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1 Introduction 

Let H be a real Hilbert space and let C be a nonempty subset of H. In 2010, Kocourek, 
Takahashi and Yao [11] defined a broad class of nonlinear mappings in a Hilbert space: A 
mapping T : C ➔ H is called generalized hybrid if there exist a, (3 E lR such that 

allTx -Tyll 2 + (1- a)llx -Tyll 2 S f311Tx -yll 2 + (1-/3)11x-yll 2 , Vx,y EC. (1.1) 

Such a mapping T is called (a, (3)-generalized hybrid. Notice that the class of generalized 
hybrid mappings covers several well-known mappings. For example, a (1,0)-generalized hybrid 
mapping is nonexpansive, i.e., 

IITx - Tyl I S llx - YII, Vx, y EC. 
It is nonspreading [14, 15] for a = 2 and (3 = 1, i.e., 

2IITx - Tyll 2 S IITx - Yll 2 + IITy - xii 2, Vx, y EC. 
It is also hybrid [22] for a = ~ and (3 = ½, i.e., 

3IITx -Tyll 2 S llx - Yll 2 + IITx - Yll 2 + II Ty - xll 2 , 'ix, YE C. 
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In general, nonspreading and hybrid mappings are not continuous [8]. Recently, by using 
the hybrid method of Nakajo and Takahashi [17], Hojo and Takahashi [2] obtained a strong 
convergence theorem for two noncommutative generalized hybrid mappings in a Hilbert space. 
Furthermore, by using the shrinking projection method of Takahashi, Takeuchi and Kubota 
[25], they proved another strong convergence theorem in a Hilbert space. 

In this article, using the hybrid method defined by N akajo and Takahashi [17], we first obtain 
a strong convergence theorem for two noncommutative nonlinear mappings in a Banach space. 
Next, using the shrinking projection method defined by Takahashi, Takeuchi and Kubota [25], 
we prove another strong convergence theorem for the mappings in a Banach space. Using 
these results, we get well-known and new strong convergence theorems by the hybrid method 
and the shrinking projection method in a Hilbert space and a Banach space. 

2 Preliminaries 

Let Ebe a real Banach space with norm II · II and let E* be the topological dual space of E. 
We denote the value of y* EE* at x EE by (x, y*). When {xn} is a sequence in E, we denote 
the strong convergence of {xn} to x E Eby Xn ➔ x and the weak convergence by Xn ---'- x. 
The modulus o of convexity of E is defined by 

A Banach space E is said to be uniformly convex if o(E) > 0 for every E > 0. A uniformly 
convex Banach space is strictly convex and reflexive. Let C be a nonempty subset of a Banach 
space E. A mapping T : C ➔ E is nonexpansive if IITx - Tyl I :S llx - YII for all x, y E C. A 
mapping T: C ➔ Eis quasi-nonexpansive if F(T) =/- 0 and IITx - YII :S llx - YII for all x EC 
and y E F(T). If C is a nonempty, closed and convex subset of a strictly convex Banach 
space E and T: C ➔ E is quasi-nonexpansive, then F(T) is closed and convex; see Itoh and 
Takahashi [9]. For a Banach space E,. the duality mapping J from E into 2E* is defined by 

Jx = {x* EE*: (x,x*) = llxll 2 = llx*ll 2 }, 1::/x EE. 

Let U = {x EE: llxll = l}. The norm of Eis said to be Gateaux differentiable if for each 
x, y E U, the limit 

1. llx + tyll - llxll 
1m------

t-+D t 
(2.1) 

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single
valued mapping of E into E*. We also know that E is reflexive if and only if J is surjective, 
and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly 
convex and reflexive Banach space, then J is a single-valued bijection. The norm of E is said 
to be uniformly Gateaux differentiable if for each y E U, the limit (2.1) is attained uniformly 
for x E U. It is also said to be Frechet differentiable if for each x E U, the limit (2.1) is 
attained uniformly for y E U. A Banach space Eis called uniformly smooth if the limit (2.1) 
is attained uniformly for x, y E U. It is known that if the norm of E is uniformly Gateaux 
differentiable, then J is uniformly norm-to-weak* continuous on each bounded subset of E, 
and if the norm of E is Frechet differentiable, then J is norm-to-norm continuous. If E is 
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uniformly smooth, J is uniformly norm-to-norm continuous on each bounded subset of E. For 
more details, see [19, 20, 21]. Let Ebe a smooth Banach space. The function </J: Ex E-+ lR 
is defined by 

