# ON THE AVERAGE JOINT CYCLE INDEX AND THE AVERAGE JOINT WEIGHT ENUMERATOR 

HIMADRI SHEKHAR CHAKRABORTY*, TSUYOSHI MIEZAKI, AND MANABU OURA


#### Abstract

In this paper, we introduce the concept of the complete joint cycle index and the average complete joint cycle index, and discuss a relation with the complete joint weight enumerator and the average complete joint weight enumerator respectively in coding theory.


Key Words and Phrases. Cycle index, Complete weight enumerator. 2010 Mathematics Subject Classification. Primary 11T71; Secondary 20B05, 11 H 71 .

## 1. Introduction

Let $G$ be a permutation group on a set $\Omega$, where $|\Omega|=n$. For each element $h \in G$, we can decompose the permutation $h$ into a product of disjoint cycles; let $c(h, i)$ be the number of $i$-cycles occurring by the action of $h$.

Definition 1.1 (Cameron [2]). The cycle index of $G$ is the polynomial $Z\left(G ; s_{1}, \ldots, s_{n}\right)$ in indeterminates $s_{1}, \ldots, s_{n}$ defined as

$$
Z\left(G ; s_{1}, \ldots, s_{n}\right)=\sum_{g \in G} s_{1}^{c(g, 1)} \ldots s_{n}^{c(g, n)} .
$$

Example 1.1. Let $G$ be the symmetric group of degree 4. Each partition of 4 is the cycle type of some element of $G$. We have the following number of elements of $G$ corresponding to each partition:

| Partition | 4 | 31 | 22 | 211 | 1111 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# of elements | 6 | 8 | 3 | 6 | 1 |

Table 1. Partitions and element numbers in $G$.

[^0]Therefore, the cycle index of $G$ is

$$
Z\left(G ; s_{1}, s_{2}, s_{3}, s_{4}\right)=6 s_{4}+8 s_{1} s_{3}+3 s_{2}^{2}+6 s_{2} s_{1}^{2}+s_{1}^{4}
$$

Definition 1.2 (Miezaki-Oura [6]). The complete cycle index of $G$ is the polynomial $Z(G ; s(h, i): h \in G, i \in \mathbb{N})$ in indeterminates $\{s(h, i) \mid$ $h \in G, i \in \mathbb{N}\}$ given by

$$
Z(G ; s(h, i): h \in G, i \in \mathbb{N})=\sum_{h \in G} \prod_{i \in \mathbb{N}} s(h, i)^{c(h, i)}
$$

where $\mathbb{N}:=\{x \in \mathbb{Z} \mid x>0\}$.
Let $\mathbb{F}_{q}$ be the finite field of order $q$, where $q$ is a prime power. An $\mathbb{F}_{q^{-}}$ linear code $C$ is a vector subspace of $\mathbb{F}_{q}^{n}$. The dual code of a code $C$ is

$$
C^{\perp}:=\left\{\mathbf{v} \in \mathbb{F}_{q}^{n} \mid \mathbf{u} \cdot \mathbf{v}=0 \text { for all } \mathbf{u} \in C\right\}
$$

where $\mathbf{u} \cdot \mathbf{v}:=\sum_{i=1}^{n} u_{i} v_{i}$ denotes the inner product of $\mathbf{u}$ and $\mathbf{v}$. If $C=C^{\perp}$, then $C$ is called self-dual. The weight of $\mathbf{u} \in C$ is denoted by $\mathrm{wt}(\mathbf{u}):=\#\left\{i \mid u_{i} \neq 0\right\}$. For $\mathbf{u} \in C$, we denote the composition of $\mathbf{u}$ by $s(\mathbf{u}):=\left(s_{a}(\mathbf{u}): a \in \mathbb{F}_{q}\right)$, where $s_{a}(\mathbf{u}):=\#\left\{i \mid u_{i}=a\right\}$.
Definition 1.3. Let $C$ be an $\mathbb{F}_{q}$-linear code of length $n$. Then the weight enumerator of $C$ is the homogeneous polynomial

$$
w_{C}(x, y):=\sum_{\mathbf{u} \in C} x^{n-\mathrm{wt}(\mathbf{u})} y^{\mathrm{wt}(\mathbf{u})} \in \mathbb{C}[x, y]
$$

and the complete weight enumerator of $C$ is defined as:

$$
\operatorname{cwe}_{C}\left(x_{a}: a \in \mathbb{F}_{q}\right):=\sum_{\mathbf{u} \in C} \prod_{a \in \mathbb{F}_{q}} x_{a}^{s_{a}(\mathbf{u})} \in \mathbb{C}\left[x_{a}: a \in \mathbb{F}_{q}\right]
$$

Definition 1.4. Let $C$ be an $[n, k]$ linear code over $\mathbb{F}_{q}$. We construct a permutation group $G(C)$ from $C$ whose cycle index is the weight enumerator. The group we construct is the additive group of $C$. We let it act on the set

$$
\{1, \ldots, n\} \times \mathbb{F}_{q} \quad(\text { a set of cardinality } n q)
$$

in the following way: the codeword $\left(u_{1}, \ldots, u_{n}\right)$ acts as the permutation

$$
(i, x) \mapsto\left(i, x+u_{i}\right)
$$

of the set $\{1, \ldots, n\} \times \mathbb{F}_{q}$. The group $G(C)$ is an elementary abelian group of order $q^{k}$. We call the cycle index

$$
Z\left(G(C) ; s_{1}, \ldots, s_{n}\right)
$$

the cycle index for a code $C$. We call the complete cycle index

$$
Z(G(C) ; s(g, i): g \in G(C), i \in \mathbb{N})
$$

the complete cycle index for a code $C$.
Example 1.2. Let $C:=\{(0,0),(0,1),(1,0),(1,1)\}=\mathbb{F}_{2}^{2}$ be a code. Again let $G(C)$ be the permutation groups on

$$
\{1,2\} \times \mathbb{F}_{2}=\{(1,0),(1,1),(2,0),(2,1)\}
$$

For $\mathbf{u}=\left(u_{1}, u_{2}\right) \in C$ acts as a permutation on $\{1,2\} \times \mathbb{F}_{2}$ as follows:

$$
(i, x) \mapsto\left(i, x+u_{i}\right)
$$

Now let $\mathbf{u}=(0,1) \in C$. Then

$$
\begin{aligned}
& (1,0) \mapsto(1,0+0)=(1,0) \Leftarrow 1 \text {-cycle } \\
& (1,1) \mapsto(1,1+0)=(1,1) \Leftarrow 1 \text {-cycle } \\
& (2,0) \mapsto(2,0+1)=(2,1) \mapsto(2,1+1)=(2,0) \Leftarrow 2 \text {-cycle. }
\end{aligned}
$$

Therefore the partition is 211.

| $\mathbf{u} \in C$ | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| Partitions | 1111 | 211 | 211 | 22 |

Table 2. Elements and Partitions in $G(C)$.

