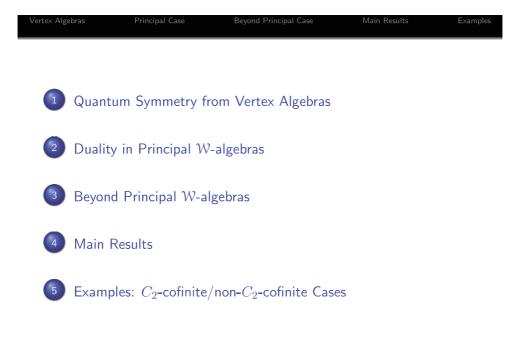


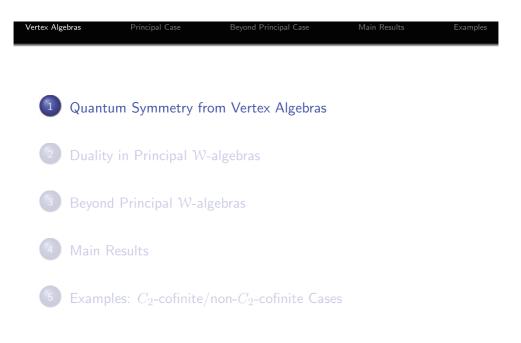
Beyond Principal Case

Main Results

Principal Case

Ryo Sato (Academia Sinica) joint work with T. Creutzig, N. Genra, and S. Nakatsuka





Origin of Vertex Algebras

Vertex Algebras

The notion of a **vertex algebra** encodes an algebraic structure of **"qunatum observables"** acting on a space of **"qunatum states"** with respect to the **operator product expansion**¹.

In the early days, such a structure appeared in the representation theory of **affine Lie algebras** [Lepowsky–Wilson '79, Frenkel–Kac '80, ...].

After that, it has turned out that vertex algebras are ubiquitous in

- 2d conformal field theory [Belavin–Polyakov–Zamolodchikov '84, ...],
- 3d topological quantum field theory [Witten '89, ...],

• 4d superconformal field theory [Alday–Gaiotto–Tachikawa'10, ...], and so on.

 $^{^{1}}$ The notion of OPE firstly appeared in the work of K. G. Wilson ('69).

Roughly speaking, a vertex algebra consists of

- a vector space V over \mathbb{C} ,
- a bilinear mapping $(?) \times (?) : V \times V \to V((z))$,
- a non-zero element ${f 1}$ in V

satisfying the following conditions: for $A,B,C\in V$,

1 $\underset{z}{\times} A = A$ and $A \underset{z}{\times} 1 \equiv A \mod V[[z]]z$ (unitality); ($A \underset{z_1-z_2}{\times} B) \underset{z_2}{\times} C \approx A \underset{z_1}{\times} (B \underset{z_2}{\times} C)$ (associativity); ($A \underset{z_1}{\times} (B \underset{z_2}{\times} C) \approx B \underset{z_2}{\times} (A \underset{z_1}{\times} C)$ (locality).

Note that we refer to $A(z) := A \underset{z}{\times} (?)$ as a quantum observable.

Analogy to Commutative Algebras

More precisely, the locality axiom² is given by

 $(z_1 - z_2)^n [A(z_1), B(z_2)] = 0$ for sufficiently large n.

Standard categorical notions for vertex algebras (e.g., morphisms, subquotients, simplicity, modules, ...) can be defined in a similar way to those for **unital associative commutative algebras**.

For example, we have the following lemma:

Lemma 1.1 (Tensor Products)

Vertex Algebras

The tensor product of finitely many vertex algebras over $\mathbb C$ carries a natural vertex algebra structure.

 $^{^2} See, \, e.g., \, Kac's \, textbook ('98, AMS)$ for detail.

Well-studied Building Blocks

The following two examples are building blocks in our discussion:

- affine vertex algebras $V^{\ell}(\mathfrak{g})$ (\iff affine Lie algebras $\widehat{\mathfrak{g}}$);
- lattice vertex algebras V_L ($\leftrightarrow \rightarrow$ integral lattices L).

Loosely speaking, an appropriate representation category of $V^{\ell}(\mathfrak{g})$ (resp. V_L) has an explicit description in terms of the corresponding quantum enveloping algebra³ $U_q(\mathfrak{g})$ (resp. the corresponding finite abelian group $\operatorname{Hom}(L, \mathbb{Z})/L$ with some \mathbb{C}^{\times} -valued 3-cocycle⁴).

More examples are obtained by the following constructions:

Definition 1.2 (Extensions and Cosets) Let $U \hookrightarrow V$ be an embedding of vertex algebras. Then • V is called a vertex algebra extension of U, • the commutant vertex subalgebra $\operatorname{Com}(U, V) := \left\{ A \in V \mid [A(z_1), B(z_2)] = 0 \text{ for any } B \in U \right\}$ is called the coset vertex algebra of U in V.

As a special case, we call $\mathcal{Z}(V) := \operatorname{Com}(V, V)$ the **center** of V.

Vertex Algebras

³See, e.g., [Kazhdan–Lusztig '93, '94, Finkelberg '96].

⁴See, e.g., Etingof–Gelaki–Nikshych–Ostrik's textbook ('15, AMS).

2d Chiral Conformal Symmetry

The **Virasoro algebra** is the universal central extension of the Lie algebra of vector fields on $S^1 = \{z = e^{2\pi\sqrt{-1}\theta}\}$, which appears as the chiral symmetry of **2d conformal field theory (CFT)**.

A vertex algebra V with a **conformal vector** ω , whose "modes"

$$L_n := \frac{1}{2\pi\sqrt{-1}} \oint \omega(z) z^{n+1} dz \in \text{End}(V)$$

generate the Virasoro algebra of some central charge, is referred to as a **vertex operator algebra** (VOA).

It is well-known that the **Sugawara construction** provides affine⁵ and lattice vertex algebras with their standard conformal vectors.