</J(x, y) = llxll 2 - 2(x, Jy) + IIYll 2 , \::Ix, y EE, 

where J is the duality mapping of E; see [1] and [10]. We have from the definition of </J that 

<j)(x, y) = <j)(x, z) + </J(z, y) + 2(x - z, J z - Jy), \::Ix, y, z EE. (2.2) 

From (llxll - IIYll)2 :S <j)(x, y) for all x, y EE, we can see that <j)(x, y) 2': 0. Furthermore, we 
can obtain the following equality: 

2(x - y, Jz - Jw) = </J(x, w) + </J(y, z) - </J(x, z) - </J(y, w) \::Ix, y, z, w EE. (2.3) 

If E is additionally assumed to be strictly convex, then 

</)(x, y) = 0-{==} X = y. (2.4) 

Let E be a smooth, strictly convex and reflexive Banach space. Let </). : E* x E* -+ ]I!'. be the 
function defined by 

where J is the duality mapping of E. It is easy to see that 

<j)(x, y) = <j).(Jy, Jx), \::Ix, y EE. (2.5) 

The following results are in Xu [28] and Kamimura and Takahashi [10]. 

Lemma 2.1 ([28]). Let E be a uniformly convex Banach space and let r > 0. Then there exists 
a strictly increasing, continuous and convex function g : [0, oo) -+ [0, oo) such that g(0) = 0 
and 

for all x, y E Er and A with O '.S A '.S 1, where Er = { z E E : 11 z 11 :S r}. 

Lemma 2.2 ([10]). Let E be a smooth and uniformly convex Banach space and let r > 0. 
Then there exists a strictly increasing, continuous and convex function g : [0, 2r] -+ lR such 
that g(0) = 0 and 

g(llx -yll):::; </J(x,y) 

for all x,y E Er, where Er= {z EE: llzll :Sr}. 

Lemma 2.3 ([10]). Let E be a smooth and uniformly convex Banach space and let {xn} and 
{Yn} be sequences in E such that either {xn} or {yn} is bounded. Iflimn--,.oo<P(Xn,Yn) = 0, 
then limn➔oo llxn - Ynll = 0. 

Let Ebe a smooth Banach space and let C be a nonempty subset of E. Then a mapping 
T : C -+ E is called generalized nonexpansive [5] if F(T) =I= 0 and 

</J(Tx, y) '.S </J(x, y), \::Ix E C, y E F(T). 

Let D be a nonempty subset of a Banach space E. A mapping R: E-+ Dis said to be sunny 
[18] if 

R(Rx + t(x - Rx))= Rx, \::Ix EE, t 2': 0. 
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A mapping R : E ---+ D is said to be a retraction or a projection if Rx = x for all x E D. A 
nonempty subset D of a smooth Banach space Eis said to be a generalized nonexpansive retract 
(resp. sunny generalized nonexpansive retract) of E if there exists a generalized nonexpansive 
retraction (resp. sunny generalized nonexpansive retraction) R from E onto D; see [4, 5] for 
more details. The following results are in Ibaraki and Takahashi [5]. 

Lemma 2.4 ([5]). Let C be a nonempty closed sunny generalized nonexpansive retract of 
a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive 
retraction from E onto C is uniquely determined. 

Lemma 2.5 ([5]). Let C be a nonempty and closed subset of a smooth and strictly convex 
Banach space E such that there exists a sunny generalized nonexpansive retraction R from E 
onto C and let (x, z) EE x C. Then the following hold: 

(i) z = Rx if and only if (x - z, Jy - J z) :::; 0 for ally E C; 
(ii) </J(Rx,z) +</J(x,Rx):::; </J(x,z). 

In 2007, Kohsaka and Takahashi [13] proved the following results: 

Lemma 2.6 ([13]). Let E be a smooth, strictly convex and reflexive Banach space and let C 
be a nonempty and closed subset of E. Then the following are equivalent: 

(a) C is a sunny generalized nonexpansive retract of E; 
(b) C is a generalized nonexpansive retract of E; 
(c) JC is closed and convex. 