Therefore, the cycle index, $Z\left(G(C), s_{1}, s_{2}\right)=s_{1}^{4}+2 s_{1}^{2} s_{2}+s_{2}^{2}$.
Then the complete cycle index,

$$
\begin{aligned}
& Z(G(C) ; s(h, i): h \in G(C), i \in \mathbb{N}) \\
& \quad=s((0,0), 1)^{2} s((0,0), 1)^{2}+s((0,1), 1)^{2} s((0,1), 2)^{1} \\
& \quad+s((1,0), 2)^{1} s((1,0), 1)^{2}+s((1,1), 2)^{1} s((1,1), 2)^{1} .
\end{aligned}
$$

Theorem $1.1([2,6])$. Let $C$ be a linear code over $\mathbb{F}_{q}$ of length $n$, where $q$ is a power of the prime number $p$. Then we have the following results.
(i) $W_{C}(x, y)=Z\left(G(C) ; s_{1} \leftarrow x^{1 / q}, s_{p} \leftarrow y^{p / q}\right)$.
(ii) Let $T$ be a map defined as: for each $g=\left(u_{1}, \ldots, u_{n}\right) \in C$ and $i \in\{1, \ldots, n\}$, if $u_{i}=0$, then $s(g, 1) \mapsto x_{u_{i}}^{1 / q}$; if $u_{i} \neq 0$, then $s(g, p) \mapsto x_{u_{i}}^{p / q}$. Then $\mathbf{c w e}_{C}\left(x_{a}: a \in \mathbb{F}_{q}\right)=T(Z(G(C) ; s(g, i)$ : $g \in G(C), i \in \mathbb{N}))$.

The notion of the joint weight enumerator of two $\mathbb{F}_{q}$-linear codes was introduced in [5]. Further, the notion of the $g$-fold complete joint weight enumerator of $g$ linear codes over $\mathbb{F}_{q}$ was given in $[7]$.

Definition 1.5 ([7]). Let $C$ and $D$ be two linear codes of length $n$ over $\mathbb{F}_{q}$. The complete joint weight enumerator of codes $C$ and $D$ is defined as follows:

$$
\mathcal{J}_{C, D}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{2}\right):=\sum_{\mathbf{u} \in C, \mathbf{v} \in D} \prod_{\mathbf{a} \in \mathbb{E}_{q}^{2}} x_{\mathbf{a}}^{n_{\mathbf{a}}(\mathbf{u}, \mathbf{v})},
$$

where $n_{\mathbf{a}}(\mathbf{u}, \mathbf{v})$ denotes the number of $i$ such that $\mathbf{a}=\left(u_{i}, v_{i}\right)$.
Let $G$ and $H$ be two permutation groups on a set $\Omega$, where $|\Omega|=n$. Again let $\mathcal{G}_{G, H}:=G \times H$ be the direct product of $G$ and $H$. For each element $(g, h) \in \mathcal{G}_{G, H}$, where $g \in G$ and $h \in H$, we can decompose each permutation of the pair $(g, h)$ into a product of disjoint cycles. Let $c(g h, i)$ be the number of $i$-cycles occurring by the action of $g h$, where $g h$ denotes the product of permutations $g$ and $h$ which acts on $\Omega$ as $(g h)(\alpha)=h(g(\alpha))$ for any $\alpha \in \Omega$.

Definition 1.6. The complete joint cycle index of permutation groups $G$ and $H$ is the polynomial

$$
\mathcal{Z}_{G, H}(s((g, h), i)):=\mathcal{Z}\left(\mathcal{G}_{G, H} ; s((g, h), i):(g, h) \in \mathcal{G}_{G, H}, i \in \mathbb{N}\right)
$$

in indeterminates $s((g, h), i)$, where $(g, h) \in \mathcal{G}_{G, H}$ and $i \in \mathbb{N}$, given by

$$
\mathcal{Z}_{G, H}(s((g, h), i)):=\sum_{(g, h) \in \mathcal{G}_{G, H}} \prod_{i \in \mathbb{N}} s((g, h), i)^{c(g h, i)} .
$$

The concept of the complete joint cycle index is used in Theorem 2.1. Theorem 2.1 gives a relation between complete joint cycle index and complete joint weight enumerator. This generalizes the earlier work Theorem 1.1. Further, we give the notion of the $r$-fold complete joint cycle index and the ( $\ell, r$ )-fold complete joint weight enumerator. In this paper we also give a link between the $r$-fold complete joint cycle index and the $(\ell, r)$-fold complete joint weight enumerator. The link is a generalization of Theorem 2.1. This result presents us a new application of constructing the average $r$-fold complete joint cycle index and a motivation to establish a relation with the average $(\ell, r)$-fold complete joint weight enumerator.

## 2. The Relation

In this section, from any two $\mathbb{F}_{q}$-linear codes, we construct two permutation groups, whose complete joint cycle index is essentially the complete joint weight enumerator of codes.

