2}, \mathcal{T}_{2}\right)$ and $s \in \mathcal{T}_{2}$, we have the following (1), (2) :
(1) $x f s \in \mathcal{T}_{2}\left[y f s \in \mathcal{T}_{2}\right]$ implies $x f s=x[y f s=y]$.
(2) if $f x \in \mathcal{T}_{2}\left[y f s \in \mathcal{T}_{2}\right]$ then $f x=x$ or $f x=y[f y=x$ or $f y=y]$.

Let $f, h \in \operatorname{Map}\left(\mathcal{T}_{2} \times \mathcal{T}_{2}, \mathcal{T}_{2}\right)$ with $f y=x, x f \notin \mathcal{T}_{2}$ and $x h=x$, hy $=x$. Then $(f, h) \notin \xi^{\prime}$ but by Theorem 7 of [1] and (i), (ii), $(f, h) \in \xi$.

Consequently, we conclude that $\xi^{\prime \prime}$ is properly contained in ξ.
We will continue to study the congruence ξ in a subsequent paper.

References

[1] P. Berthiaume, The Injective Envelope of S-Sets, Canadian Mathematical Bulletin10(2), 261-273.