Lemma 2.7 ([13]). Let E be a smooth, strictly convex and reflexive Banach space and let 
C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny 
generalized nonexpansive retraction from E onto C and let (x, z) EE x C. Then the following 
are equivalent: 

(i) z = Rx; 
(ii) </J(x, z) = minyEC<P(x, y). 

lbaraki and Takahashi [7] also obtained the following result concerning the set of fixed points 
of a generalized nonexpansive mapping. 

Lemma 2.8 ([7]). Let E be a smooth, strictly convex and reflexive Banach space and let T 
be a generalized nonexpansive mapping from E into itself. Then F(T) is closed and J F(T) is 
closed and convex. 

The following is a direct consequence of Lemmas 2.6 and 2.8. 

Lemma 2.9 ([7]). Let E be a smooth, strictly convex and reflexive Banach space and let T 
be a generalized nonexpansive mapping from E into itself. Then F(T) is a sunny generalized 
nonexpansive retract of E. 

Let E be a Banach space and let A be a mapping of E into 2E*. The effective domain of 
A is denoted by dom(A), that is, dom(A) = {x E E : Ax =/= 0}. A multi-valued mapping 
A on E is said to be monotone if (x - y, u* - v*) 2: 0 for all x, y E dom(A), u* E Ax, and 
v* E Ay. A monotone operator A on E is said to be maximal if its graph is not properly 
contained in the graph of any other monotone operator on E. The set of null points of A is 
defined by A-10 = {z EE: 0 E Az}. We know that A-10 is closed and convex; see [21]. Let 
E be a smooth, strictly convex and reflexive Banach space and let B be a maximal monotone 
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operator of E* into 2E_ For each r > 0 and x EE, consider the set 

Jrx = {z EE: x E z+rBJz}. 

Then Jrx consists of one point. Such Jr is called the sunny generalized resolvent of B and is 
denoted by Jr = (I+ BJ)-1. It follows that for any x, y EE and r > 0, 

(2.6) 

See [5] for more details. 

3 Strong convergence theorems by hybrid methods 

In this section, using the hybrid method by Nakajo and Takahashi [17], we first prove a 
strong convergence theorem for two noncommutative generic skew 2-generalized nonspreading 
mappings in a Banach space. Let E be a smooth Banach space and let C be a nonempty 
subset of E. A mapping T : C-+ C is called generic 2-generalized nonspreading [23] if there 
exist a2,a1,ao,/32,/31,/3o, 12, 11, 1o,(h,J1,Jo E lR such that 
a2 + a1 + ao + /32 + /31 + /3o 2 0, a2 + a1 + ao > 0 and 

a2c/J(T2x,Ty) + a1c/J(Tx, Ty)+ aoc/J(x, Ty) 

+ /32c/J(T2x, y) + /31c/J(Tx, y) + /3oc/J(x, y) 

:S:: 12{ cp(Ty, T 2x) - cp(Ty, Tx)} + 11 { cp(Ty, Tx) - cp(Ty, x)} (3.1) 

+ ,o{ cp(Ty, x) - cp(Ty, T 2x)} + 52{ cp(y, T 2 x) - cp(y, Tx)} 

+ 61 { cp(y, Tx) - cp(y, x)} + bo{ cp(y, x) - cp(y, T 2 x), \:/x, y EC. 

A mapping T : C -+ E is called generic generalized nonspreading [26] if there exist 
a, /3, 1 , b, c, ( E lR such that a+ /3 + 1 + b 2 0, a+ /3 > 0 and 

acp(Tx, Ty)+/3c/J(x, Ty)+ 1cp(Tx, y) + bcp(x, y) (3.2) 

:S:: c{ cp(Ty, Tx) - cp(Ty, x)} + ( { cp(y, Tx) - cp(y, x)}, \:/x, y EC. 