Definition 2.1. Let $C$ and $D$ be two linear codes of length $n$ over $\mathbb{F}_{q}$. We construct from $C$ and $D$ two permutation groups $G(C)$ and $H(D)$
respectively. The groups $G(C)$ and $H(D)$ are the additive group of $C$ and $D$ respectively. We let each group act on the set $\{1, \ldots, n\} \times \mathbb{F}_{q}$ in the following way: the codeword $\left(u_{1}, \ldots, u_{n}\right)$ acts as the permutation

$$
(i, x) \mapsto\left(i, x+u_{i}\right)
$$

of the set $\{1, \ldots, n\} \times \mathbb{F}_{q}$. We define the product of two permutations $\left(u_{1}, \ldots, u_{n}\right) \in C$ and $\left(v_{1}, \ldots, v_{n}\right) \in D$ as follows:

$$
(i, x) \mapsto\left(i, x+u_{i}+v_{i}\right)
$$

of a set $\{1, \ldots, n\} \times \mathbb{F}_{q}$. Let $\mathcal{G}_{C, D}:=G(C) \times H(D)$. We call the complete joint cycle index

$$
\mathcal{Z}_{C, D}(s((g, h), i)):=\mathcal{Z}\left(\mathcal{G}_{C, D} ; s((g, h), i):(g, h) \in \mathcal{G}_{C, D}, i \in \mathbb{N}\right)
$$

the complete joint cycle index for codes $C$ and $D$.
Example 2.1. Let

$$
C:=\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}, D:=\left\{\binom{0}{0},\binom{1}{1}\right\}
$$

Then the complete joint weight enumerator is

$$
x_{00}^{2}+x_{01}^{2}+x_{00} x_{10}+x_{01} x_{11}+x_{10} x_{00}+x_{11} x_{01}+x_{10}^{2}+x_{11}^{2} .
$$

Let $G(C)$ and $H(D)$ are the permutation groups on $\{1,2\} \times \mathbb{F}_{2}$. In the following calculation, for $g \in G(C)$ and $h \in H(D)$, we prefer to write the indeterminates $s((g, h), i)$ as

$$
s\left(\binom{g}{h}, i\right) .
$$

Then the joint cycle index is

$$
\begin{aligned}
& s\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), 1\right)^{2} s\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), 1\right)^{2}+s\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), 2\right)^{1} s\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), 2\right)^{1} \\
+ & s\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 1\right)^{2} s\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 2\right)^{1}+s\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), 2\right)^{1} s\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), 1\right)^{2} \\
+ & s\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), 2\right)^{1} s\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), 1\right)^{2}+s\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), 1\right)^{2} s\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), 2\right)^{1} \\
+ & s\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), 2\right)^{1} s\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), 1\right)^{2}+s\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), 1\right)^{2} s\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), 1\right)^{2} .
\end{aligned}
$$

Now we have the following result.

Theorem 2.1. Let $C$ and $D$ be two codes over $\mathbb{F}_{q}$ of length $n$, where $q$ is a power of the prime number $p$. Let $\mathcal{J}_{C, D}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{2}\right)$ be the complete joint weight enumerator and $\mathcal{Z}\left(\mathcal{G}_{C, D} ; s((g, h), i):(g, h) \in \mathcal{G}_{C, D}, i \in \mathbb{N}\right)$ be the complete joint cycle index.

Let $T$ be a map defined as follows: for each $g=\left(u_{1}, \ldots, u_{n}\right) \in C$ and $h=\left(v_{1}, \ldots, v_{n}\right) \in D$, and for $i \in\{1, \ldots, n\}$, if $u_{i}+v_{i}=0$, then

$$
s((g, h), 1) \mapsto x_{u_{i} v_{i}}^{1 / q}
$$

if $u_{i}+v_{i} \neq 0$, then

$$
s((g, h), p) \mapsto x_{u_{i} v_{i}}^{p / q} .
$$

Then we have

$$
\mathcal{J}_{C, D}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{2}\right)=T\left(\mathcal{Z}\left(\mathcal{G}_{C, D} ; s((g, h), i):(g, h) \in \mathcal{G}_{C, D}, i \in \mathbb{N}\right)\right)
$$

## 3. r-fold Complete Joint Cycle Index

Let $G_{1}, G_{2}, \ldots, G_{r}$ be $r$ permutation groups on a set $\Omega$, where $|\Omega|=$ n. Again let $\mathcal{G}_{G_{1}, \ldots, G_{r}}:=G_{1} \times \cdots \times G_{r}$ be the direct product of $G_{1}, G_{2}, \ldots, G_{r}$. For any element $\left(g_{1}, g_{2}, \ldots, g_{r}\right) \in \mathcal{G}_{G_{1}, \ldots, G_{r}}$, where $g_{k} \in$ $G_{k}$ for $k \in\{1,2, \ldots, r\}$, we can decompose each permutation $g_{k}$ into a product of disjoint cycles. Let $c\left(g_{k}, i\right)$ be the number of $i$-cycles occurring by the action of $g_{k}$. Now the r-fold complete joint cycle index of $G_{1}, G_{2}, \ldots, G_{r}$ is the polynomial

$$
\begin{aligned}
& \mathcal{Z}_{G_{1}, \ldots, G_{r}}\left(s\left(\left(g_{1}, \ldots, g_{r}\right), i\right)\right) \\
& :=\mathcal{Z}\left(\mathcal{G}_{G_{1}, \ldots, G_{r}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{G_{1}, \ldots, G_{r}}, i \in \mathbb{N}\right)
\end{aligned}
$$

in indeterminates $s\left(\left(g_{1}, \ldots, g_{r}\right), i\right)$, where $\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{G_{1}, \ldots, G_{r}}$ and $i \in \mathbb{N}$, given by

$$
\begin{aligned}
& \mathcal{Z}_{G_{1}, \ldots, G_{r}}\left(s\left(\left(g_{1}, \ldots, g_{r}\right), i\right)\right) \\
& :=\sum_{\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{G_{1}, \ldots, G_{r}}} \prod_{i \in \mathbb{N}} s\left(\left(g_{1}, \ldots, g_{r}\right), i\right)^{c\left(g_{1} \cdots g_{r}, i\right)}
\end{aligned}
$$

where $g_{1} \cdots g_{r}$ denotes the product of permutations $g_{1}, \ldots, g_{r}$ which acts on $\Omega$ as $\left(g_{1} \cdots g_{r}\right)(\alpha)=g_{r}\left(\cdots g_{1}(\alpha) \cdots\right)$ for any $\alpha \in \Omega$. If $G_{1}=$ $\cdots=G_{r}=G$, then we call $\mathcal{Z}\left(\mathcal{G}_{G, \ldots, G} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in\right.$ $\mathcal{G}_{G, \ldots, G}, i \in \mathbb{N}$ ) the r-fold complete multi-joint cycle index of $G$.