Axioms of Modules

A module of a VOA (V, ω) consists of

- a vector space M over \mathbb{C} ,
- a bilinear mapping $(?) \circ (?) : V \times M \to M((z))$

satisfying the following conditions: for $A, B \in V$ and $m \in M$,

 $\underset{z}{\circ} m = m$ (unitality); $(A \underset{z_1-z_2}{\times} B) \underset{z_2}{\circ} m \approx A \underset{z_1}{\circ} (B \underset{z_2}{\circ} m)$ (associativity); $A \underset{z_1}{\circ} (B \underset{z_2}{\circ} m) \approx B \underset{z_2}{\circ} (A \underset{z_1}{\circ} m)$ (locality); $(L_{-1}A) \underset{z}{\circ} m = \frac{\partial}{\partial z} (A \underset{z}{\circ} m)$ (flatness condition); L_0 is locally finite with lower bounded eigenvalues on M.

Vertex Algebras

Vertex Algebras

⁵We need to assume that the level ℓ is not equal to the **critical level** $-h^{\vee}$.

Vertex Algebras

Fundamental Problem

Let (V, ω) be a VOA and V-mod the \mathbb{C} -linear abelian category of V-modules of finite length, i.e., having finite composition series.

When V is C_2 -cofinite, the number of inequivalent simple objects in V-mod turns out to be finite [Zhu '96, Gaberdiel-Neitzke '03].

Adding mild conditions⁶, Y.-Z. Huang proved that V-mod carries a **braided monoidal category** structure with respect to the **fusion product** (?) \boxtimes (?): V-mod \times V-mod \rightarrow V-mod [Huang '09,...].

Problem 1.3 (Kazhdan-Lusztig Correspondence)

Confirm such (non-symmetric) braided monoidal categories to be rigid and various conjectural connections to quantum supergroups.

⁶We further assume that V is \mathbb{N} -graded by L_0 and $\ker(L_0 \colon V \to V) = \mathbb{C}\mathbf{1}$.

Origin of Non-Symmetric Braiding

For distinct *n*-points $\boldsymbol{p} = (p_1, \ldots, p_n)$ on the projective line $\mathbf{P}^1(\mathbb{C})$ and an *n*-tuple $\boldsymbol{M} = (M_1, \cdots, M_n)$ of *V*-modules, one can define the vector space of (genus-zero) *n*-point conformal blocks⁷ by

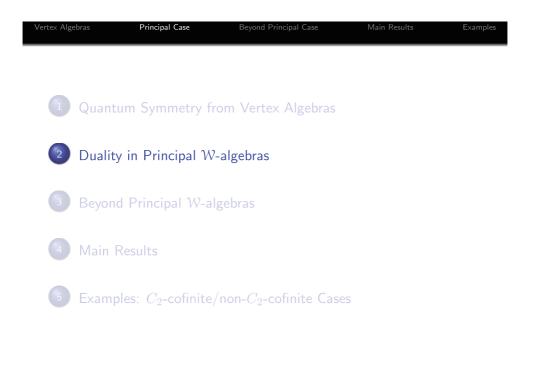
$$\operatorname{CB}(\mathbf{P}^{1}(\mathbb{C}), \boldsymbol{p}, \boldsymbol{M}) := \Big(\bigotimes_{i=1}^{n} M_{i} / (\operatorname{conformal constraints})\Big)^{*}.$$

Then the following functor

$$V$$
-mod $\rightarrow \mathbb{C}$ -mod; $M \mapsto \operatorname{CB}(\mathbf{P}^1(\mathbb{C}), (0, 1, \infty), (M_2, M_1, M^*))$

is represented by the fusion product $M_1 \boxtimes M_2$ if it exists, and the square σ^2 is the **monodromy** of four-point conformal blocks.

 $^{^7 {\}rm They}$ glue to form a ${\mathscr D}{\operatorname{-module}}$ on the $n{\operatorname{-point}}$ configuration space of ${\bf P}^1({\mathbb C}).$



W-algebras as Extensions

Principal Case

tex Algebras

The smallest example of \mathcal{W} -algebra is the Virasoro VOA $\mathcal{W}^{\ell}(\mathfrak{sl}_2)$.

The second smallest W-algebra $W^{\ell}(\mathfrak{sl}_3)$ is originally introduced by A. Zamolodchikov ('85) as a higher-spin extension of the Virasoro VOA, which is no longer generated by an "elementary" Lie algebra.

General \mathcal{W} -algebras are obtained as extensions of $\mathcal{W}^{\ell}(\mathfrak{sl}_2)$ and play a fundamental role in the (conjectural) 2d chiral CFT/4d $\mathcal{N} = 2$ SCFT correspondence [Beem et.al.'15,...].

We first review the most standard class, called the pricipal case.

Center of Enveloping Algebra

Principal Case

Let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be a triangular decomposition of a simple Lie algebra and κ the normalized symmetric invariant form on \mathfrak{g} .

Beyond Principal Ca

Examp

The center $Z(\mathfrak{g})$ of the enveloping algebra $U(\mathfrak{g})$ is isomorphic to

- **1** the commutant subalgebra $\operatorname{Com}(\mathfrak{g}, U(\mathfrak{g}))$ by definition;
- 2 the Weyl group-invariant subalgebra $U(\mathfrak{h})^W$ of $U(\mathfrak{h})$ through the Harish-Chandra homomorphism [Harish-Chandra '51];
- (3) the opposite algebra of \mathfrak{g} -endomorphisms⁸ on the Whittaker module $\operatorname{Ind}_{\mathfrak{n}_+}^{\mathfrak{g}}(\chi)$, where $\chi(?) = \kappa(f, ?) \colon \mathfrak{n}_+ \to \mathbb{C}$ is defined by a **principal** nilpotent element $f = f_{\mathsf{prin}} \in \mathfrak{n}_-$ [Kostant '78].

⁸By the Frobenius reciprocity, they correspond to Whittaker vectors.

Principal Affine \mathcal{W} -algebras

Principal Case

× Algebras

Roughly speaking, the **universal principal affine** \mathcal{W} -algebra is an "affinization" of the center $Z(\mathfrak{g})$ at level $\ell \in \mathbb{C}$, denoted by $\mathcal{W}^{\ell}(\mathfrak{g})$.