We call such a mapping a generic ( a, /3, 1 , b, E:, ()-generalized nonspreading mapping. A generic 
(a, /3, 1 , b, c, ()-generalized nonspreading mapping T : C-+ Eis generalized nonspreading in 
the sense of Kocourek, Takahashi and Yao [12] if a+ /3 = - 1 - b = 1 in (3.2). In particular, 
putting a= 1, /3 = J = 0, 1 = c = -1 and ( = 0 in (3.2), we obtain that 

cp(Tx, Ty)+ cp(Ty, Tx) :S:: cp(Tx, y) + cp(Ty, x), \:/x, y EC. 

Such a mapping is nonspreading in the sense of Kohsaka and Takahashi [15]. A nonspreading 
mapping is obtained from a resolvent of a maximal monotone operator in a Banach space; see 
[15]. A mapping T : C -+ C is called generic skew 2-generalized nonspreading [23] if there 
exist a2,a1,ao,/32,/31,/3o, 12,,1,,o,J2,J1,Jo E lR such that 
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a 2<j>(Ty,T2x) + a 1<j>(Ty, Tx) + a 0 <j>(Ty, x) 

+ fh<J>(y, T 2x) + /31</>(y, Tx) + f3o<f>(y, x) 

S 12{ <j>(T2 x, Ty) - <j>(Tx, Ty)}+ 11 { <j>(Tx, Ty) - <j>(x, Ty)} 

+ 10{ <j>(x, Ty) - <j>(T2 x, Ty)}+ 52 { <j>(T2 x, y) - <j>(Tx, y)} 

+ 61 { <j>(Tx, y) - <j>(x, y)} + bo{ <j>(x, y) - <j>(T2 x, y)}, \:/x, y EC. 

(3.3) 

A mapping T : C ---+ E is called generic skew generalized nonspreading [26] if there exist 
a, (3, 1 , 5, c, (, E lR such that a+ (3 + 1 + 5 2: 0, a+ (3 > 0 and 

a<j>(Ty,Tx) +/3</>(Ty,x) +,<J>(y,Tx) +b<J>(y,x) (3.4) 

Sc{ <j>(Tx, Ty) - <j>(x, Ty)}+(, { <j>(Tx, y) - <j>(x, y)}, \:/x, y E C. 

We call such a mapping a generic ( a, (3, 1 , 5, c, (,)-skew generalized nonspreading mapping. For 
example, a generic (1, 0, -1, 0, -1, 0)-skew generalized nonspreading mapping is a skew non
spreading mapping in the sense of lbaraki and Takahashi [6], i.e., 

<j>(Tx, Ty)+ </>(Ty, Tx) S <j>(x, Ty)+ <j>(y, Tx), \:/x, y EC. 

A skew nonspreading mapping is obtained from a sunny generalized resolvent of a maximal 
monotone operator in a Banach space; see [15]. Let T: C---+ Ebe a generic skew generalized 
nonspreading mapping satisfying (3.4). Putting x = u E F(T) in (3.4), we have that 

</>(Ty, u) S <j>(y, u), Vy EC, u E F(T). (3.5) 

This implies that T is generalized nonexpansive [5]. The following proposition was proved by 
Takahashi [23]. 

Proposition 3.1 ([23]). Let E be a strictly convex Banach space with a uniformly Gateaux 
differentiable norm, let C be a nonempty, closed and convex subset of E and let T be a generic 
2-generalized nonspreading mapping of C into C. If { Xn} is a sequence of C such that Xn -'- z, 
Xn -Txn---+ 0 and Xn - T 2 xn---+ o, then z E F(T). 

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty 
subset of E. Let T be a mapping of C into E. Define a mapping T* as follows: 

T*x* = JT J- 1x*, \:/x* E JC, 

where J is the duality mapping on E and J- 1 is the duality mapping on E*. A mapping T* is 
called the duality mapping of T; see also [27] and [3]. It is easy to show that if Tisa mapping 
of C into itself, then T* is a mapping of JC into itself. In fact, for any x* E JC, we have 
J- 1x* EC and hence T J- 1x* E C from the property of T. So we have 

T*x* = JT J- 1x* E JC. 

Then T* is a mapping of JC into itself. 