Definition 3.1. We denote, $\Pi^{\ell}:=C_{1} \times \cdots \times C_{\ell}$, where $C_{1}, \ldots, C_{\ell}$ be the linear codes of length $n$ over $\mathbb{F}_{q}$. We call $\Pi^{\ell}$ as the $\ell$-fold joint code
of $C_{1}, \ldots, C_{\ell}$. We denote an element of $\Pi^{\ell}$ by

$$
\tilde{\mathbf{c}}:=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right):=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & \ldots & \vdots \\
a_{\ell 1} & \ldots & a_{\ell n}
\end{array}\right)
$$

where $\mathbf{c}_{i}:={ }^{t}\left(a_{1 i}, \ldots, a_{\ell i}\right) \in \mathbb{F}_{q}^{\ell}$ and $\mu_{j}(\tilde{\mathbf{c}}):=\left(a_{j 1}, \ldots, a_{j n}\right) \in C_{j}$.
Now let $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$ be the $\ell$-fold joint codes (not necessarily the same) over $\mathbb{F}_{q}$. For $k \in\{1, \ldots, r\}$, we denote, $\Pi_{k}^{\ell}:=C_{k 1} \times \cdots \times C_{k \ell}$, where $C_{k 1}, \ldots, C_{k \ell}$ be the linear codes of length $n$ over $\mathbb{F}_{q}$. An element of $\Pi_{k}^{\ell}$ is denoted by

$$
\tilde{\mathbf{c}}_{k}:=\left(\mathbf{c}_{k 1}, \ldots, \mathbf{c}_{k n}\right):=\left(\begin{array}{ccc}
a_{11}^{(k)} & \ldots & a_{1 n}^{(k)} \\
a_{21}^{(k)} & \ldots & a_{2 n}^{(k)} \\
\vdots & \ldots & \vdots \\
a_{\ell 1}^{(k)} & \ldots & a_{\ell n}^{(k)}
\end{array}\right),
$$

where $\mathbf{c}_{k i}:={ }^{t}\left(a_{1 i}^{(k)}, \ldots, a_{\ell i}^{(k)}\right) \in \mathbb{F}_{q}^{\ell}$. and $\mu_{j}\left(\tilde{\mathbf{c}}_{k}\right):=\left(a_{j 1}^{(k)}, \ldots, a_{j n}^{(k)}\right) \in C_{k j}$. Then the $(\ell, r)$-fold complete joint weight enumerator of $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$ is defined as follows:

$$
\mathcal{J}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{\ell \times r}\right):=\sum_{\tilde{\mathbf{c}}_{1} \in \Pi_{1}^{\ell}, \ldots, \tilde{c}_{r} \in \Pi_{r}^{\ell}} \prod x_{\mathbf{a}}^{n_{\mathbf{a}}\left(\tilde{\mathbf{c}}_{1}, \ldots, \tilde{\mathbf{c}}_{r}\right)},
$$

where $n_{\mathbf{a}}\left(\tilde{\mathbf{c}}_{1}, \ldots, \tilde{\mathbf{c}}_{r}\right)$ denotes the number of $i$ such that $\mathbf{a}=\left(\mathbf{c}_{1 i}, \ldots, \mathbf{c}_{r i}\right)$. For $r=2$ and $\ell=1$ the complete $(\ell, r)$-fold joint weight enumerator coincide with complete joint weight enumerator (Definition 1.5).

Definition 3.2. We construct from $\Pi^{\ell}$ a permutation group $G\left(\Pi^{\ell}\right)$. The group we construct is the additive group of $\Pi^{\ell}$. We let it act on the set $\{1, \ldots, n\} \times \mathbb{F}_{q}^{\ell}$ in the following way: $\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right)$ acts as the permutation

$$
\left(i,\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{\ell}
\end{array}\right)\right) \mapsto\left(i,\left(\begin{array}{c}
x_{1}+a_{1 i} \\
x_{2}+a_{2 i} \\
\vdots \\
x_{\ell}+a_{\ell i}
\end{array}\right)\right)
$$

of the set $\{1, \ldots, n\} \times \mathbb{F}_{q}^{\ell}$. Now let $G_{1}\left(\Pi_{1}^{\ell}\right), \ldots, G_{r}\left(\Pi_{r}^{\ell}\right)$ be $r$ permutation groups. We define the product of $r$ permutations $\left(\mathbf{c}_{11}, \ldots, \mathbf{c}_{1 n}\right) \in$
$\Pi_{1}^{\ell}, \ldots,\left(\mathbf{c}_{r 1}, \ldots, \mathbf{c}_{r n}\right) \in \Pi_{r}^{\ell}$ as follows:

$$
\left(i,\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{\ell}
\end{array}\right)\right) \mapsto\left(i,\left(\begin{array}{c}
x_{1}+\sum_{k=1}^{r} a_{1 i}^{(k)} \\
x_{2}+\sum_{k=1}^{r} a_{2 i}^{(k)} \\
\vdots \\
x_{\ell}+\sum_{k=1}^{r} a_{\ell i}^{(k)}
\end{array}\right)\right)
$$

of a set $\{1, \ldots, n\} \times \mathbb{F}_{q}^{\ell}$. Let $\mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}:=G_{1}\left(\Pi_{1}^{\ell}\right) \times \cdots \times G_{r}\left(\Pi_{r}^{\ell}\right)$. We call the $r$-fold complete joint cycle index

$$
\begin{aligned}
& \mathcal{Z}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}\left(s\left(\left(g_{1}, \ldots, g_{r}\right), i\right)\right) \\
& \quad:=\mathcal{Z}\left(\mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}, i \in \mathbb{N}\right)
\end{aligned}
$$

the $r$-fold complete joint cycle index for $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$.
Remark 3.1. Let $\Pi_{1}^{\ell}=\cdots=\Pi_{r}^{\ell}=\Pi^{\ell}$, where

$$
\Pi^{\ell}:=C_{1} \times \cdots \times C_{\ell}
$$

for the $\mathbb{F}_{q}$-linear codes $C_{1}, \ldots, C_{\ell}$ of length $n$. Then we call

