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Vertex Algebras 

Origin of Vertex Algebras 

The notion of a vertex algebra encodes an algebraic structure of 

"qunatum observables" acting on a space of "qunatum states" 
with respect to the operator product expansion1 . 

In the early days, such a structure appeared in the representation 

theory of affine Lie algebras [Lepowsky-Wilson '79, Frenkel-Kac '80, ... ] . 

After that, it has turned out that vertex algebras are ubiquitous in 

e 2d conformal field theory [Belavin-Polyakov-Zamolodchikov '84, ... ] , 

9 3d topological quantum field theory [Witten '89, ... ] , 

e 4d superconformal field theory [Alday-Gaietto-Tachikawa '10, ... ] , 

and so on. 

1The notion of OPE firstly appeared in the work of K. G. Wilson ('69). 
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Vertex Algebras 

Axioms of Vertex Algebras 

Roughly speaking, a vertex algebra consists of 

e a vector space V over C, 

9 a bilinear mapping (?) x (?): V x V-+ V((z)), 
z 

e a non-zero element 1 in V 

satisfying the following conditions: for A, B, C E V, 

0 1 x A= A and Ax 1 = A mod V[z]z (unitality); 
z z 

0 (A x B) x C ~Ax (Bx C) (associativity); 
Z1 -Z2 Z2 Z1 Z2 

0 Ax (Bx C) ~Bx (Ax C) (locality). 
Z1 Z2 Z2 Z1 

Note that we refer to A(z) :=Ax (?) as a quantum observable. 
z 

Vertex Algebras 

Analogy to Commutative Algebras 

More precisely, the locality axiom2 is given by 

(z1 - z2r [A(z1), B(z2)] = 0 for sufficiently large n. 

Standard categorical notions for vertex algebras (e.g., morphisms, 

subquotients, simplicity, modules, ... ) can be defined in a similar 

way to those for unital associative commutative algebras. 

For example, we have the following lemma: 

Lemma 1.1 (Tensor Products) 

The tensor product of finitely many vertex algebras over C carries 
a natural vertex algebra structure. 

2See, e.g., Kac's textbook ('98, AMS) for detail. 
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Vertex Algebras 

Well-studied Building Blocks 

The following two examples are building blocks in our discussion: 

e affine vertex algebras vc(9) ( ~ affine Lie algebras g); 

e lattice vertex algebras VL ( ~ integral lattices L ). 

Loosely speaking, an appropriate representation category of vc(9) 
(resp. VL) has an explicit description in terms of the corresponding 

quantum enveloping algebra3 Uq(9) (resp. the corresponding finite 

abelian group Hom(L, 7L)/ L with some ex-valued 3-cocycle4). 

3See, e.g., [Kazhdan-Lusztig '93,'94, Finkelberg '96]. 

4See, e.g., Etingof-Gelaki-Nikshych-Ostrik's textbook ('15, AMS). 

Vertex Algebras 

Constructions of New Vertex Algebras 

More examples are obtained by the following constructions: 

Definition 1.2 (Extensions and Cosets) 

Let U Y V be an embedding of vertex algebras. Then 

e V is called a vertex algebra extension of U, 

e the commutant vertex suba/gebra 

Com(U, V) := { A E VI [A(z1), B(z2)] = 0 for any BEU} 

is called the coset vertex algebra of U in V. 

As a special case, we call Z(V) := Com(V, V) the center of V. 
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Vertex Algebras 

2d Chiral Conformal Symmetry 

The Virasoro algebra is the universal central extension of the Lie 
algebra of vector fields on S 1 = { z = e21r~0 }, which appears as 
the chiral symmetry of 2d conformal field theory (CFT). 

A vertex algebra V with a conformal vector w, whose "modes" 

Ln := )=r f w(z)zn+ldz E End(V) 
21r -1 

generate the Virasoro algebra of some central charge, is referred to 
as a vertex operator algebra (VOA). 

It is well-known that the Sugawara construction provides affine5 

and lattice vertex algebras with their standard conformal vectors. 

5We need to assume that the level £ is not equal to the critical level -h v. 