 \mathcal{W} -algebras are **NOT** generated by affine Lie algebras in general!!

Modules of the principal $\mathcal{W}\text{-}\mathsf{algebra}\ \mathcal{W}^\ell(\mathfrak{g})$ are obtained by

- Coset construction [Goddard-Kent-Olive'85,...];
- free field realization [Fateev-Lukyanov '88, Feigin-Frenkel '92,...];
- semi-infinite cohomology⁹ [Feigin-Frenkel '90,...].

⁹This case is also known as Becchi–Rouet–Stora–Tyutin (BRST) cohomology.

Free Field Realization

Principal Case

The **free field realization** of the principal affine W-algebra $W^{\ell}(\mathfrak{g})$ is a vertex algebraic analog of the Harish-Chandra Homomorphism

$$\overline{\Upsilon}\colon Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{h}),$$

which is known as the Miura map

Principal Case

$$\Upsilon\colon \mathcal{W}^{\ell}(\mathfrak{g}) \hookrightarrow V^{\tau_{\ell}}(\mathfrak{h}).$$

Here τ_{ℓ} stands for a certain symmetric invariant form on \mathfrak{h} .

The image of the Miura map coincides with the union of kernels of $rank(\mathfrak{g})$ screening operators¹⁰.

Generators of Principal W-algebra

Let $D = \{d_i \mid i = 1, ..., rank(\mathfrak{g})\}$ denote the multi-set of degrees of homogeneous polynomial generators for $U(\mathfrak{h})^W = \mathbb{C}[\mathfrak{h}^*]^W$.

It is known that the set D always contains 2 which corresponds to the **quadratic Casimir element** Ω in $Z(\mathfrak{g})$.

The counterpart to Ω gives a conformal vector ω in $\mathcal{W}^{\ell}(\mathfrak{g})$.

Theorem 2.1 (e.g., Feigin–Frenkel '90)

The Virasoro L_0 -operator induced by ω defines an \mathbb{N} -gradation

$$\mathcal{W}^{\ell}(\mathfrak{g}) = \bigoplus_{d=0}^{\infty} \mathcal{W}^{\ell}(\mathfrak{g})_d$$

and there exists a finite set of generators $\{J^{d_i} \in W^{\ell}(\mathfrak{g})_{d_i}\}$ which contains the conformal vector $\omega = J^2$ of $W^{\ell}(\mathfrak{g})$.

 $^{^{10}\}mbox{These}$ operators are a vertex algebraic analog of simple reflections.

Langlands Dual Groups

Principal Case

Recall that connected complex reductive groups are determined by their **root data** up to isomorphism¹¹.

Beyond Principal Case

Two connected complex reductive groups are said to be **Langlands dual** to each other when their root data are dual to each other.

Let G be the **simply-connected** simple group associated to \mathfrak{g} and \check{G} denote its Langlands dual group associated to $\check{\mathfrak{g}} = \operatorname{Lie}(\check{G})$.

We note that \check{G} is the **adjoint** group of the simple Lie algebra $\check{\mathfrak{g}}$.

Example 2.2 (Duality Between Classical Groups) We have $\check{SL}_n = PSL_n$, $\check{Spin}_{2n} = SO_{2n}/\mathbb{Z}_2$, $\check{Spin}_{2n+1} = Sp_{2n}/\mathbb{Z}_2$.

¹¹See, e.g., Springer's textbook ('98, Birkhäuser) for detial.

Feigin–Frenkel Duality

tex Algebras

Principal Case

The next theorem is known as the **Feigin–Frenkel duality**:

Theorem 2.3 (Feigin–Frenkel '92, Aganagic–Frenkel–Okounkov '18) For arbitrary $(\ell, \check{\ell})$ satisfying $r^{\vee}(\ell + h^{\vee})(\check{\ell} + \check{h}^{\vee}) = 1$, where r^{\vee} is the lacing number of \mathfrak{g} , there exists a vertex algebra isomorphism $V^{\tau_{\ell}}(\mathfrak{h}) \simeq V^{\check{\tau}_{\ell}}(\check{\mathfrak{h}})$ which restricts to $\mathcal{W}^{\ell}(\mathfrak{g}) \simeq \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}})$.

Remark 2.4 (Local Geometric Langlands Correspondence)

By taking a suitable limit, we obtain natural isomorphism(s)

$$\left(\mathcal{Z}\left(V^{-h^{\vee}}(\mathfrak{g})\right)\simeq\right)\mathcal{W}^{-h^{\vee}}(\mathfrak{g})\simeq\mathcal{W}^{\infty}(\check{\mathfrak{g}})$$

of Poisson vertex algebras and the enveloping algebra of the last is naturally dual to the moduli space of \check{G} -opers on $\operatorname{Spec}(\mathbb{C}((z)))$.

Beyond Principal Non-Super \mathcal{W} -algebras

Naïve Question (cf. Gaiotto-Rapčák '19)

Can we generalize the Feigin–Frenkel duality to outside of principal non-super W-algebras? Are there any relationships among

- principal W-superalgebras,
- non-principal W-algebras,

and relevant (super)geometric objects^a?

^aSee, e.g., [Zeitlin '15] for the $\mathfrak{osp}_{1|2}$ -Gaudin model and SPL_2 -superopers.

Today's Main Topic: Feigin–Semikhatov Duality

In 2004, B. Feigin and A. Semikhatov found a mysterious clue of a possible super/non-principal duality which is recently proved by Creutzig–Linshaw and Creutzig–Genra–Nakatsuka, independently.

Vertex Algebras	Principal Case	Beyond Principal Case	Main Results	Examples
1 Quantu	um Symmetry fr	om Vertex Algebras		
2 Duality	ı in Principal W	-algebras		
3 Beyond	d Principal W-al	gebras		
4 Main F	Results			
5 Examp	les: C_2 -cofinite/	/non- C_2 -cofinite Case	S	

Generalization to Non-Principal Case

Beyond Principal Case

Main Results

Example

Let f be a general nilpotent element in \mathfrak{g} and $\chi(?) = \kappa(f,?)$.