Lemma 3.2 ([24]). Let E be a uniformly convex and uniformly smooth Banach space and let 
C be a nonempty and closed subset of E such that JC is closed and convex. Let T be a generic 
skew 2-generalized nonspreading mapping of C into itself such that F(T) =/= 0. Then, for any 
bounded sequence { Zn} of C such that limn--+oo llzn - Tzn II = 0 and limn--+oo llzn - T 2 Zn 11 = 0, 
every weak cluster point of {Jzn} belongs to JF(T). 
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Theorem 3.3 ([24]). Let E be a uniformly convex and uniformly smooth Banach space and 
let C be a nonempty and closed subset of E such that JC is closed and convex. Let S and T 
be generic skew 2-generalized nonspreading mappings of C into C such that F(S) n F(T) -/- 0. 
Let {xn} CC be a sequence generated by x1 EC and 

{

Yn = anXn + bn(AnSXn + (1- An)Txn) + cn(µnS 2xn + (1 - µn)T2xn), 

Cn = {z EC: c/J(Yn,z) ::=; cp(xn,z)}, 

Qn = {z EC: (x1 -Xn,Jz-Jxn) ::=; 0}, 

Xn+l = RcnnQnXl, Vn EN, 

where RcnnQn is the sunny generalized nonexpansive retraction of E onto Cn n Qn, a, b, c, d E 

IR, {µn}, {>..n} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

0 < a ::=; An, JLn ::=; b < 1, 

Then {xn} converges strongly to zo = RF(S)nF(T)X1, where RF(S)nF(T) is the sunny general
ized nonexpansive retraction of E onto F(S) n F(T). 

Next, we prove a strong convergence theorem by the shrinking projection method [25] for 
two noncommutative generic skew-generalized nonspreading mappings in a Banach space. 

Theorem 3.4 ([24]). Let E be a uniformly convex and uniformly smooth Banach space and 
let C be a nonempty and closed subset of E such that JC is closed and convex. Let S and T 
be generic skew 2-generalized nonspreading mappings of C into C such that F(S) n F(T) -/- 0. 
Let C1 = C and let {xn} CC be a sequence generated by X1 EC and 

{
Yn = anXn + bn(AnSXn + (1- An)Txn) + cn(µnS 2xn + (1- µn)T2xn), 

Cn+l = {z E Cn: c/J(Yn,z) ::=; c/J(xn,z)}, 

Xn+l = Rcn+1x1, Vn EN, 

where Rcn+i is the sunny generalized nonexpansive retraction of E onto Cn+l, a, b, c, d E IR, 
{µn}, {An} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

0 < a ::=; An, µn ::=; b < 1, 

Then, {xn} converges strongly to zo = RF(S)nF(T)Xl, where RF(S)nF(T) is the sunny general
ized nonexpansive retraction of E onto F(S) n F(T). 

4 Applications 
In this section, using Theorems 3.3 and 3.4, we get well-known and new strong convergence 
theorems by the hybrid method and the shrinking projection method in a Hilbert space and 
a Banach space. As a direct result of Theorem 3.3, we have the following theorem for generic 
skew 2-generalized nonspreading mappings in a Banach space. 



83

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space and let C 
be a nonempty and closed subset of E such that JC is closed and convex. Let S be a generic 
skew 2-generalized nonspreading mapping of C into E such that F(S) -I 0. Let {xn} CC be 
a sequence generated by x1 E C and 

{

Yn = anXn + bnSXn + Cn82 xn, 

Cn: {z EC'. <P(Yn,z)::; </J(xn,z)}, 
Qn - {z EC. (x1 - Xn, Jz - Jxn)::; 0}, 

Xn+l = RcnnQnX1, 'vn EN, 

where RcnnQn is the sunny generalized nonexpansive retraction of E onto Cn n Qn, c, d E lE. 
and { an}, {bn}, { cn} C (0, 1) satisfy the following: 

an + bn + Cn = 1 and 0 < c ::; an, bn, Cn ::; d < 1, 'vn E N. 

Then {xn} converges strongly to zo = RF(s)Xl, where RF(S) is the sunny generalized non
expansive retraction of E onto F(S). 