Vertex Algebras 

Axioms of Modules 

A module of a VOA (V, w) consists of 

• a vector space Mover C, 

• a bilinear mapping (?) o (?): V x M----+ M((z)) 
z 

satisfying the following conditions: for A, BEV and m EM, 

0 1 o m = m (unitality); 
z 

0 (A x B) o m R:i Ao (Bo m) (associativity); 
~-~ ~ ~ ~ 

0 Ao (Bo m) R:i B o (Ao m) (locality); 
Z1 Z2 Z2 Z1 

0 (L_ 1A) o m = 88 (Ao m) (flatness condition); 
z z z 

8 Lo is locally finite with lower bounded eigenvalues on M. 
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Vertex Algebras 

Fundamental Problem 

Let (V, w) be a VOA and V-mod the C-linear abelian category of 
V-modules of finite length, i.e., having finite composition series. 

When V is C2-cofinite, the number of inequivalent simple objects 
in V-mod turns out to be finite [Zhu '96, Gaberdiel-Neitzke '03]. 

Adding mild conditions6 , Y.-Z. Huang proved that V-mod carries a 

braided monoidal category structure with respect to the fusion 
product (?) r8J (?): V-mod x V-mod----+ V-mod [Huang'09, ... ]. 

Problem 1.3 (Kazhdan-Lusztig Correspondence) 

Confirm such (non-symmetric) braided monoidal categories to be 
rigid and various conjectural connections to quantum supergroups. 

6We further assume that V is N-graded by Lo and ker(Lo: V ➔ V) = Cl. 

Vertex Algebras 

Origin of Non-Symmetric Braiding 

For distinct n-points p = (p1, ... ,Pn) on the projective line P 1((C) 
and an n-tuple M = (M1, · · · , Mn) of V-modules, one can define 
the vector space of (genus-zero) n-point conformal blocks7 by 

n 

CB(P1((C),p,M) := ( Q$}Mi/(conformal constraints))*. 
i=l 

Then the following functor 

V-mod----+ C-mod; M f---+ CB(P1((C), (0, 1, oo), (M2, M1, M*)) 

is represented by the fusion product M 1 r8J M 2 if it exists, and the 
square 0'2 is the monodromy of four-point conformal blocks. 

7They glue to form a :ii-module on then-point configuration space of P 1 (C). 
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Principal Case 

W-a lgebras as Extensions 

The smallest example of W-algebra is the Virasoro VOA W'\sl2). 

The second smallest W-algebra we(.sl3) is originally introduced by 

A. Zamolodchikov ('85) as a higher-spin extension of the Virasoro 
VOA, which is no longer generated by an "elementary" Lie algebra. 

General W-algebras are obtained as extensions of we(.sl2) and play 

a fundamental role in the (conjectural) 2d chiral CFT /4d N = 2 
SCFT correspondence [Beem et.al. '15, ... ]. 

We first review the most standard class, called the pricipal case. 
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Principal Case 

Center of Enveloping Algebra 

Let g = n_ EB [J EB n+ be a triangular decomposition of a simple Lie 

algebra and K, the normalized symmetric invariant form on g. 

The center Z(g) of the enveloping algebra U(g) is isomorphic to 

0 the commutant subalgebra Com(g, U(g)) by definition; 

0 the Weyl group-invariant subalgebra U([J)w of U([J) through 
the Harish-Chandra homomorphism [Harish-Chandra '51]; 

0 the opposite algebra of g-endomorphisms8 on the Whittaker 

module Ind~/x), where x(?) = K,(f, ?) : n+ ---+ (C is defined 
by a principal nilpotent element f = fprin En_ [Kostant'78]. 

8 By the Frobenius reciprocity, they correspond to Whittaker vectors. 

Principal Case 

Principal Affine W-algebras 

Roughly speaking, the universal principal affine W-algebra is an 
"affinization" of the center Z(g) at level£ EC, denoted by wc(g). 

W-algebras are NOT generated by affine Lie algebras in general!! 

Modules of the principal W-algebra wc(g) are obtained by 

0 coset construction [Goddard-Kent-Olive '85, ... ] ; 

0 free field realization [Fateev-Lukyanov '88, Feigin-Frenkel '92, ... ] ; 

0 semi-infinite cohomology [Feigin-Frenkel '90, ... ]. 