The **finite** \mathcal{W} -algebra¹² $U(\mathfrak{g}, f)$ is the deformation quantization of the **Slodowy slice**, which is a Poisson transversal at χ in \mathfrak{g}^* .

Informally speaking, the **universal affine** \mathcal{W} -algebra $\mathcal{W}^{\ell}(\mathfrak{g}, f)$ is an "affinization" of the finite \mathcal{W} -algebra $U(\mathfrak{g}, f)$ at level ℓ .

Now let's go into a bit more detail of its definition for later use.

 $^{12}\mbox{Originally introduced by A. Premet ('02) and generalized by Gan–Ginzburg ('02).$

Bevond Principal Case

Good Gradings for Lie Superalgebras

Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a complex simple Lie **super**algebra equipped with a suitably normalized **super**symmetric invariant form κ .

Definition 3.1 (Kac–Roan–Wakimoto '03)

A $\mathbb{Z}/2\mathbb{Z}$ -homogeneous $\frac{1}{2}\mathbb{Z}$ -gradation $\Gamma: \mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j$ is said to be a good grading adapted to a nilpotent element $f \in \mathfrak{g}_{\overline{0}}$ if

1 the nilpotent element f lies in \mathfrak{g}_{-1} ,

2 $\operatorname{ad}(f)$ is injective for $j \ge 1/2$; surjective for $j \le 1/2$.

A good grading is said to be **even** if it is a \mathbb{Z} -gradation.

Example 3.2 (Principal Non-Super Case)

The principal \mathbb{Z} -gradation Γ_{prin} of a simple Lie algebra gives an even good grading adapted to a principal nilpotent element f_{prin} .

Definition of Universal W-superalgebras

Let $\Gamma \colon \mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be an even good grading adapted to f and regard $X := \Pi \mathfrak{g}_{>0} \oplus \Pi \mathfrak{g}_{>0}^*$ as a symplectic vector superspace¹³.

The quantum BRST cohomology complex (e.g., [de Boer-Tjin '93])

$$\left(U(\mathfrak{g})\otimes\overline{\mathcal{C}\ell}(X)\stackrel{\mathsf{gr}}{\simeq}\mathbb{C}[\mathfrak{g}^*]\otimes\mathbb{C}[X],\ \overline{\mathrm{d}}=\overline{\mathrm{d}}_{\mathsf{CE}}+\overline{\mathrm{d}}_f\right)$$

admits a vertex superalgebra analog (e.g., [Kac-Roan-Wakimoto '03])

$$\left(\mathbb{C}^{\ell}(\mathfrak{g},f;\Gamma):=V^{\ell}(\mathfrak{g})\otimes\mathbb{C}\ell(X), \mathrm{d}=\mathrm{d}_{\mathsf{CE}}+\mathrm{d}_{f}\right).$$

Then the corresponding cohomology $H^*(\mathcal{C}^{\ell}(\mathfrak{g}, f; \Gamma), d^{\mathsf{ch}})$ turns out to be independent¹⁴ of the choice of Γ and is denoted by $\mathcal{W}^{\ell}(\mathfrak{g}, f)$.

¹³Here $\Pi(?)$ stands for the $\mathbb{Z}/2\mathbb{Z}$ -parity reversing functor.

¹⁴Different choices of Γ may give different conformal vectors on $\mathcal{W}^{\ell}(\mathfrak{g}, f)$.

Bevond Principal Case ex Algebras Trivial & Principal Non-Super Cases

1 Since Γ_{triv} : $\mathfrak{g} = \mathfrak{g}_0$ is adapted to f = 0, we have

$$\left(\mathcal{C}^{\ell}(\mathfrak{g},0;\Gamma_{\mathsf{triv}})=V^{\ell}(\mathfrak{g}), \ \mathrm{d}=0\right)$$

and the corresponding cohomology $\mathcal{W}^{\ell}(\mathfrak{g},0)$ coincides with the universal affine vertex superalgebra $V^{\ell}(\mathfrak{g})$.

💿 When g is a Lie algebra, we have

$$\left(\mathfrak{C}^{\ell}(\mathfrak{g}, f_{\mathsf{prin}}; \Gamma_{\mathsf{prin}}) = V^{\ell}(\mathfrak{g}) \otimes V_{\mathbb{Z}}^{\otimes \dim(\mathfrak{n}_{+})}, \ \mathbf{d} \right).$$

Then $\mathcal{W}^\ell(\mathfrak{g}, f_{\mathsf{prin}})$ provides a cohomological definition of the universal principal non-super \mathcal{W} -algebra $\mathcal{W}^{\ell}(\mathfrak{g})$.

Miura Map for \mathcal{W} -superalgebras

Let $\Gamma: \mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ be an even good grading adapted to f.

Theorem 3.3 (Arakawa '17, Genra '17, Nakatsuka '21)			
For arbitrary ℓ , there exist a supersymmetric invariant form τ_{ℓ} on \mathfrak{g}_0 and an injective vertex superalgebra homomorphism			
$\Upsilon_{\Gamma} \colon \mathcal{W}^{\ell}(\mathfrak{g}, f) \hookrightarrow V^{\tau_{\ell}}(\mathfrak{g}_{0}),$			
whose image is the union of kernels of certain screening operators.			
Note that De Sole–Kac–Valeri ('16) proved its Poisson analog.			
Example 3.4 (Principal Non-Super Case)			
When $(\mathfrak{g}, f, \Gamma) = (\mathfrak{g}_{\bar{0}}, f_{prin}, \Gamma_{prin})$, we get $(\mathfrak{g}_0, \tau_\ell) = (\mathfrak{h}, (\ell + h^{\vee})\kappa)$.			

Beyond Principal Case

Generators of \mathcal{W} -superalgebras

Let $\Gamma: \mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ be an even good grading adapted to f and set \mathfrak{g}^f to be the centralizer of f in \mathfrak{g} .

