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Abstract. In this paper, we study a convex optimization problem which 
minimizes a convex function over a convex feasible set defined by finitely many 
locally Lipschitz constraints (not necessarily convex or differentiable) in the 
face of data uncertainty. Under a non-degeneracy condition and the Slater 
constraint qualification, we present Karush-Kuhn-Tucker optimality conditions 
for the robust convex optimization problem. Moreover, we apply the obtained 
results to study the KKT optimality conditions for a quasi E-solution to the 
robust convex optimization problem. 

1 Introduction 
A standard constrained convex programming problem is minimizing a convex 
function over a convex feasible set C, which is usually given by convex inequality 
constraints, that is, 

min f(x) subject to x EC, 
xEJRn 

(P) 

where f: ]Rn---+ lR and C := {x E ]Rn: gi(x) S O,i = 1, ... ,m}, here gi: ]Rn---+ 

JR, i = 1, ... , mare convex functions. 
However, the convex feasible set C of problem (P) may not be described 

by convex inequality constraints. In 2010, Lasserre [11] studied a convex op­
timization problem, whose objective function is differentiable and convex, and 
constraint functions are differentiable but not necessarily convex (surely the 
feasible set shall be convex), and obtained the Karush-Kuhn-Tucker (KKT) 
optimality conditions (both necessary and sufficient) with the help of the Slater 
constraint qualification and an additional non-degeneracy condition. In 2013, 
Dutta and Lalitha [10] extended the study to a nonsmooth scenario involving the 
locally Lipschitz functions, say concretely, they considered a convex optimiza­
tion problem, whose objective function is convex (not necessarily differentiable) 

1This paper is based on the published one "Approximate optimality conditions for robust 
convex optimization without convexity of constraints. Linear and Nonlinear Analysis 5 (2019), 
no.l, 173-182" written by Z. Hong, L.G. Jiao and D.S. Kim. 
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and the constraint functions are locally Lipschitz (not necessarily convex or 
differentiable). They showed that if the Slater constraint qualification and a 
simple non-degeneracy condition were satisfied then the KKT type optimality 
condition was both necessary and sufficient. 

In this paper, we mainly apply some results of Sisarat et al. [14] to study 
the KKT optimality conditions for a quasi E-solution to the robust convex opti­
mization problem. 

Consider the following convex optimization problem: 

min f(x) s.t. gi(x) :::; 0, i = 1, ... , m, (CP) 

where f : ]Rn --t lR is a convex function and gi : ]Rn --t lR, i = 1, ... , m, are 
locally Lipschitz functions such that the set Si := {x E Rn : gi(x) :::; 0} is 
convex, and then the feasible set S = n~1 Si is also convex. 

The convex optimization problem (CP) in the face of data uncertainty in 
the constraints can be written by the following problem: 

min f(x) s.t. gi(x, vi) :::; 0, i = 1, ... , m, (UCP) 

where f : ]Rn --t lR is a convex function, gi : ]Rn x lRq --t JR, gi(·, vi) is a locally 
Lipschitz function and gi(x, •) is a concave function, and vi E lRq is an uncertain 
parameter which belongs to the compact convex set Vi C lRq, i = 1, ... , m. 

In this work, we treat the robust approach for (UCP), which is the worst 
case approach for (UCP); see, for example, [1-4, 13]. Now, we associate with 
(UCP) its robust counterpart: 

min f(x) s.t. gi(x, vi) :::; 0, 'vvi E Vi, i = 1, ... , m. (RCP) 

Denote by F := {x E ]Rn: gi(x,vi):::; 0, 'vvi E Vi, i = 1, ... ,m} as the 
feasible set of (RCP), and assume here the feasible set F is convex. Set F = 
n:1 nv;EV; Fi(vi), where Fi(vi) := {x E lRn : gi(x,vi) :::; 0}, Vi E Vi, i = 

1, ... ,m. 
Let x E F, I:= {1, ... ,m} and define functions 'I/Ji: ]Rn --t lR by 'I/Ji(x) := 

max{gi(x, vi): Vi E Vi}, i EI. Let I(x) := {i EI: 'I/Ji(x) = 0}. We put for each 
i E I(x), 

Definition 1.1 Consider the problem (RCP). We say that the non-degeneracy 
condition holds at x E F if for all i E I(x) and all Vi E Vi(x) 

0 t/. 8°gi(x,vi)-

The feasible set F is said to satisfy the non-degeneracy condition if it holds for 
every x E F. 

