Injective hulls of BI S-sets

Kunitaka Shoji Department of Mathematics, Shimane University Matsue, Shimane, 690-8504 Japan

In this paper, we study the injective hull of bi *S*-sets. In particular, we discuss descriptions of the injective hull of bi *S*-sets.

1 Injective hulls of bi S-sets

Let S be a semigroup and S^1 a semigroup S adjoined with an identity element.

A set *M* is a *bi S*-*set M* if *M* has associative operations of *S* on both sides.

Let $Map(S^1 \times S^1, M)$ denote the set of all mappings $f : S^1 \times S^1 \to M$ is a *S*-biset as follows : (sft)((a, b)) = f((as, tb)) for all $a, b, s, t \in S$.

Define the map $\Phi : M \to Map(S^1 \times S^1, M) \ (m \mapsto f_m)$, where $f_m((a, b)) = amb$ for all $a, b \in S$ and $m \in M$. Then Φ is an S-isomorphism and M is identified with $\Phi(M)$ as bi S-sets.

A bi *S*-set *M* is *injective* if for any *S*-homomorphism ξ vof a bi *S*-set *A* to *M* and an injective *S*-homomorphism α of *A* to a bi *S*-set *B*, there exists an *S*-homomorphism σ of *B* to *M* with $\alpha \sigma = \xi$.

Result [1, Theorem 6]. $Map(S^1 \times S^1, M)$ is an injective bi S-set.

Let M, N be bi S-sets such that M is a bi S-subset of N. Then M is *large* in N if any congruence σ of N with the restriction of σ to M being the identity relation is the identity relation itself.

By Theorem 10 of [1], $Map(S^1 \times S^1, M)$ contains a maximal large bi *S*-set I(M) of *M*. Then I(M) is the injective hull of *M*. I(M) is a retraction of $Map(S^1 \times S^1, M)$. Actually, there exists an *S*-homomorphism α of $Map(S^1 \times S^1, M)$ to I(M) with the restriction of α to I(M) is an identity map of I(M). In other words, there exists a congruence ξ on $Map(S^1 \times S^1, M)$ such that $Map(S^1 \times S^1, M)/\xi$ is *S*-isomorphic to I(M) and the restriction of ξ to *M* is the identity relation of *M*.

Here we consider a description of ξ .

Define a relation ξ' on $Map(S^1 \times S^1, M)$ as follows :

 $f\xi'g$ if and only if (i) $I_f = \{(s,t) \in S^1 \times S^1 \mid sft \in M\}$ and I_g are equal to each other and (ii) for any $(s,t) \in I_f = I_g$, sft = sgt.

Then ξ' is a congruence and the restriction of ξ_M of ξ to M is the identity relation. In particular, the set $\{f \in Map(S^1 \times S^1, M) \mid I_f \text{ is empty}\}$ is a single ξ' -class and is dented by O.

If *M* does not contain any element *m* with $SmS = \{m\}$, then *O* is a single ξ -class. $O \cup M$ is a large extension of *M*.

Suppose that *M* contains an element *m* with $SmS = \{m\}$. Let $\xi'' = \xi' \cup \{(m, x), (x, m) | x \in O\}$. Then ξ'' is a congruence and $\xi' \subset \xi'' \subseteq \xi$.

Example Let $X = \{1, 2\}$. Then $\mathcal{T}(X) = \left\{ x = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}, 1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$.

We use notation \mathcal{T}_2 in stead of $\mathcal{T}(\{1,2\})$.

Then for any $f \in Map(\mathcal{T}_2 \times \mathcal{T}_2, \mathcal{T}_2)$ and $s \in \mathcal{T}_2$, we have the following (1), (2):

(1) $xfs \in \mathcal{T}_2 [yfs \in \mathcal{T}_2]$ implies xfs = x [yfs = y].

(2) if $fx \in \mathcal{T}_2$ [$yfs \in \mathcal{T}_2$] then fx = x or fx = y [fy = x or fy = y].

Let $f, h \in Map(\mathcal{T}_2 \times \mathcal{T}_2, \mathcal{T}_2)$ with $fy = x, xf \notin \mathcal{T}_2$ and xh = x, hy = x. Then $(f, h) \notin \xi'$ but by Theorem 7 of [1] and (i), (ii), $(f, h) \in \xi$.

Consequently, we conclude that ξ'' is properly contained in ξ .

We will continue to study the congruence ξ in a subsequent paper.

References

[1] P. Berthiaume, The Injective Envelope of S-Sets, Canadian Mathematical Bulletin10(2), 261-273.