$$
\mathcal{Z}\left(\mathcal{G}_{\Pi^{\ell}, \ldots, \Pi^{\ell}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi^{\ell}, \ldots, \Pi^{\ell}}, i \in \mathbb{N}\right)
$$

the $r$-fold complete multi-joint cycle index for $\Pi^{\ell}$.
Again let $C_{1}=\cdots=C_{\ell}=C$, for some $\mathbb{F}_{q^{-}}$-linear code $C$ of length $n$. Then we denote $\Pi^{\ell}$ by $C^{\ell}$, that is,

$$
C^{\ell}:=\underbrace{C \times \cdots \times C}_{\ell} .
$$

We call $\mathcal{Z}\left(\mathcal{G}_{C^{\ell}, \ldots, C^{\ell}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{C^{\ell}, \ldots, C^{\ell}}, i \in \mathbb{N}\right)$ the $r$-fold complete multi-joint cycle index for $C^{\ell}$. Note that if $r=1$, the $r$ fold complete multi-joint cycle index for $C^{\ell}$ coincide with the complete cycle index of genus $\ell$ for code $C$ in the sense of Miezaki-Oura [6].

Now we give a generalization of Theorem 2.1 as follows.
Theorem 3.1. For $k \in\{1, \ldots, r\}$ and $j \in\{1, \ldots, \ell\}$, let $C_{k j}$ be an $\mathbb{F}_{q^{-}}$ linear code of length $n$, where $q$ is a power of the prime number $p$. Again let $\Pi_{k}^{\ell}$ be the $\ell$-fold joint code of $C_{k 1}, \ldots, C_{k \ell}$. Let $\mathcal{J}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}\left(x_{\mathbf{a}}: \mathbf{a} \in\right.$ $\left.\mathbb{F}_{q}^{\ell \times r}\right)$ be the $(\ell, r)$-fold complete joint weight enumerator of $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$, and

$$
\mathcal{Z}\left(\mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}, i \in \mathbb{N}\right)
$$

be the r-fold complete joint cycle index for $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$.

## AVERAGE JOINT CYCLE INDEX

Let $T$ be a map defined as follows: for each $g_{1}=\left(\mathbf{c}_{11}, \ldots, \mathbf{c}_{1 n}\right) \in$ $\Pi_{1}^{\ell}, \ldots, g_{r}=\left(\mathbf{c}_{r 1}, \ldots, \mathbf{c}_{r n}\right) \in \Pi_{r}^{\ell}$, and for $i \in\{1, \ldots, n\}$, if $\sum_{k=1}^{r} \mathbf{c}_{k i}=\mathbf{0}$, then

$$
s\left(\left(g_{1}, \ldots, g_{r}\right), 1\right) \mapsto x_{\mathbf{c}_{1 i} \ldots c_{r i}}^{1 / q^{\ell}} ;
$$

if $\sum_{k=1}^{r} \mathbf{c}_{k i} \neq \mathbf{0}$, then

$$
s\left(\left(g_{1}, \ldots, g_{r}\right), p\right) \mapsto x_{\mathbf{c}_{1 i} \ldots c_{r i}}^{p / q^{e}} .
$$

Then we have

$$
\begin{aligned}
& \mathcal{J}_{\Pi_{1}^{e}, \ldots, \Pi_{r}^{e}}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{\ell \times r}\right)= \\
& \quad T\left(\mathcal{Z}\left(\mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}} ; s\left(\left(g_{1}, \ldots, g_{r}\right), i\right):\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{e}}, i \in \mathbb{N}\right)\right) .
\end{aligned}
$$

## 4. Main Results

In [8], the notion of the average joint weight enumerators was given. Further, the notion of the average $r$-fold complete joint weight enumerators was given in [4]. In this section, we give the concept of the average complete joint cycle index and provide a relation with average complete joint weight enumerator of codes. We also give an analogy of Theorem 3.1 for the average complete joint cycle index. For two permutation groups $G$ and $G^{\prime}$ on $\Omega$, where $|\Omega|=n$, we write $G^{\prime} \cong G$ if $G$ and $G^{\prime}$ are isomorphic as permutation groups.

Definition 4.1. Let $G_{1}, \ldots, G_{r}$ be $r$ permutation groups on a set $\Omega$, where $|\Omega|=n$. Then the $\left(G_{1}, \ldots, G_{r}\right)$-average $r$-fold complete joint cycle index of $G_{1}, \ldots, G_{r}$ is the polynomial

$$
\begin{aligned}
& \mathcal{Z}_{G_{1}, \ldots, G_{r}}^{a v}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right), i\right)\right):=\mathcal{Z}^{a v}\left(\mathcal{G}_{G_{1}^{\prime}, \ldots,,_{r}^{\prime}} ; s\left(\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right), i\right):\right. \\
& \left.\quad G_{1}^{\prime} \cong G_{1}, \ldots, G_{r}^{\prime} \cong G_{r},\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right) \in \mathcal{G}_{G_{G_{1}^{\prime}}^{\prime}, \ldots, G_{r}^{\prime}}, i \in \mathbb{N}\right),
\end{aligned}
$$

in indeterminates $s\left(\left(g^{\prime}, \ldots, g_{r}^{\prime}\right), i\right)$ where $g_{1}^{\prime} \in G_{1}^{\prime}, \ldots, g_{r}^{\prime} \in G_{r}^{\prime}$, and $i \in \mathbb{N}$ defined by

$$
\begin{aligned}
& \mathcal{Z}_{G_{1}, \ldots, G_{r}}^{a v}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right), i\right)\right) \\
& \quad:=\frac{1}{\prod_{k=1}^{r} N_{\cong}\left(G_{k}\right)} \sum_{G_{1}^{\prime} \cong G_{1}} \cdots \sum_{G_{r}^{\prime} \cong G_{r}} \mathcal{Z}_{G_{1}^{\prime}, \ldots, G_{r}}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right), i\right)\right),
\end{aligned}
$$

where $N \cong\left(G_{k}\right):=\sharp\left\{G_{k}^{\prime} \mid G_{k}^{\prime} \cong G_{k}\right\}$.
In this paper we only consider the case $G_{1}$-average complete joint cycle index. The $G_{1}$-average $r$-fold complete joint cycle index of $G_{1}, \ldots, G_{r}$ is the polynomial