9This case is also known as Becchi-Rouet-Stora-Tyutin (BRST) cohomology. 
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Principal Case 

Free Field Realization 

The free field realization of the principal affine W-algebra wc(9) 
is a vertex algebraic analog of the Harish-Chandra Homomorphism 

Y: Z(9) "-+ U(~), 

which is known as the Miura map 

Here Tc stands for a certain symmetric invariant form on ~-

The image of the Miura map coincides with the union of kernels of 
rank(9) screening operators10 . 

10These operators are a vertex algebraic analog of simple reflections. 

Principal Case 

Generators of Principal W-algebra 

Let D = { di Ii = 1, ... , rank(9)} denote the multi-set of degrees 
of homogeneous polynomial generators for U(~)w = q~*]w. 

It is known that the set D always contains 2 which corresponds to 
the quadratic Casimir element n in Z(9). 

The counterpart ton gives a conformal vector w in we(9). 

Theorem 2.1 (e.g., Feigin-Frenkel '90) 

The Virasoro La-operator induced by w defines an N-gradation 

wc(9) = EB we(9)d 
d=O 

and there exists a finite set of generators { Jd; E wc(9)dJ which 
contains the conformal vector w = J 2 of we(9). 
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Principal Case 

Langlands Dual Groups 

Recall that connected complex reductive groups are determined by 
their root data up to isomorphism11 . 

Two connected complex reductive groups are said to be Langlands 
dual to each other when their root data are dual to each other. 

Let G be the simply-connected simple group associated tog and 

G denote its Langlands dual group associated to 9 = Lie(G). 

We note that G is the adjoint group of the simple Lie algebra 9-

11 See, e.g., Springer's textbook ('98, Birkhauser) for detial. 

Principal Case 

Feigin-Frenkel Duality 

The next theorem is known as the Feigin-Frenkel duality: 

Theorem 2.3 (Feigin-Frenkel '92, Aganagic-Frenkel-Okounkov '18) 

Forarbitrary(R,l) satisfyingrv(R+hv)(l+hv) = 1, whererv is 
the lacing number of g, there exists a vertex algebra isomorphism 
VTt(~) ~ VTt(6) which restricts to we(g) ~ wl(9). 

Remark 2.4 (Local Geometric Langlands Correspondence) 

By taking a suitable limit, we obtain natural isomorphism(s) 

of Poisson vertex algebras and the enveloping algebra of the last is 
naturally dual to the moduli space ofG-opers on Spec(C((z))). 
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Principal Case 

Beyond Principal Non-Super W-algebras 

Na·1ve Question (cf. Gaiotto-Rapcak '19) 

Can we generalize the Feigin-Frenkel duality to outside of principal 
non-super W-algebras? Are there any relationships among 

e principal W-superalgebras, 

e non-principal W-algebras, 

and relevant (super )geometric objects"'? 

•see, e.g., [Zeitlin '15] for the o.sp 112-Gaudin model and SPL2-superopers. 

Today's Main Topic: Feigin-Semikhatov Duality 

In 2004, B. Feigin and A. Semikhatov found a mysterious clue of a 
possible super / non-principal duality which is recently proved by 
Creutzig-Linshaw and Creutzig-Genra-Nakatsuka, independently. 

Beyond Principal Case 

Quantum Symmetry from Vertex Algebras 

Duality in Principal W algebras 

0 Beyond Principal W-algebras 

Main Results 

Examp es: C2-cofiri1te/non-C~-cofinite Cases 
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Beyond Principal Case 

Generalization to Non-Principal Case 

Let f be a genera I n i I potent element in g and x(?) = "'(!, ?) . 

The finite W-algebra12 U(g, f) is the deformation quantization 

of the Slodowy slice, which is a Poisson transversal at x in g*. 

Informally speaking, the universal affine W-algebra we(g, f) is 

an "affinization" of the finite W-algebra U(g, f) at level C. 

Now let's go into a bit more detail of its definition for later use. 