Remark 1.1 This condition was introduced firstly by Lasserre /11} in the case 
that gi is differentiable. Motivated by this idea, Dutta and Lalitha /10} extended 
the non-degeneracy condition to the nonsmooth case. 
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2 Preliminaries 
In this section, we recall some notations and give preliminary results for next 
sections. Throughout this paper, ]Rn denotes then-dimensional Euclidean space 
with the inner product (·, •) and the associated Euclidean norm II· II- We say that 
a set r in ]Rn is convex whenever µa 1 + (1- µ)a 2 Er for allµ E [O, 1], a 1, a 2 E f. 
We denote the domain off by domf, that is, domf := {x E ]Rn: f(x) < +oo}. 
f is said to be convex if for all A E [O, 1], 

f((l - A)x + Ay) '.S (1- ,\)f(x) + ,\f(y) 

for all x, y E ]Rn. The function f is said to be concave whenever - f is convex. 
The ( convex) subdifferential off at x E ]Rn is defined by 

of(x) = { {x* E ]Rn! (x*, y - x) '.S f(y) - f(x), \fy E lRn}, if x E domf, 
0, otherwise. 

Let g : ]Rn ---+ lR be a locally Lipschitz function, that is, for each x E ]Rn, there 
exist an open neighborhood U and a constant L > 0 such that for ally and z 
in U, 

lg(y) - g(z)I :S LIIY - zll-
Definition 2.1 For each d E ]Rn, the Clarke directional derivative of g at x E 

]Rn in the direction d, denoted by g 0 ( x; d), is given by 

0 ( d) 1. g(x+h+td)-g(x+h) 
g x; = 1msup . 

h➔O, t➔O+ t 

We also denote the usual one-sided directional derivative of g at x by g'(x; d). 
Thus 

'(x· d) = lim g(x + td) - g(x) 
g ' t➔O+ t ' 

whenever this limit exists. 

Definition 2.2 The Clarke subdifferential of g at x, denoted by o 0 g(x), is the 

(nonempty) set of all e in ]Rn satisfying the following condition: 

We summarize some fundamental results in the calculus of the Clarke sub-
differential (for more details, see [5-8, 12]): 

• o0 g(x) is a nonempty, convex, compact subset of lRn; 

• The function d rt g0 (x; d) is convex; 

• For every d in ]Rn, one has 

g0 (x;d) = max{(e,d): e E o 0 g(x)}. (2.1) 
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Let V C ]Rq be a compact set and let g: ]Rn x V -t lR be a given function. 
Here after all, we assume that the following assumptions hold: 

• (Al) g(x, v) is upper semicontinuous in (x, v). 

• (A2) g is locally Lipschitz in x, uniformly for v in V, that is, for each 
x E ]Rn, there exist an open neighborhood U of x and a constant L > 0 
such that for ally and z in U, and v E V, 

lg(y, v) - g(z, v)I ::::; LIIY - zll-

• (A3) g~(x, v; •) = g~(x, v; •), the derivatives being with respect to x. 

We define a function 'ljJ: ]Rn -t lR by 

'l/;(x) := max{g(x, v) : v E V}, 

and observe that our assumptions (Al)-(A2) imply that 'ljJ is defined and finite 
(with the maximum defining 'ljJ attained) on JRn. Let 

V(x) := { v E V: g(x, v) = 'l/;(x)}, 

then for each x E lRn, V(x) is a nonempty closed set. 
The following lemma, which is a nonsmooth version of Danskin's theorem 

[9] for max-functions, makes connection between the functions 'l/J'(x; d) and 
g~(x, v; d). 

