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Abstract 

In this article, we prove a weak convergence theorem of Mann's type iteration for 
infinite families of extended generalized hybrid mappings in a Banach space satisfying 
Opial's condition. This theorem solves a problem posed by Hojo and Takahashi [8]. 
Using this result, we get well-known and new weak convergence theorems in a Banach 
space. In particular, we obtain a weak convergence theorem of Mann's type iteration 
for finite families of extended generalized hybrid mappings in a Banach space. 
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1 Introduction 

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping T: C-+ H 
is said to be nonexpansive if IITx - Tyll ::;; llx - YII for all x, y E C. In 2010, Kocourek, 
Takahashi and Yao [12] defined a broad class of nonlinear mappings in a Hilbert space which 
covers nonexpansive mappings: Let C be a nonempty subset of H. A mapping T: C-+ His 
called generalized hybrid [12] if there exist a, /3 E lR such that 

allTx -Tyll 2 + (1- a)llx -Tyll 2 ::;; /311Tx - Yll 2 + (1- /3)11x - Yll 2 (1.1) 

for all x,y EC. Such a mapping T is called (a, /3)-generalized hybrid. We also know the 
following: For ,\ E lR, a mapping U : C -+ H is called A-hybrid [1] if 

IIUx - Uyll 2 ::;; llx -yll 2 + 2(1- .\)(x - Ux,y- Uy) (1.2) 

for all x, y E C. Notice that the class of generalized hybrid mappings covers several well-known 
mappings in a Hilbert space. For example, a (1,0)-generalized hybrid mapping is nonexpansive. 
It is nonspreading [13, 14] for a = 2 and /3 = 1, i.e., 

2IITx -Tyll2::;; IITx - Yll2 + II Ty - xll2, Vx, y EC. 

It is also hybrid [19] for a = ! and /3 = ½, i.e., 

3IITx - Tyll 2 ::;; llx - Yll 2 + IITx - Yll 2 + IITy - xll 2, Vx, YE C. 
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In general, nonspreading and hybrid mappings are not continuous; see [10]. We also know that 
>.-hybrid mappings in a Hilbert space are contained in the class of generalized hybrid mappings; 
see [9]. Hojo and Takahashi [7] extended the concept of generalized hybrid mappings in a 
Hilbert space to that in a Banach space as follows: Let E be a Banach space and let C be a 
nonempty subset of E. A mapping T: C-+ Eis called extended generalized hybrid [7] if there 
are a, (3, ,y, 8 E lR such that a+ (3 + ,y + 8 2: 0, a+ (3 > 0 and 

allTx - Tyll 2 + /3llx - Tyll 2 + 'YIITx - Yll 2 + 8llx - Yll 2 S 0 (1.3) 

for all x, y E C. We call such a mapping ( a, (3, ,y, 8)-extended generalized hybrid. Hojo and 
Takahashi [8] proved the following weak convergence theorem for finding a common fixed point 
of two extended generalized hybrid mappings in a Banach space by using Mann's type iteration 
[15]; see also [20]. 

Theorem 1.1 ([8]). Let E be a uniformly convex Banach space which satisfies Opial's con
dition and let C be a nonempty, closed and convex subset of E. Let a, (3, ,y, 8 E lR and 
a',(3',,y',8' ER Let Sand T be (a,(3,,y,8) and (a',(3',,y,'8')-extended generalized hybrid 
mappings of C into itself such that (3 :=::; 0 and ,y S O and (3' :=::; 0 and ,y' S 0, respectively. 
Suppose that F(S) n F(T) =I= 0. Let {xn} be a sequence in C generated by x1 = x EC and 

Xn+i = anXn + (1- an)("/nSXn + (1 - "!n)Txn), \:In EN, 

where a, b, c, d E JR, { "In} and { an} satisfy the following: 

0 < a S an S b < 1 and 0 < c S "In S d < 1, \:In E N. 

Then, the sequence { xn} converges weakly to an element z E F(S) n F(T), where F(S) n F(T) 
is the set of common fixed points of S and T. 

In this article, we prove a weak convergence theorem of Mann's type iteration for infinite 
families of extended generalized hybrid mappings in a Banach space satisfying Opial's con
dition. This theorem solves a problem posed by Hojo and Takahashi [8]. Using this result, 
we get well-known and new weak convergence theorems in a Banach space. In particular, we 
obtain a weak convergence theorem of Mann's type iteration for finite families of extended 
generalized hybrid mappings in a Banach space. 