Bevond Principal Case

Theorem 3.5 (Kac–Wakimoto '04)

For a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ -homogeneous basis $\{x_i \in \mathfrak{g}^f \cap \mathfrak{g}_{-j_i}\}$ of \mathfrak{g}^f , one can construct a set of generators

$$\left\{ J^{\{x_i\}} \in \mathcal{W}^{\ell}(\mathfrak{g}, f)_{j_i+1} \mid i = 1, \dots, \dim \mathfrak{g}^f \right\}$$

containing the conformal vector $\omega_{\Gamma} = J^{\{f\}}$ for $\mathcal{W}^{\ell}(\mathfrak{g}, f)$.

Example 3.6 (Principal Non-Super Case)

When $(\mathfrak{g}, f, \Gamma) = (\mathfrak{g}_{\overline{0}}, f_{\mathsf{prin}}, \Gamma_{\mathsf{prin}})$, we have $\mathfrak{g}^f = \bigoplus_i (\mathfrak{g}^f \cap \mathfrak{g}_{-d_i+1})$.

Subregular \mathcal{W} -algebras of type A

Let $\mathfrak{g} = \mathfrak{sl}_n$ and $f = f_{sub}$, a subregular¹⁵ nilpotent element of \mathfrak{g} .

Then there exists an even good grading Γ adapted to f such that we have $\mathfrak{g}_0 \simeq \mathfrak{sl}_2 \oplus \mathbb{C}^{n-1}$ and $\mathfrak{g}^f \cap \mathfrak{g}_0 = \mathbb{C}x_0$.

As a corollary, the element $H_{sub} := J^{\{x_0\}}$ generates a Heisenberg subalgebra π_{sub} of $\mathcal{W}^{\ell}(\mathfrak{g}, f)$ iff $\ell \neq -n + \frac{n}{n-1}$.

Lemma 3.7 (Creutzig–Genra–Nakatsuka '21)

The Heisenberg coset $\pi^{\perp} := \operatorname{Com}(\Upsilon_{\Gamma}(\pi_{\mathsf{sub}}), V^{\tau_{\ell}}(\mathfrak{g}_0))$ is a rank nHeisenberg vertex algebra and we have a free field realization

 $\Upsilon_{\Gamma} \mid : \operatorname{Com}(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell}(\mathfrak{g}, f)) \hookrightarrow \pi^{\perp}.$

¹⁵The corresponding partition (the shape of Jordan cells) is n = (n - 1) + 1.

Let $\check{\mathfrak{g}} = \mathfrak{sl}_{1|n} (= \mathfrak{sl}_{n|1})$ and $\check{f} = f_{\mathsf{prin}}$ in the even part $\check{\mathfrak{g}}_{\bar{0}} = \mathfrak{gl}_n$.

Then there exists an even good grading $\check{\Gamma}$ adapted to \check{f} such that we have $\check{\mathfrak{g}}_0 \simeq \mathfrak{gl}_{1|1} \oplus \mathbb{C}^{n-1}$ and $\check{\mathfrak{g}}^{\check{f}} \cap \check{\mathfrak{g}}_0 = \mathbb{C}\check{x}_0$.

As a corollary, the element $H_{\text{prin}} := J^{\{\check{x}_0\}}$ generates a Heisenberg subalgebra π_{prin} of $\mathcal{W}^{\ell}(\check{\mathfrak{g}}) := \mathcal{W}^{\ell}(\check{\mathfrak{g}},\check{f})$ iff $\ell \neq -(n-1) + \frac{n-1}{n}$.

Lemma 3.8 (Creutzig–Genra–Nakatsuka '21)

The Heisenberg coset $\check{\pi}^{\perp} := \operatorname{Com}(\Upsilon_{\check{\Gamma}}(\pi_{\operatorname{prin}}), V^{\check{\tau}_{\ell}}(\check{\mathfrak{g}}_0))$ is a rank nHeisenberg vertex algebra and we have a free field realization

 $\Upsilon_{\check{\Gamma}}$: Com $(\pi_{\mathsf{prin}}, \mathcal{W}^{\ell}(\check{\mathfrak{g}})) \hookrightarrow \check{\pi}^{\perp}$.

Feigin–Semikhatov Duality

The next theorem was conjectured by Feigin-Semikhatov ('04).

Beyond Principal Case

Theorem 3.9 (Creutzig-Genra-Nakatsuka '21, cf. Creutzig-Linshaw '20⁺) Set $(\ell_0, h^{\vee}; \check{\ell}_0, \check{h}^{\vee})$ to be $(-n + \frac{n}{n-1}, n; -(n-1) + \frac{n-1}{n}, n-1)$. Then, for arbitrary $(\ell, \check{\ell}) \neq (\ell_0, \check{\ell}_0)$ satisfying $(\ell + h^{\vee})(\check{\ell} + \check{h}^{\vee}) = 1$, there is a vertex algebra isomorphism $\pi^{\perp} \simeq \check{\pi}^{\perp}$ which restricts to

FS: Com $(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}})) \simeq Com(\pi_{\mathsf{prin}}, \mathcal{W}^{\check{\ell}}(\mathfrak{sl}_{1|n}))$

through their Miura maps.

Note that a similar duality between subregular \mathcal{W} -algebras of type **B** and principal \mathcal{W} -superalgebras of type **C** is obtained in loc. cit.

Bevond Principal Case

Kazama–Suzuki Duality

The following theorem is a generalization of the **Kazama–Suzuki** and **Feigin–Semikhatov–Tipunin** coset construction for $\mathfrak{g} = \mathfrak{sl}_2$.

Theorem 3.10 (Creutzig–Genra–Nakatsuka '21)

There exist two diagonal Heisenberg vertex subalgebras of rank one

 $\Delta(\pi_{\mathsf{sub}}) \subset \mathcal{W}^{\ell}(\mathfrak{g}, f) \otimes V_{\mathbb{Z}}, \quad \Delta(\pi_{\mathsf{prin}}) \subset \mathcal{W}^{\tilde{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1}\mathbb{Z}}$ such that we have natural isomorphisms

$$\mathbf{KS} \colon \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{g}, f) \otimes V_{\mathbb{Z}}),$$

FST: $\mathcal{W}^{\ell}(\mathfrak{g}, f) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1}\mathbb{Z}}),$

which are compatible with their Miura maps.

ertex Algebras

How About Representations?