12 Originally introduced by A. Premet ('02) and generalized by Gan-Ginzburg ('02). 

Beyond Principal Case 

Good Gradings for Lie Superalgebras 

Let g = g0 EB g1 be a complex simple Lie superalgebra equipped 

with a suitably normalized supersymmetric invariant form "'· 

Definition 3.1 (Kac-Roan-Wakimoto '03) 

A Z/27.-homogeneous ½Z-gradation r: g = E0JE½zflJ is said to 
be a good grading adapted to a nilpotent element f E £Jo if 

0 the nilpotent element f lies in £1-1, 

0 ad(!) is injective for j 2: 1/2; surjective for j :::; 1/2. 

A good grading is said to be even if it is a '£.-gradation. 

Example 3.2 (Principal Non-Super Case) 

The principal '£.-gradation r prin of a simple Lie algebra gives an 
even good grading adapted to a principal nilpotent element fprin· 
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Beyond Principal Case 

Definition of Universal W-superalgebras 

Let r: g = EBjEZ 9j be an even good grading adapted to f and 

regard X := IIg>o EB IIg;_0 as a symplectic vector superspace13 . 

The quantum BRST cohomology complex (e.g., [de Boer-Tjin '93]) 

( U(g) ® eR(X) ~ C[g*] ® qx], d = dcE + <lt) 
admits a vertex superalgebra an a log (e.g., [Kac-Roan-Wakimoto '03]) 

Then the corresponding cohomology H* ( eR(g, f; r), dch) turns out 

to be independent14 of the choice of r and is denoted by we(g, j). 

13 Here II(?) stands for the Z/2:Z-parity reversing functor. 

14 Different choices of[' may give different conformal vectors on W£(g, f). 

Beyond Principal Case 

Trivial & Principal Non-Super Cases 

0 Since ftriv: g = 9o is adapted to f = 0, we have 

and the corresponding cohomology we(g, 0) coincides with 

the universal affine vertex superalgebra ve(g). 

0 When g is a Lie algebra, we have 

( eR(g, fprin; f prin) = VR(g) ® V};idim(n+), d) . 
Then we(g, fprin) provides a cohomological definition of the 
universal principal non-super W-algebra we(g). 
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Beyond Principal Case 

Miura Map for W-superalgebras 

Let r: g = E9jEZ 9j be an even good grading adapted to f. 

Theorem 3.3 (Arakawa '17, Genra '17, Nakatsuka '21) 

For arbitrary€, there exist a supersymmetric invariant form T£ on 
g0 and an injective vertex superalgebra homomorphism 

whose image is the union of kernels of certain screening operators. 

Note that De Sole-Kac-Valeri ('16) proved its Poisson analog. 

Beyond Principal Case 

Generators of W-su pera lgebras 

Let r: g = E9jEZ 9j be an even good grading adapted to f and 

set gf to be the centralizer of f in g. 

Theorem 3.5 (Kac-Wakimoto '04) 

For a Z/2Z x Z-homogeneous basis { Xi E gf n 9-j;} of gf, one 
can construct a set of generators 

{ J {x;} we( f). I . - 1 d' '} E g, J;+l i- , ... , 1mg 

containing the conformal vector wr = J{t} for we(g, J). 

Example 3.6 (Principal Non-Super Case) 

When (g, f, f) = (go, Jprin, r prin), we have gf = E9Jgf n 9-d;+l)-
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Beyond Principal Case 

Subregular W-algebras of type A 

Let g = s(n and f = !sub, a subregular15 nilpotent element of g. 

Then there exists an even good grading r adapted to f such that 
we have go'::::' ,5(2 EB cn-l and gf n go= Cxo. 

As a corollary, the element Hsub := J{xo} generates a Heisenberg 

subalgebra 7T"sub of w£(g, f) iff £ i- -n + n~l. 

Lemma 3.7 (Creutzig-Genra-Nakatsuka '21) 

The Heisenberg coset 7!"..l := Com(Yr(7rsub), VTt(go)) is a rank n 
Heisenberg vertex algebra and we have a free field realization 

Yrl: Com(7rsub,W\g,f)) Y7r..l. 

15The corresponding partition (the shape of Jordan cells) is n = (n - 1) + 1. 

Beyond Principal Case 

Principal W-superalgebras of type A 

Let 9 = .sl11n (= ,5(n11) and / = fprin in the even part !Jo= g(n

Then there exists an even good grading I' adapted to J such that 

we have 9o '::::' gC111 EB cn-l and gin 9o = Cxo. 