$$
\mathcal{Z}_{G_{1}, \ldots, G_{r}}^{a v}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right)\right):=\mathcal{Z}^{a v}\left(\mathcal{G}_{G_{1}^{\prime}, \ldots, G_{r}} ; s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right):\right.
$$

$$
\left.G_{1}^{\prime} \cong G_{1},\left(g_{1}^{\prime}, \ldots, g_{r}\right) \in \mathcal{G}_{G_{1}^{\prime}, \ldots, G_{r}}, i \in \mathbb{N}\right)
$$

in indeterminates $s\left(\left(g^{\prime}, \ldots, g_{r}\right), i\right)$ where $g_{1}^{\prime} \in G_{1}^{\prime}, g_{2} \in G_{2}, \ldots, g_{r} \in G_{r}$, and $i \in \mathbb{N}$ defined by
$\mathcal{Z}_{G_{1}, \ldots, G_{r}}^{a v}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right)\right):=\frac{1}{N_{\cong}\left(G_{1}\right)} \sum_{G_{1}^{\prime} \cong G_{1}} \mathcal{Z}_{G_{1}^{\prime}, \ldots, G_{r}}\left(s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right)\right)$,
where $N \cong\left(G_{1}\right):=\sharp\left\{G_{1}^{\prime} \mid G_{1}^{\prime} \cong G_{1}\right\}$.
Example 4.1. Let $S_{3}$ be the symmetric group on $\{1,2,3\}$. Again let $G_{1}$ and $G_{2}$ be two subgroup of $S_{3}$ such that $G_{1}=\langle(1,2)\rangle$ and $G_{2}=\langle(1,3,2)\rangle$. Then the subgroups of $S_{3}$ that are isomorphic as permutation group to $G_{1}$ are $\langle(1,2)\rangle,\langle(1,3)\rangle,\langle(2,3)\rangle$. That is $N_{\cong}\left(G_{1}\right)=3$. Therefore

$$
\begin{aligned}
\mathcal{Z}_{G_{1}, G_{2}}^{a v} & \left(s\left(\left(g_{1}^{\prime}, g_{2}\right), i\right)\right) \\
=\frac{1}{3} & \left(\mathcal{Z}_{\langle(1,2)\rangle, G_{2}}\left(s\left(\left(g_{1}^{\prime}, g_{2}\right), i\right)\right)+\mathcal{Z}_{\langle(1,3)\rangle, G_{2}}\left(s\left(\left(g_{1}^{\prime}, g_{2}\right), i\right)\right)\right. \\
& \left.+\mathcal{Z}_{\langle(2,3)\rangle, G_{2}}\left(s\left(\left(g_{1}^{\prime}, g_{2}\right), i\right)\right)\right) \\
=\frac{1}{3} & \left(s(((1),(1)), 1)^{3}+s(((1),(1,2,3)), 3)^{1}+s(((1),(1,3,2)), 3)^{1}\right. \\
& +s(((1,2),(1)), 1)^{1} s(((1,2),(1)), 2)^{1} \\
& +s(((1,2),(1,2,3)), 1)^{1} s(((1,2),(1,2,3)), 2)^{1} \\
& +s(((1,2),(1,3,2)), 1)^{1} s(((1,2),(1,3,2)), 2)^{1} \\
& +s(((1),(1)), 1)^{3}+s(((1),(1,2,3)), 3)^{1}+s(((1),(1,3,2)), 3)^{1} \\
& +s(((1,3),(1)), 1)^{1} s(((1,3),(1)), 2)^{1} \\
& +s(((1,3),(1,2,3)), 1)^{1} s(((1,3),(1,2,3)), 2)^{1} \\
& +s(((1,2),(1,3,2)), 1)^{1} s(((1,2),(1,3,2)), 2)^{1} \\
& +s(((1),(1)), 1)^{3}+s(((1),(1,2,3)), 3)^{1}+s(((1),(1,3,2)), 3)^{1} \\
& +s(((2,3),(1)), 1)^{1} s(((2,3),(1)), 2)^{1} \\
& +s(((2,3),(1,2,3)), 1)^{1} s(((2,3),(1,2,3)), 2)^{1} \\
& \left.+s(((2,3),(1,3,2)), 1)^{1} s(((2,3),(1,3,2)), 2)^{1}\right)
\end{aligned}
$$

Definition 4.2. We write $S_{n}$ for the symmetric group acting on the set $\{1,2, \ldots, n\}$. Let $C$ be any linear code of length $n$ over $\mathbb{F}_{q}$, and $\mathbf{u}=$ $\left(u_{1}, \ldots, u_{n}\right) \in C$. Then $\sigma(\mathbf{u}):=\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right)$ for a permutation $\sigma \in$ $S_{n}$. Now the code $C^{\prime}:=\sigma(C):=\{\sigma(\mathbf{u}) \mid \mathbf{u} \in C\}$ for $\sigma \in S_{n}$ is called permutationally equivalent to $C$, and denoted by $C \sim C^{\prime}$. Then the average r-fold complete joint weight enumerator of codes $C_{1}, \ldots, C_{r}$

## AVERAGE JOINT CYCLE INDEX

over $\mathbb{F}_{q}$ are defined in [4] as:

$$
\mathcal{J}_{C_{1}, \ldots, C_{r}}^{a v}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{r}\right):=\frac{1}{N_{\sim}\left(C_{1}^{\prime}\right)} \sum_{C_{1}^{\prime} \sim C_{1}} \mathcal{J}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{r}\right),
$$

where $N_{\sim}\left(C_{1}^{\prime}\right):=\sharp\left\{C_{1}^{\prime} \mid C_{1}^{\prime} \sim C_{1}\right\}$.
We call the $G_{1}$-average $r$-fold complete joint cycle index

$$
\begin{aligned}
& \mathcal{Z}_{C_{1}, \ldots, C_{r}}^{a v}\left(s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right)\right):=\mathcal{Z}^{a v}\left(\mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}} ;\right. \\
& \left.\quad s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right): C_{1}^{\prime} \sim C_{1},\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right) \in \mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}}, i \in \mathbb{N}\right)
\end{aligned}
$$

the $G_{1}$-average $r$-fold complete joint cycle index for codes $C_{1}, \ldots, C_{r}$.
The following theorem gives a connection between the $G_{1}$-average of $r$-fold complete joint cycle index and the average of $r$-fold complete joint weight enumerator.