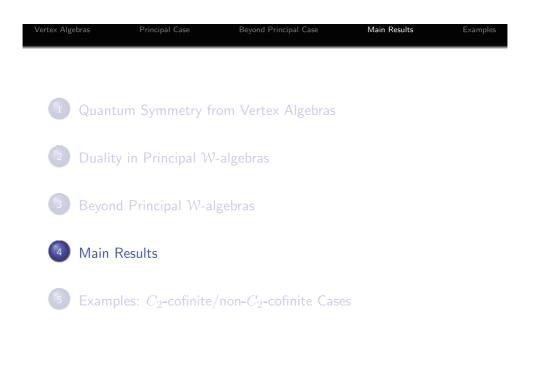
So far, we obtain the following three constructions

$$\begin{aligned} \mathbf{FS} \colon \operatorname{Com}(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell}(\mathfrak{g}, f)) &\simeq \operatorname{Com}(\pi_{\mathsf{prin}}, \mathcal{W}^{\ell}(\check{\mathfrak{g}})), \\ \mathbf{KS} \colon \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{g}, f) \otimes V_{\mathbb{Z}}), \\ \mathbf{FST} \colon \mathcal{W}^{\ell}(\mathfrak{g}, f) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1\mathbb{Z}}}). \end{aligned}$$

The representation theory of a \mathcal{W} -superalgebra can be described in terms of that of the corresponding affine vertex superalgebra, but the latter has been well-studied only in the non-super case.

Our Problem: From Algebras to Representations

To describe the representation theory of $W^{\check{\ell}}(\check{\mathfrak{g}}) = W^{\check{\ell}}(\mathfrak{sl}_{1|n}, f_{prin})$ by using the dualities and relative semi-infinite cohomology.



Category of Weight Modules

Let (V, ω) be a conformal vertex superalgebra and π its Heisenberg vertex subalgebra generated by an abelian Lie algebra \mathfrak{a} .

Main Results

Main Results

Examp

A V-module M is $\pi\text{-weight}$ if it decomposes into a direct sum

$$M = \bigoplus_{\lambda \in \mathfrak{a}^*} \Omega_{\lambda}(M) \otimes \pi_{\lambda}$$

of π -modules, where π_{λ} stands for the Heisenberg Fock π -module, such that the coefficient $\operatorname{Com}(\pi, V)$ -module $\Omega_{\lambda}(M)$ decomposes into **finite-dimensional** generalized L_0 -eigenspaces.

We write \mathscr{C}_{sub} for the category of π_{sub} -weight $\mathcal{W}^{\ell}(\mathfrak{g}, f)$ -modules and \mathscr{C}_{prin} for that of π_{prin} -weight $\mathcal{W}^{\ell}(\mathfrak{g})$ -modules.

Diagonal Coset Functor

Recall that we have

$$\mathbf{KS} \colon \mathcal{W}^{\check{\ell}}(\mathfrak{sl}_{1|n}) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{sl}_{n}, f_{\mathsf{sub}}) \otimes V_{\mathbb{Z}}),$$

$$\mathbf{FST} \colon \mathcal{W}^{\ell}(\mathfrak{sl}_{n}, f_{\mathsf{sub}}) \xrightarrow{\simeq} \operatorname{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\mathfrak{sl}_{1|n}) \otimes V_{\sqrt{-1}\mathbb{Z}}).$$

Let $\mathfrak{a} = \mathbb{C}H_{sub}$ and $\check{\mathfrak{a}} = \mathbb{C}H_{prin}$ be the subspaces generating π_{sub} and π_{prin} , respectively. The next proposition is our starting point.

Proposition (Creutzig–Genra–Nakatsuka–S. '21⁺) For $\lambda \in \mathfrak{a}^*$, there exists $\check{\lambda} \in \check{\mathfrak{a}}^*$ such that the following functors $\Omega_{\lambda}^+(?) := \Omega_{\lambda}((?) \otimes V_{\mathbb{Z}}) : \mathscr{C}_{sub} \to \mathscr{C}_{prin},$ $\Omega_{\check{\lambda}}^-(?) := \Omega_{\check{\lambda}}((?) \otimes V_{\sqrt{-1}\mathbb{Z}}) : \mathscr{C}_{prin} \to \mathscr{C}_{sub}$ are mutually quasi-inverse on appropriate full subcategories.

rtex Algebras

Main Results

Cohomological Interpretation

Recall that **relative Lie algebra cohomology** plays an important role in connecting representation theory to geometric objects.

Its **semi-infinite** geometric analog is introduced by B. Feigin ('84) and Frenkel–Garland–Zuckerman ('86) for "string field theories" ¹⁶.

More recently, T. Creutzig and A. Linshaw (' 20^+ , ' 21^+) conjectured various W-superalgebras are related via the **geometric Langlands** kernels and the relative semi-infinite cohomology.

In this work we prove their conjecture in the simplest case!!

Geometric Langlands Kernel

For $\psi^{-1} + \psi_1^{-1} = 1$, the geometric Langlands kernel¹⁷ is

$$A[\mathfrak{gl}_N,\psi] := \bigoplus_{\lambda \in P^+} V^{\psi-N}(\lambda) \otimes V^{\psi_!-N}(\lambda) \otimes V_{\sqrt{N}\mathbb{Z} + \frac{s(\lambda)}{\sqrt{N}}} \otimes \pi,$$

where P^+ is the set of dominant integral weights for \mathfrak{sl}_N , $V^k(\lambda)$ is the corresponding Weyl module, π is the Heisenberg vertex algebra generated by \mathfrak{gl}_1 , and $s \colon P^+ \to P/Q \simeq \mathbb{Z}/N\mathbb{Z}$.

When N = 1, this is just the free field vertex superalgebra

 $\mathcal{K}_0 := A[\mathfrak{gl}_1, \psi] = V_{\mathbb{Z}} \otimes \pi,$

which is independent of ψ .

 $^{^{16}\}mbox{For}$ a mathematical exposition, we refer the reader to [Voronov'93].