In a Hilbert space H, we have that </J(x, y) = llx - Yll 2 for x, y E H. Using this and from 
(3.3), we obtain that Tisa normally 2-generalized hybrid mapping in the sense of Kondo and 
Takahashi [16], i.e., there exist a 2, a 1, a 0 , ,82, ,81, ,80 E lE. such that 

0:2 + 0:1 + ao + ,82 + ,81 + /Jo 2:: 0, 0:2 + 0:1 + ao > 0 and 

a2IIT2x - Tyll 2 + ail!Tx - Tyll 2 + aollx - Tyll 2 

+ /J2IIT2x -yll 2 + hllTx -yll 2 + /Jollx -yll 2 :::; 0, 'vx,y EC. 

Theorem 4.2. Let H be a Hilbert space and let C be a nonempty, closed and convex subset 
of H. Let S, T : C --+ C be normally 2-generalized hybrid mappings with F(S) n F(T) -I 0. 
Let {xn} CC be a sequence generated by x1 EC and 

{

Yn =:__ anXn + ~n(>..nSXn + (1- An)Txn) + cn(µnS 2xn + (1 - µn)T2xn), 

Cn - {z EC• IIYn - zll:::; llxn - zll}, 

Qn = { Z E C : (xn - z, X1 - Xn) 2 O}, 
Xn+l = PcnnQnX1, 'vn EN, 

where PcnnQn is the metric projection of H onto Cn n Qn, a, b, c, d E JE., {µn}, {>..n} c (0, 1) 
and { an}, {bn}, { cn} C (0, 1) satisfy the following: 

an + bn + Cn = 1 and 0 < c ::; an, bn, Cn ::; d < 1, 'vn E N. 

Then {xn} converges strongly to zo = PF(S)nF(T)X1, where PF(S)nF(T) is the metric projection 
of H onto F(S) n F(T). 

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space. Let C 
be a nonempty and closed subset of E such that JC is closed and convex. Let S and T be 
generic skew generalized nonspreading mappings of C into itself such that F(S) n F(T) -I 0. 



84

Let {xn} CC be a sequence generated by x1 EC and 

{

Yn = anXn + bn(>.nSXn + (1- An)Txn) + cn(µnS 2xn + (1 - µn)T2xn), 

Cn = {z EC: c/J(Yn,z) ~ cp(xn,z)}, 

Qn = {z EC: (x1 -Xn,Jz-Jxn) ~ 0}, 

Xn+l = RcnnQnXl, Vn EN, 

where RcnnQn is the sunny generalized nonexpansive retraction of E onto Cn n Qn, a, b, c, d E 

IR, {µn}, {>.n} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

an + bn + Cn = 1 and O < C ~ an, bn, Cn ~ d < 1, Vn E N. 

Then {xn} converges strongly to zo = RF(S)nF(T)X1, where RF(S)nF(T) is the sunny general
ized nonexpansive retraction of E onto F(S) n F(T). 

Using Theorem 3.3, we have the following strong convergence theorem for finding a common 
null point of two maximal monotone operators in a Banach space. 

Theorem 4.4. Let E be a uniformly convex and uniformly smooth Banach space. Let B 
and G be maximal monotone operators of E* into 2E and let Jr and Q 8 be sunny generalized 
resolvents for r > 0 and s > 0 of B and G, respectively. Suppose that B-10 n c-10 =I= 0. Let 
{xn} CC be a sequence generated by X1 EC and 

{

Yn = anXn + bn(AnJrXn + (1- An)Qsxn) + Cn(µn(Jr)2Xn + (1 - µn)(Qs)2xn), 

Cn = {z EC: c/J(Yn, z) ~ c/J(xn, z)}, 

Qn = {z EC: (x1 - Xn, Jz - Jxn) ~ 0}, 
Xn+l = RcnnQnXl, Vn EN, 

where RcnnQn is the sunny generalized nonexpansive retraction of E onto Cn n Qn, a, b, c, d E 
IR, {µn}, {>.n} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

an + bn + Cn = 1 and 0 < c ~ an, bn, Cn ~ d < 1, Vn E N. 

Then {xn} converges strongly to zo = R(BJ)-'On(GJ)-10X1, where R(BJ)-'On(GJ)-'O is the 
sunny generalized nonexpansive retraction of E onto (BJ)- 10 n (GJ)- 10. 

Similarly, using Theorem 3.4, we have the following results. 