Theorem 4.1. Let $C_{1}, \ldots, C_{r}$ be the linear codes of length $n$ over $\mathbb{F}_{q}$, where $q$ is a power of the prime number $p$. Let $\mathcal{J}_{C_{1}, \ldots, C_{r}}^{a v}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{r}\right)$ be the average $r$-fold complete joint weight enumerator and

$$
\begin{aligned}
& \mathcal{Z}^{a v}\left(\mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}} ; s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right): C_{1}^{\prime} \sim C_{1},\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right) \in\right. \\
& \left.\mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}}, i \in \mathbb{N}\right)
\end{aligned}
$$

be the $G_{1}$-average complete joint cycle index for $C_{1}, \ldots, C_{r}$.
Let $T$ be a map defined as follows: for $\sigma \in S_{n}$, and $g_{1}=\left(u_{11}, \ldots, u_{1 n}\right) \in$ $C_{1}, g_{2}=\left(u_{21}, \ldots, u_{2 n}\right) \in C_{2}, \ldots, g_{r}=\left(u_{r 1}, \ldots, u_{r n}\right) \in C_{r}$, and for $i \in\{1, \ldots, n\}$, if $u_{1 \sigma(i)}+u_{2 i}+\cdots+u_{r i}=0$, then

$$
s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), 1\right) \mapsto x_{u_{1 \sigma(i)}}^{1 / q} u_{2 i} \ldots u_{r i} ;
$$

if $u_{1 \sigma(i)}+u_{2 i}+\cdots+u_{r i} \neq 0$, then

$$
s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), p\right) \mapsto x_{u_{1 \sigma(i)}}^{p / q} u_{2 i} \ldots u_{r i} .
$$

Then we have

$$
\begin{aligned}
& \mathcal{J}_{C_{1}, \ldots, C_{r}}^{a v}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{r}\right)= T\left(\mathcal { Z } ^ { a v } \left(\mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}} ; s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right):\right.\right. \\
&\left.\left.C_{1}^{\prime} \sim C_{1},\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right) \in \mathcal{G}_{C_{1}^{\prime}, C_{2}, \ldots, C_{r}}, i \in \mathbb{N}\right)\right) .
\end{aligned}
$$

Definition 4.3. For $S_{n}^{\ell}:=\underbrace{S_{n} \times \cdots \times S_{n}}_{\ell}$, we define the semidirect product of $S_{\ell}$ and $S_{n}^{\ell}$ as

$$
S_{\ell} \rtimes S_{n}^{\ell}:=\left\{\iota:=\left(\pi ; \sigma_{1}, \ldots, \sigma_{\ell}\right) \mid \pi \in S_{\ell} \text { and } \sigma_{1}, \ldots, \sigma_{\ell} \in S_{n}\right\} .
$$

We recall the $\ell$-fold joint code, $\Pi^{\ell}$ and for $\tilde{\mathbf{c}}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right) \in \Pi^{\ell}$, the group $S_{\ell} \rtimes S_{n}^{\ell}$ acts on $\Pi^{\ell}$ as

$$
\iota(\tilde{\mathbf{c}}):=\left(\iota\left(\mathbf{c}_{1}\right), \ldots, \iota\left(\mathbf{c}_{n}\right)\right):=\left(\begin{array}{ccc}
a_{\pi(1) \sigma_{1}(1)} & \ldots & a_{\pi(1) \sigma_{1}(n)} \\
a_{\pi(2) \sigma_{2}(1)} & \ldots & a_{\pi(2) \sigma_{2}(n)} \\
\vdots & \ldots & \vdots \\
a_{\pi(\ell) \sigma_{\ell}(1)} & \ldots & a_{\pi(\ell) \sigma_{\ell}(n)}
\end{array}\right)
$$

where $\iota\left(\mathbf{c}_{i}\right):={ }^{t}\left(a_{\pi(1) \sigma_{1}(i)}, \ldots, a_{\pi(\ell) \sigma_{\ell}(i)}\right) \in \mathbb{F}_{q}^{\ell}$. Then we call $\Pi^{\ell^{\prime}}:=$ $\iota\left(\Pi^{\ell}\right):=\left\{\iota(\tilde{\mathbf{c}}) \mid \tilde{\mathbf{c}} \in \Pi^{\ell}\right\}$ an equivalent $\ell$-fold joint code to $\Pi^{\ell}$, and denoted by $\Pi^{\ell^{\prime}} \sim \Pi^{\ell}$. Now the average ( $\ell, r$ )-fold complete joint weight enumerator of $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$ is defined by

$$
\mathcal{J}_{\Pi_{1}^{\ell}, \Pi_{2}^{\ell}, \ldots, \Pi_{r}^{\ell}}^{a v}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{\ell \times r}\right):=\frac{1}{N_{\sim}\left(\Pi_{1}^{\ell^{\prime}}\right)} \sum_{\Pi_{1}^{\ell^{\prime} \sim \Pi_{1}^{\ell}}} \mathcal{J}_{\Pi_{1}^{\ell^{\prime}}, \Pi_{2}^{\ell}, \ldots, \Pi_{r}^{\ell}}\left(x_{\mathbf{a}}\right)
$$

where $N_{\sim}\left(\Pi_{1}^{\ell^{\prime}}\right):=\sharp\left\{\Pi_{1}^{\ell^{\prime}} \mid \Pi_{1}^{\ell^{\prime}} \sim \Pi_{1}^{\ell}\right\}$. We call the $G_{1}$-average $r$-fold complete joint cycle index

$$
\begin{aligned}
& \mathcal{Z}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}^{a v}\left(s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right)\right):=\mathcal{Z}^{a v}\left(\mathcal{G}_{\Pi_{1}^{\prime}, \Pi_{2}^{\ell}, \ldots, \Pi_{r}^{\ell}}\right. \\
& \left.s\left(\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right), i\right): \Pi_{1}^{\ell^{\prime}} \sim \Pi_{1}^{\ell},\left(g_{1}^{\prime}, g_{2}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell^{\prime}}, \Pi_{2}^{\ell}, \ldots, \Pi_{r}^{\ell}}, i \in \mathbb{N}\right)
\end{aligned}
$$

the $G_{1}$-average $r$-fold complete joint cycle index for $\ell$-fold joint codes $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$.