 $^{^{17}\}mbox{See}$ [Creutzig–Gaiotto '20, Creutzig–Linshaw '20^+] for detail.

Main Results

Relative Semi-infinite Cohomology

For $\lambda \in \mathbb{C}$, we have the following decomposition

$$\mathfrak{K}_{\lambda} := V_{\mathbb{Z}} \otimes \pi_{\lambda} = \bigoplus_{\mu} \pi^{\dagger}_{\mathsf{sub}, \lambda + \mu} \otimes \pi_{\mathsf{prin}, \check{\lambda} + \check{\mu}},$$

where π^{\dagger}_{sub} has the negative level opposite to π_{sub} .

Therefore the relative semi-infinite complex¹⁸

$$C_{\lambda}(\widehat{\mathfrak{a}},\mathfrak{a},?):=\left((?)\otimes\mathcal{K}_{\lambda}\otimes\Lambda_{\mathsf{rel}}^{\frac{\infty}{2}}
ight)^{\mathfrak{a}}$$

carries a level-zero \hat{a} -action and one can construct the **relative semi-infinite cohomology functor** [Frenkel–Garland–Zuckerman '86]

 $H^+_{\lambda}(?) := H^0\big(C_{\lambda}(\widehat{\mathfrak{a}}, \mathfrak{a}, ?), \mathrm{d}_{\mathsf{rel}}\big) \colon \mathscr{C}_{\mathsf{sub}} \to \mathscr{C}_{\mathsf{prin}}.$

 ${}^{18}\Lambda^{\frac{\infty}{2}}_{\rm rel}$ is isomorphic to the symplectic fermion vertex superalgebra of rank one.

$$Coset = Cohomology [1/2]$$

Our first main result is as follows:

Main Result A (Creutzig–Genra–Nakatsuka–S. '21⁺) For any $\lambda \in \mathfrak{a}^*$, we have a natural isomorphism $\Omega_{\lambda}^+(?) \simeq H_{\lambda}^+(?) \colon \mathscr{C}_{sub} \to \mathscr{C}_{prin}$

of linear functors and a similar result for $\Omega^-_{\tilde{\lambda}}(?)$ as well.

For example, if we pick an object M of ${\mathscr C}$ such that

$$M = \bigoplus_{\mu} \Omega_{\lambda + \mu}(M) \otimes \pi_{\mathsf{sub}, \lambda + \mu},$$

then the relative semi-infinite complex $C_{\lambda}(\hat{\mathfrak{a}}, \mathfrak{a}, M)$ is given by

$$\bigoplus_{\mu} \Omega_{\lambda+\mu}(M) \otimes \pi_{\mathsf{sub},\lambda+\mu} \otimes \pi^{\dagger}_{\mathsf{sub},\lambda+\mu} \otimes \pi_{\mathsf{prin},\check{\lambda}+\check{\mu}} \otimes \Lambda^{\frac{\varpi}{2}}_{\mathsf{rel}}$$

Vertex AlgebrasPrincipal CaseBeyond Principal CaseMain ResultsExamplesCoset = Cohomology
$$[2/2]$$

Our first main result is as follows:

Main Result A (Creutzig–Genra–Nakatsuka–S. '21⁺)

For any $\lambda \in \mathfrak{a}^*$, we have a natural isomorphism

$$\Omega_{\lambda}^{+}(?) \simeq H_{\lambda}^{+}(?) \colon \mathscr{C}_{\mathsf{sub}} \to \mathscr{C}_{\mathsf{prin}}$$

of linear functors and a similar result for $\Omega^-_{\check{\lambda}}(?)$ as well.

By using the following isomorphism [Frenkel-Garland-Zuckerman '86]

$$H^{i}(\pi_{\mathsf{sub},\lambda+\mu}\otimes\pi^{\dagger}_{\mathsf{sub},\lambda+\mu}\otimes\Lambda^{\frac{\infty}{2}}_{\mathsf{rel}},\mathrm{d}_{\mathsf{rel}})\simeq\delta_{i,0}\mathbb{C},$$

we obtain the corresponding relative semi-infinite cohomology

$$H^+_{\lambda}(M) \simeq \bigoplus_{\nu} \Omega_{\lambda+\mu}(M) \otimes \pi_{\mathsf{prin},\check{\lambda}+\check{\mu}} \stackrel{\mathbf{FS}}{\simeq} \Omega^+_{\lambda}(M).$$

Compatibility with Fusion Product

Let Q denote the a-weight set of $\mathcal{W}^\ell(\mathfrak{sl}_n, f_{\mathsf{sub}})$ and

$$M_i = \bigoplus_{\mu \in Q} \Omega_{\lambda_i + \mu}(M_i) \otimes \pi_{\mathsf{sub}, \lambda_i + \mu} \in \operatorname{Ob}(\mathscr{C}_{\mathsf{sub}}) \quad (\lambda_i \in \mathfrak{a}^*)$$

for $i \in \{1, 2\}$. Then our second main result is as follows:

Main Result B (Creutzig–Genra–Nakatsuka–S. '21⁺)

The fusion product $M_1 \boxtimes M_2$ exists in a certain full subcategory of \mathscr{C}_{sub} if and only if $H^+_{\lambda_1}(M_1) \boxtimes H^+_{\lambda_2}(M_2)$ exists in the corresponding full subcategory of \mathscr{C}_{prin} . Moreover, we have a natural isomorphism

$$H_{\lambda_1}^+(M_1) \boxtimes H_{\lambda_2}^+(M_2) \simeq H_{\lambda_1+\lambda_2}^+(M_1 \boxtimes M_2).$$

Lastly, we apply this result to two interesting cases!!

Ex

Main Results



C_2 -cofinite Case

rtex Algebras

Let $W_{\ell}(\mathfrak{g}, f)$ denote the **simple quotient** of $W^{\ell}(\mathfrak{g}, f)$ and so on.