Theorem 4.5. Let E be a uniformly convex and uniformly smooth Banach space and let C 
be a nonempty and closed subset of E such that JC is closed and convex. Let S be a generic 
skew-generalized nonspreading mapping of C into E such that F(S) =I= 0. Let C1 = C and let 
{xn} CC be a sequence generated by x1 EC and 

{
Yn = anXn + bnSXn + CnS2 xn, 

Cn+l: {z E Cn: c/J(Yn,z) ~ cp(xn,z)}, 

Xn+l - Rcn+1X1, Vn EN, 
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where Ren+' is the sunny generalized nonexpansive retraction of E onto Cn+l, c, d E lE. and 
{an}, {bn}, {en} C (0, 1) satisfy the following: 

an + bn + Cn = l and 0 < c :S an, bn, Cn :S: d < l, \In E N. 

Then {xn} converges strongly to zo = RF(S)Xl, where RF(S) is the sunny generalized nonex
pansive retraction of E onto F(S). 

Theorem 4.6. Let H be a real Hilbert space and let C be a nonempty, closed and convex subset 
of H. Let S and T be normally 2-generalized hybrid mappings such that F(S) n F(T) =I= 0. 
Let C1 = C and let {xn} CC be a sequence generated by X1 EC and 

{
Yn = ~Xn + bn(~nSXn + (1- An)Txn) + Cn(µnS 2 xn + (1 - µn)T2 xn), 

Cn+l - {z E Cn • IIYn - zll :S: llxn - zll}, 
Xn+l = Pcn+1X1, \In EN, 

where Pcn+i is the metric projection of H onto Cn+l, a, b, c, d E lE., {µn}, Pn} C (0, 1) and 
{an}, {bn}, {en} C (0, 1) satisfy the following: 

an + bn + Cn = l and 0 < c :S an, bn, Cn :S: d < l, \In E N. 

Then, {xn} converges strongly to zo = PF(S)nF(T)X1, where PF(S)nF(T) is the metric projection 
of H onto F(S) n F(T). 

Theorem 4. 7. Let E be a uniformly convex and uniformly smooth Banach space. Let C 
be a nonempty and closed subset of E such that JC is closed and convex. Let S and T be 
generic skew generalized nonspreading mappings of C into itself such that F(S) n F(T) =I= 0. 
Let C1 = C and let {xn} CC be a sequence generated by X1 EC and 

{
Yn = anXn + bn(>-nSXn + (l - An)Txn) + cn(µnS 2xn + (1 - µn)T2xn), 

Cn+l = {z E Cn: efl(Yn,z) :S: efl(xn,z)}, 

Xn+l = Rcn+1Xl, \In EN, 

where Rcn+i is the sunny generalized nonexpansive retraction of E onto Cn+l, a, b, c, d E JE., 
{µn}, {>-n} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

Then {xn} converges strongly to zo = RF(S)nF(T)Xl, where RF(S)nF(T) is the sunny general
ized nonexpansive retraction of E onto F(S) n F(T). 

Theorem 4.8. Let E be a uniformly convex and uniformly smooth Banach space. Let B 
and G be maximal monotone operators of E* into 2E and let Jr and Q 8 be sunny generalized 
resolvents for r > 0 and s > 0 of B and G, respectively. Suppose that B-10 n c-10 =I= 0. Let 
C1 = C and let {xn} CC be a sequence generated by X1 EC and 

{
Yn = anXn + bn(>-nJrXn + (l - An)Qsxn) + Cn(µn(Jr)2Xn + (1 - µn)(Qs)2xn), 

Cn+l = {z E Cn: efl(Yn,z) :S: efl(xn,z)}, 

Xn+l = Rcn+1Xl, \In EN, 
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where Ren+' is the sunny generalized nonexpansive retraction of E onto Cn+I, a, b, c, d E lll, 
{µn}, {.-\n} C (0, 1) and {an}, {bn}, {en} C (0, 1) satisfy the following: 

an + bn + Cn = l and 0 < c '.S an, bn, Cn '.S d < l, \::In E N. 

Then {xn} converges strongly to zo = R(BJ)-'On(GJ)-10X1, where R(BJ)-'On(GJ)-'O is the 
sunny generalized nonexpansive retraction of E onto (BJ)- 10 n (GJ)- 10. 
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