As a corollary, the element Hprin := J{io} generates a Heisenberg 

subalgebra 7T"prin of W£(g) := W£(g, /) iff £ #- -(n - 1) + n~l -

Lemma 3.8 (Creutzig-Genra-Nakatsuka '21) 

The Heisenberg coset ir..l := Com(Yr(7rprin), vtt(go)) is a rank n 
Heisenberg vertex algebra and we have a free field realization 

Ytl: Com(7rprin, w£(g)) y ir..l. 
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Beyond Principal Case 

Feigin-Semikhatov Duality 

The next theorem was conjectured by Feigin-Semikhatov ('04). 

Set (£0, hv; lo, hV) to be (-n + n~l, n; -(n - 1) + n~l, n - l). 

Then, for arbitrary(£,£) =I (£0 ,£0 ) satisfying(£+hv)(l+hv) = 1, 
there is a vertex algebra isomorphism 7l'..l ~ k..l which restricts to 

FS: Com(7rsub, W''(.sln, fsub)) ~ Com(7rprin, W\.sl11n)) 

through their Miura maps. 

Note that a similar duality between subregular W-algebras of type 
B and principal W-superalgebras of type C is obtained in lac. cit. 

Beyond Principal Case 

Kazama-Suzuki Duality 

The following theorem is a generalization of the Kazama-Suzuki 
and Feigin-Semikhatov-Tipunin coset construction for g = ..sl2. 

Theorem 3.10 (Creutzig-Genra-Nakatsuka '21) 

There exist two diagonal Heisenberg vertex subalgebras of rank one 

~(7rsub) C W£(g, f) ® Vi:, ~(7rprin) C W£(9) ® Vv=rz 
such that we have natural isomorphisms 

KS: Wf(g) --=+ Com(~(7rsub), W£(g, f) ® Vz), 

FST: W£(g, f)--=+ Com(~(7rprin), Wc(9) ® V v=rz), 

which are compatible with their Miura maps. 
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Beyond Principal Case 

How About Representations? 

So far, we obtain the following three constructions 

FS: Com(1rsub, W£(9, f)) ~ Com(1rprin, Wl(g)), 

KS: Wl(g) --=+ Com(~(1rsub), W\9, f) ® Vi:), 

FST: W'\9, f)--=+ Com(~(1rprin), Wl(g) ® V ~=nJ. 

The representation theory of a W-superalgebra can be described 

in terms of that of the corresponding affine vertex superalgebra, 
but the latter has been well-studied only in the non-super case. 

Our Problem: From Algebras to Representations 1 

To describe the representation theory of Wl(g) = wl(.sl11n, fprin) 
by using the dualities and relative semi-infinite cohomology. 

Main Results 

Quantum Symmetry from Vertex Algebras 

Duality in Principal W algebras 

Beyond Principal W algebra5 

Main Results 

Examp es: C2-cofiri1te/non-C~-cofinite Cases 
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Main Results 

Category of Weight Modules 

Let (V,w) be a conformal vertex superalgebra and 1r its Heisenberg 
vertex subalgebra generated by an abelian Lie algebra a. 

A V-module M is 7r-weight if it decomposes into a direct sum 

M = EB O,\(M)@ 7f,\ 
,\En* 

of 1r-modules, where 7r,\ stands for the Heisenberg Fock 1r-module, 
such that the coefficient Com(1r, V)-module O,\(M) decomposes 
into finite-dimensional generalized L0-eigenspaces. 

We write 'tfsub for the category of 7rsub-weight W£(9, f)-modules 
and 'iffprin for that of 1r prin-weight wl(g)-modules. 

Main Results 

Diagonal Coset Functor 

Recall that we have 
l ~ £ KS: W (sC11n) ----+ Com(~(7rsub), W (,s(n, !sub)@ Vi:), 

£ ~ l FST: W (,s(n, fsub) ----+ Com(~(7rprin), W (,sC11n)@ V yCiz;), 

Let a= CHsub and n = CHprin be the subspaces generating 7fsub 
and 7rprin, respectively. The next proposition is our starting point. 