Lemma 2.1 Under the assumptions (Al)-(A3), the usual one-sided directional 
derivative 'lj;' ( x; d) exists, and satisfies 

'l/J'(x;d) = 'l/J 0 (x;d) max{g~(x, v; d) : v E V(x)} 

max{ (l, d) : l E 8~g(x, v), v E V(x)}. 

The following result will be useful in the sequel. 

Lemma 2.2 [13] In addition to the basic assumptions (Al)-(A3), suppose that 
V is convex, and that g(x, •) is concave on V, for each x E U. Then the following 
statements hold: 

(i) The set V(x) is convex and compact. 

(ii) The set 

8~g(x, V(x)) := {l: :3v E V(x) such that l E 8~g(x, v)} 

is convex and compact. 

(iii) 8°'l/;(x) = {l: :3v E V(x) such that l E 8~g(x,v)}. 

It is worth noting that the concavity of gi(x, •) plays an important role, since 
our main results (Theorem 3.1, 3.2 and 3.3) shall be obtained with the aid of 
the above Lemma 2.2. 
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3 Optimality Conditions 

First, the Slater constraint qualification along with the non-degeneracy condi­
tion gives the following equivalent characterization of the convex set F under 
the robust counterpart scenario. 

Theorem 3.1 Let F be given in the problem (RCP). Assume that each gi 
satisfies the assumptions (Al)-(A3). Moreover, assume that the non-degeneracy 
condition holds at x E F, and the Slater constraint qualification also holds, that 
is, there exists xo E ~n such that gi(xo, vi) < 0, for all Vi E Vi, i = 1, ... , m. 
Then Fis convex if and only if for all i E I(x), there exists Vi E Vi(x) such that 

9i~ (x, vi; y - x) :S 0, for all x, y E F. 

The following result is a robust KKT optimality theorem for (RCP), which 
is a robust version of [10, Theorem 2.4]. 

Theorem 3.2 Let us consider the problem (RCP). Assume that each gi satis­
fies the assumptions (Al)-(A3). Moreover assume that the non-degeneracy con­
dition holds at x E F, and the Slater constraint qualification also holds. Then 
x E F is an optimal solution of f over F if and only if there exist ,\i ?: 0 and 
Vi E Vi(x), i = 1, ... , m, such that 

m 

i=l 

The following example examines the validness of our main results whenever 
non-degeneracy condition is satisfied. 

Example 3.1 Consider the following convex optimization problem with data 
uncertainty: 

(RCP) 2 min -x 

s.t. x E F 2 := {x E ~: max{vx3 ,vx}- 2 :S 0, \:/v E V}, 

where V := [1,2]. Let f(x) = -x and g(x,v) = max{vx3 ,vx}- 2. Then we can 
easily see that F 2 = (-oo, 1] is the robust feasible set of (RCP) 2 and x = l is 
an optimal solution of (RCP) 2 . Clearly, g satisfies the assumptions (Al )-(A3), 
and the Slater condition holds for (RCP) 2 . Moreover, V(x) = {2}, and so for 
v := 2 E V(x), 0 (/. o0 g(x, v) = [2, 6], i.e., the non-degeneracy condition holds. 

- 1 Let O :S >. :S 2. Then we have 

o E af (x) + .\a~g(x, v) = { -1} + .\[2, 6], 

o = .\g(x, v). 

So, Theorem 3.2 holds. 
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Definition 3.1 Given E ~ 0, a point x E F is said to be a quasi E-solution of 
problem (RCP), if 

f(x) :S f(x) + v'Ellx - xii, \/x E F. 

By employing Theorem 3.2, we give the following robust KKT optimality 
theorem for a quasi E-solution in (RCP). 

Theorem 3.3 Let us consider the problem (RCP). Assume that each gi satis­
fies the assumptions (Al)-(A3). Moreover assume that the non-degeneracy con­
dition holds at x E F, and the Slater constraint qualification also holds. Then 
x E F is a quasi E-solution of (RCP) if and only if there exist ~i > 0 and 
iii E Vi(x), i = 1, ... , m, such that 

m 

i=l 

where JIB stands for the unit ball. 
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