In the following theorem, we give a relationship between the average $(\ell, r)$-fold complete joint weigh enumerator and the $G_{1}$-average $r$-fold complete joint cycle index for $\ell$-fold joint codes as a generalization of Theorem 4.1.
Theorem 4.2. For $k \in\{1, \ldots, r\}$ and $j \in\{1, \ldots, \ell\}$, let $C_{k j}$ be an $\mathbb{F}_{q}$-linear code of length $n$, where $q$ is a power of the prime number $p$. Again let $\Pi_{k}^{\ell}$ be an $\ell$-fold joint code of $C_{k 1}, \ldots, C_{k \ell}$. Let $\mathcal{J}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}^{a v}\left(x_{\mathbf{a}}\right.$ : $\left.\mathbf{a} \in \mathbb{F}_{q}^{\ell \times r}\right)$ be the average $(\ell, r)$-fold complete joint weight enumerator of $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$, and

$$
\begin{aligned}
& \mathcal{Z}^{a v}\left(\mathcal{G}_{\iota \Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\Gamma_{r}}} ; s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right): \Pi_{1}^{\ell^{\prime}} \sim \Pi_{1}^{\ell},\left(g_{1}^{\prime}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell^{\prime}}, \ldots, \Pi_{r}^{\ell}}\right. \\
&i \in \mathbb{N})
\end{aligned}
$$

be the $G_{1}$-average $r$-fold complete joint cycle index for $\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}$.
Let $T$ be a map defined as follows: for $\iota=\left(\pi ; \sigma_{1}, \ldots, \sigma_{\ell}\right) \in S_{\ell} \rtimes S_{n}^{\ell}$, and $g_{1}=\left(\mathbf{c}_{11}, \ldots, \mathbf{c}_{1 n}\right) \in \Pi_{1}^{\ell}, \ldots, g_{r}=\left(\mathbf{c}_{r 1}, \ldots, \mathbf{c}_{r n}\right) \in \Pi_{r}^{\ell}$, and for $i \in\{1, \ldots, n\}$, if $\iota\left(\mathbf{c}_{1 i}\right)+\mathbf{c}_{2 i}+\cdots+\mathbf{c}_{r i}=\mathbf{0}$, then

$$
s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), 1\right) \mapsto x_{\iota\left(\mathbf{c}_{1 i}\right) \mathbf{c}_{2 i} \ldots \mathbf{c}_{r i}}^{1 / q^{\ell}}
$$

$$
\begin{aligned}
& \text { if } \iota\left(\mathbf{c}_{1 i}\right)+\mathbf{c}_{2 i}+\cdots+\mathbf{c}_{r i} \neq \mathbf{0} \text {, then } \\
& \qquad s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), p\right) \mapsto x_{\iota\left(\mathbf{c}_{1 i}\right) \mathbf{c}_{2 i} \ldots \mathbf{c}_{r i}}^{p / \mathbf{q}^{\ell}} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\mathcal{J}_{\Pi_{1}^{\ell}, \ldots, \Pi_{r}^{\ell}}^{a v}\left(x_{\mathbf{a}}: \mathbf{a} \in \mathbb{F}_{q}^{\ell \times r}\right)= & T\left(\mathcal { Z } ^ { a v } \left(\mathcal{G}_{\Pi_{1}^{\ell^{\prime}}, \ldots, \Pi_{r}^{\ell}} ; s\left(\left(g_{1}^{\prime}, \ldots, g_{r}\right), i\right):\right.\right. \\
& \left.\left.\Pi_{1}^{\ell^{\prime}} \sim \Pi_{1}^{\ell},\left(g_{1}^{\prime}, \ldots, g_{r}\right) \in \mathcal{G}_{\Pi_{1}^{\ell^{\prime}}, \ldots, \Pi_{r}^{\ell}}, i \in \mathbb{N}\right)\right)
\end{aligned}
$$

## Future Research

We would like to study with the concept of the joint Jacobi polynomial for codes over $\mathbb{F}_{q}$. We are also interested in studying average joint Jacobi polynomials of codes over $\mathbb{F}_{q}$. Further we would like to investigate the average Jacobi intersection number of codes.

## Acknowledgments

The second named author is supported by JSPS KAKENHI (18K03217).

## References

[1] E. Bannai, S.T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4 1194-1205.
[2] P.J. Cameron, Cycle index, weight enumerator, and Tutte polynomial, Electron. J. Combin. 9 (2002), no. 1, Note 2.
[3] P.J. Cameron, Polynomial aspects of codes, matroids and permutation groups, http://www.maths.qmul.ac.uk/~pjc/csgnotes/cmpgpoly.pdf.
[4] H.S. Chakraborty and T. Miezaki, Average of complete joint weight enumerators and self-dual codes, submitted.
[5] F.J. MacWilliams, C.L. Mallows and J.H. Conway, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Information Theory IT-38 (1972), 794-805.
[6] T. Miezaki and M. Oura, On the cycle index and the weight enumerator, Des. Codes Cryptogr. 87 (2019), no. 6, 1237-1242.
[7] I. Siap and D.K. Ray-Chaudhuri, On $r$-fold Complete Weight Enumerator of $r$ Linear Codes, in: Contemp. Math. American Math. Society, 259, (2000), 501-513.
[8] T. Yoshida, The average of joint weight enumerators, Hokkaido Math. J. 18 (1989), 217-222.
[9] T. Yoshida, The average intersection number of a pair of self-dual codes, Hokkaido Math. J. 20 (1991), 539-548.

## CHAKRABORTY, MIEZAKI, AND OURA

(1) Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan, (2) Department of Mathematics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh,

Email address: himadri-mat@sust.edu
Faculty of Education, University of the Ryukyus, Okinawa 903-0213, JAPAN,

Email address: miezaki@edu.u-ryukyu.ac.jp
Faculty of Mathematics and Physics, Kanazawa University, Ishikawa 920-1192, Japan

Email address: oura@se.kanazawa-u.ac.jp


[^0]:    Date: March 30, 2021.
    *Corresponding author.