Proposition (Creutzig-Genra-Nakatsuka-5. '21 +) 

For ,\ E a*, there exists >. E n* such that the following functors 

nt (?) := n,\((?)@ Vz): 'iffsub----+ 'iffprin, 

OI (?) := n 5. ( (?) @ V yCiz) : 'iffprin ----+ 'iffsub 

are mutually quasi-inverse on appropriate full subcategories. 
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Main Results 

Cohomologica I Interpretation 

Recall that relative Lie algebra cohomology plays an important 

role in connecting representation theory to geometric objects. 

Its semi-infinite geometric analog is introduced by B. Feigin ('84) 
and Frenkel-Garland-Zuckerman ('86) for "string field theories" 16 . 

More recently, T. Creutzig and A. Linshaw ('20+, '21 +) conjectured 

various W-superalgebras are related via the geometric Langlands 
kernels and the relative semi-infinite cohomology. 

In this work we prove their conjecture in the simplest case!! 

16 For a mathematical exposition, we refer the reader to [Voronov '93]. 

Main Results 

Geometric Langlands Kernel 

For 7/J-1 + 'l/J,- 1 = 1, the geometric Langlands kerne117 is 

A[glN, 7/Jl := EB v'l{'-N (>.) ® v'l{'1-N (>.) ® v mz+~ ® 1!", 

>-EP+ 

where p+ is the set of dominant integral weights for ,s(N, Vk(>.) is 

the corresponding Weyl module, 7r is the Heisenberg vertex algebra 

generated by g(1 , and s: p+-+ P/Q ~ 'lL/N'lL. 

When N = 1, this is just the free field vertex superalgebra 

which is independent of 7/J. 

17See [Creutzig-Gaiotto '20, Creutzig-Linshaw ·20+] for detail. 
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Main Results 

Relative Semi-infinite Cohomology 

For A EC, we have the following decomposition 

X,>.. :=Vi:® 7r,>.. = EB 1r!ub,>-.+µ ® 7rprin,.>.+µ' 
µ 

where 1r!ub has the negative level opposite to 7rsub· 

Therefore the relative semi-infinite complex18 

carries a level-zero a-action and one can construct the relative 
semi-infinite cohomology functor [Frenkel-Garland-Zuckerman '86] 

18 A! is isomorphic to the symplectic fermion vertex superalgebra of rank one. 

Main Results 

Coset == Cohomology [1/2] 
Our first main result is as follows: 

Main Result A (Creutzig-Genra-Nakatsuka-5. '21 +) 

For any A E a*, we have a natural isomorphism 

nt (?) ~ Hf (?) : 'lffsub ---+ 'lffprin 

of linear functors and a similar result for n;:(?) as well. 

For example, if we pick an object M of 'tff such that 

M = E9 f2,>..+µ(M) ® 7rsub,>-.+µ, 

µ 

then the relative semi-infinite complex C,>..(a, a, M) is given by 
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Main Results 

Coset == Cohomology [2/2] 
Our first main result is as follows: 

Main Result A (Creutzig-Genra-Nakatsuka-5. '21 +) 

For any ,\ E a*, we have a natural isomorphism 

ot (?) ~ Ht (?): 't'sub --+ 't'prin 

of linear functors and a similar result for Oi(?) as well. 

By using the following isomorphism [Frenkel-Garland-Zuckerman '86] 

Hi(7rsub,>.+µ, 01r!ub,>.+µ 0 A!1 ,dre1) ~ 1\,oC, 

we obtain the corresponding relative semi-infinite cohomology 

V 

Main Results 

Compatibility with Fusion Product 

Let Q denote the a-weight set of wc(.s(n, !sub) and 

Mi = E9 0>..i+µ(Mi) ® 1fsub,>..i+µ E Ob('t'sub) (,\i E a*) 
µEQ 

for i E {1, 2}. Then our second main result is as follows: 

Main Result B (Creutzig-Genra-Nakatsuka-5. '21 +) 

The fusion product M 1 [81 M 2 exists in a certain full subcategory of 
't'sub if and only if H"ti (M1) [81 H"t, (M2) exists in the corresponding 
full subcategory of't'prin· Moreover, we have a natural isomorphism 

Ht (M1) [81 H"t,(M2) ~ Ht+>..2 (M1 [81 M2)-

Lastly, we apply this result to two interesting cases!! 
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Quantum Symmetry from Vertex Algebras 

Duality in Principal W-ali:i;ebras 

Beyond Principal W algebrac; 

Main Results 

0 Examples: C2-cofinite/non-C2-cofinite Cases 

C2-cofinite Case 

Let We(g, J) denote the simple quotient of we(g, f) and so on. 