Bevond Principal

Examples

Theorem 5.1 (cf. Creutzig–Linshaw '20⁺ for $r \ge 3$) When $\ell = -n + \frac{n+r}{n-1}$ and (n + r, n - 1) = 1, we have $\operatorname{Com}(\pi_{\mathsf{sub}}, \mathcal{W}_{\ell}(\mathfrak{g}, f)) \simeq \operatorname{Com}(\pi_{\mathsf{prin}}, \mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}})) \simeq \mathcal{W}_{\ell_{!}}(\mathfrak{g}_{!}),$ where $\mathfrak{g}_{!} = \mathfrak{sl}_{r}$ and $(\ell + h^{\vee})^{-1} + (\ell_{!} + h_{!}^{\vee})^{-1} = 1.$

Theorem 5.2 (Creutzig-Genra-Nakatsuka '21)

For ℓ as above, there is a chain of simple $current^a\ extensions$

$$\left(\mathcal{W}_{\ell_{!}}(\mathfrak{g}_{!})\otimes V_{\sqrt{(n+r)r}\mathbb{Z}}\right)\otimes V_{\sqrt{n(n+r)}\mathbb{Z}}\subseteq \mathcal{W}_{\tilde{\ell}}(\check{\mathfrak{g}})\otimes V_{\sqrt{n(n+r)}\mathbb{Z}}\subsetneq \mathcal{W}_{\ell}(\mathfrak{g},f)\otimes V_{\mathbb{Z}}.$$

In particular, $W_{\check{\ell}}(\check{\mathfrak{g}})$ is C_2 -cofinite and rational.

^aSimple invertible objects in V-mod are referred to as simple currents of V.

Fusion Product of $\mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}})$ -modules

Finally, our last main result is as follows:

Main Result C (Creutzig–Genra–Nakatsuka–S. '21 ⁺)			
For $(n,r) \in \mathbb{Z}_{\geq 2} \times \mathbb{Z}_{\geq 1}$ with $(n+r,n-1) = 1$, the semisimple monoidal structure of			
$\mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}}) ext{-mod}=\mathcal{W}_{-(n-1)+rac{n-1}{n+r}}(\mathfrak{sl}_{1 n}) ext{-mod}=\mathscr{C}_{prin}$			
can be explicitly described in terms of that of			
$\mathcal{W}_{\ell_!}(\mathfrak{g}_!) ext{-mod} = \mathcal{W}_{-r+rac{r+n}{r+1}}(\mathfrak{sl}_r) ext{-mod},$	(1)		
$\mathcal{W}_{\ell}(\mathfrak{g},f)\text{-}mod=\mathcal{W}_{-n+\frac{n+r}{n-1}}(\mathfrak{sl}_n,f_{sub})\text{-}mod=\mathscr{C}_{sub}.$	(2)		

Beyond Principal Ca

Note that the structure of (1) is determined by Frenkel–Kac–Wakimoto ('92) and that of (2) for even n is by Arakawa–van Ekeren ('19⁺). We extend the latter result to all n by using the previous simple current extensions.

Even if the C_2 -cofiniteness fails, we expect that a braided monoidal structure may exist on a category of appropriate modules.

In fact, at least when $\ell = -n + \frac{n}{n+1}, -n + \frac{n+1}{n}$, or generic,

 $\operatorname{Com}(\pi_{\mathsf{sub}}, \mathcal{W}_{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}})) \simeq \operatorname{Com}(\pi_{\mathsf{prin}}, \mathcal{W}_{\check{\ell}}(\mathfrak{sl}_{1|n}))$

contains a simple Virasoro VOA $\ensuremath{\mathcal{V}}$ and we expect the following:

Strategy by Induction Method (cf. Creutzig-McRae-Yang'21)

Let (\mathcal{W}, π) denote $(\mathcal{W}_{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}}), \pi_{\mathsf{sub}})$ or $(\mathcal{W}_{\tilde{\ell}}(\mathfrak{sl}_{1|n}), \pi_{\mathsf{prin}})$. Then the fusion product $M_1 \boxtimes M_2$ of \mathcal{W} -modules **may exist** when M_i for $i \in \{1, 2\}$ is an appropriate sum of C_1 -cofinite $\mathcal{V} \otimes \pi$ -submodules.

Example

Since there is a conjectural relationship¹⁹ between

$$\mathfrak{W}_k(\mathfrak{gl}_{m|n}) \stackrel{?}{\leadsto} U_{q_1}(\mathfrak{gl}_{m|n}) \otimes U_{q_2}(\mathfrak{gl}_m) \otimes U_{q_3}(\mathfrak{gl}_n)$$

for appropriate $(k; q_1, q_2, q_3)$, it seems natural to expect that

$$\mathscr{C}_{\mathsf{prin}} = \mathscr{W}_{-(n-1)+\frac{n-1}{n+n}}(\mathfrak{sl}_{1|n})$$
-mod

is related with the **semisimplified** category of finite-dimensional modules for a **relevant quantum supergroup at root of unity**.

¹⁹When m = 0, the right-hand side corresponds to the **modular double** of $U_q(\mathfrak{gl}_n)$. See [Bershtein–Feigin–Merzon '18] for detail (cf. [Cheng–Kwon–Lam '08]).

For example, the non- C_2 -cofinite subregular \mathcal{W} -algebra

$$\mathcal{B}_{n+1} := \mathcal{W}_{-n+\frac{n}{n+1}}(\mathfrak{sl}_n, f_{\mathsf{sub}})$$

corresponds to the (A_1,A_{2n-1}) Argyres–Douglas theory 20 via the $2{\rm d}/4{\rm d}$ correspondence [Adamović–Creutzig–Genra–Yang '21].

In this context, the Feigin–Semikhatov duality can be regarded as a special case²¹ of the \mathfrak{S}_3 -triality in Y-algebras [Gaiotto–Rapčák'19].

We expect that the cohomological approach is efficient as well in extending our result to more general cases (work in progress).

 $^{^{20}\}mathrm{From}$ this viewpoint, we may regard \mathcal{B}_2 as the free bosonic $\beta\gamma\text{-system}.$

 $^{^{21}\}mathrm{Our}$ case is related to $Y_{n,1,0}[\Psi]$ presented in [Gaiotto–Rapčák'19].