Theorem 5.1 (cf. Creutzig-Linshaw •20+ for r 2 3) 

When£=-n+~~~ and(n+ r ,n-1)=1, we have 

Com(,1rsub, We(9, f)) ~ Com(7rprin, Wg(g)) ~ WeJg,), 

where g, = .s(r and(£+ hv)-1 + (£1 + h'()-1 = 1. 

Theorem 5.2 (Creutzig-Genra-Nakatsuka '21) 

For£ as above, there is a chain of simple currenta extensions 

(w£1 (g,) 0 Vy(n+r)r,J 0 Vyn(n+r)Z <:;; Wz(g) 0 Vyn(n+r)Z <;;; Wt(g, f) @Vz. 

In particular, Wg(g) is C2-cofinite and rational. 

•Simple invertible objects in V-mod are referred to as simple currents of V. 

Examples 

Examples 
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Fusion Product of Wg(g)-modules 

Finally, our last main result is as follows: 

Main Result C (Creutzig-Genra-Nakatsuka-5. '21 +) 

For (n, r) E Z22 x Z2 1 with (n + r, n - 1) = 1, the semisimple 
monoidal structure of 

can be explicitly described in terms of that of 

Examples 

Wc!(g,)-mod = W_r+-;:$~/slr)-mod, (1) 

Wc(g, f)-mod = w-n+.!!..±2: (,sln, !sub)-mod = 'it'sub· (2) 
n-1 

Note that the structure of (1) is determined by Frenkel-Kac-Wakimoto ('92) and that 
of (2) for even n is by Arakawa-van Ekeren ('19+). We extend the latter result to all 
n by using the previous simple current extensions. 

Examples 

Non-C2-cofinite Case (Work in Progress) 

Even if the C2-cofiniteness fails, we expect that a braided monoidal 
structure may exist on a category of appropriate modules. 

In fact, at least when C = -n + n~l, -n + n!l, or generic, 

Com(7rsub, Wc(sln, !sub))~ Com(7rprin, Wc(sl11n)) 

contains a simple Virasoro VOA V and we expect the following: 

Strategy by Induction Method {cf. Creutzig-McRae-Yang '21) 

Let (W, 7r) denote (Wc(.sln, !sub), 7rsub) or (Wc(.sl11n), 7rprin)- Then 
the fusion product M1 ~ M2 of W-modules may exist when Mi for 
i E {1, 2} is an appropriate sum of C1-cofinite V ® 7r-submodules. 
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Future Directions [1/2] 

Since there is a conjectural relationship19 between 

for appropriate (k; q1, q2, q3), it seems natural to expect that 

't&'prin = W -(n-1)+ n-1 (s(11n)-mod 
n+r 

is related with the semisimplified category of finite-dimensional 
modules for a relevant quantum supergroup at root of unity. 

Examples 

19When m = 0, the right-hand side corresponds to the modular double of Uq(g[n)
See [Bershtein-Feigin-Merzon '18] for detail (cf. [Cheng-Kwon-Lam '08]). 

Future Directions [2/2] 

For example, the non-C2-cofinite subregular W-algebra 

'.Bn+l := W-n+_Ec_ (s(n, fsub) 
n+l 

corresponds to the (A1, A2n-1) Argyres-Douglas theory20 via 
the 2d / 4d correspondence [Adamovic-Creutzig-Genra-Yang '21]. 

In this context, the Feigin-Semikhatov duality can be regarded as 
a special case21 of the 6 3-triality in Y-algebras [Gaiotto-Rapcak '19]. 

We expect that the cohomological approach is efficient as well in 
extending our result to more general cases (work in progress). 

2°From this viewpoint, we may regard '.B2 as the free bosonic /3')'-system. 

21 Our case is related to Yn,1,0[\Ji] presented in [Gaiotto-Rapcak '19]. 

Examples 