2 Preliminaries 
Throughout this article, we denote by N the set of positive integers and by lR the set of real 
numbers. Let E be a real Banach space with norm II · II and let E* be the topological dual 
space of E. We denote the value ofy* EE* at x EE by (x,y*). When {xn} is a sequence in 
E, we denote the strong convergence of {xn} to x EE by Xn-+ x and the weak convergence 
by Xn --' x. The modulus 8 of convexity of Eis defined by 

8(E) = inf { 1 - llx; YII : llxll S 1, IIYII S 1, llx - YII 2: E} 

for all E with O :=::; E :=::; 2. A Banach space Eis said to be uniformly convex if 8(E) > 0 for all 
E > 0. A uniformly convex Banach space is strictly convex and reflexive. Let C be a nonempty 
subset of a Banach space E. A mapping T: C-+ Eis nonexpansive if IITx-Tyll S llx-yll for 
all x, y E C. A mapping T : C -+ Eis quasi-nonexpansive if F(T) =/= 0 and IITx -yll S llx -yll 
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for all x E C and y E F(T), where F(T) is the set of fixed points of T. If C is a nonempty, 
closed and convex subset of a strictly convex Banach space E and T : C -+ E is quasi
nonexpansive, then F(T) is closed and convex; see Itoh and Takahashi [11]. The duality 
mapping J from E into 2E* is defined by 

Jx = {x* EE*: (x,x*) = llxll 2 = llx*ll 2} 

for all x EE. The following result is in [18]. 

Lemma 2.1 ([18]). Let E be a Banach space and let J be the duality mapping on E. Then, 
for any x,y EE, 

llxll 2 - IIYll 2 2'. 2(x -y,j), 

where j E Jy. 

Let Ebe a Banach space and let ACE x E. Then, A is accretive if for (x1, Y1), (x2, Y2) EA, 
there exists j E J(x1 -x2) such that (Y1 -y2,j) 2'. 0, where J is the duality mapping of E. An 
accretive operator A C E x E is called m-accretive if R(I + r A) = E for all r > 0, where I is 
the identity operator and R( I + r A) is the range of I+ r A. An accretive operator A C E x E 
is said to satisfy the range condition if D(A) C R(I + rA) for all r > 0, where D(A) is the 
closure of the domain D(A) of A. An m-accretive operator satisfies the range condition. If C 
is a nonempty, closed and convex subset of a Banach space and T is a nonexpansive mapping 
of C into itself, then A= I - T is an accretive operator and C = D(A) C R(I + rA) for all 
r > 0; see [18, Theorem 4.6.4]. 

Let Ebe a Banach space and let C be a nonempty subset of E. Then, a mapping T: C-+ E 
is said to be firmly nonexpansive [3] if 

IITx -Tyll 2 :S: (x - y,j), 

for all x, y E C, where j E J(Tx - Ty); see also [2, 5]. It is known that the resolvent of an 
accretive operator satisfying the range condition in a Banach space is a firmly nonexpansive 
mapping of the closure of the domain into itself. In fact, let C = D(A) and r > 0. Define the 
resolvent Jr of A as follows: 

Jrx = {z E D(A): x E z + rAz} 

for all x E D(A). It is known that such Jrx is a singleton; see [18]. We have that for 
x1, x2 E D(A), x1 = z1 + ry1, YI E Az1 and x2 = z2 + ry2, Y2 E Az2. Since A is accretive, 
we have that (Y1 - Y2,j) 2'. 0, where j E J(z1 - z2)- So, we have 

Furthermore, we have that 

( x1 - z1 x2 - z2 .) 0 -------,J 2'.. 
r r 

( X1 - Z1 X2 - Z2 ") 0 -------J > 
r r ' -
~ (x1 - z1 - (x2 - z2),j) 2'. 0 

~ (x1 - x2,j) 2'. llz1 - z2ll 2-

From z1 = Jrx1 and z2 = Jrx2, we have that Jr is a firmly nonexpansive mapping of C into 
itself; see also [3], [4] and [21]. Let Ebe a Banach space and let C be a nonempty subset of 
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E. A mapping T : C -+ E is called extended generalized hybrid if it satisfies (1.3), that is, 
there are a, (3, 'Y, o E lR such that a+ (3 + 'Y + o ::>: 0, a+ (3 > 0 and 

allTx - Tyll 2 + /3llx - Tyll 2 + 'YIITx - Yll 2 + ollx - Yll 2 S 0 

for all x,y EC. We call such a mapping (a,/3,'Y,o)-extended generalized hybrid. We can 
also show that, in a Banach space, an (a, (3, 'Y, o)-extended generalized hybrid mapping is 
nonexpansive for a = 1, (3 = 'Y = 0 and o = -l, nonspreading for a = 2, (3 = 'Y = -1 and 
o = 0, and hybrid for a= 3, (3 = 'Y = -1 and o = -1. Nonexpansive mappings, nonspreading 
mappings and hybrid mappings in a Banach space are deduced from firmly nonexpansive 
mappings as follows: Let T be a firmly nonexpansive mapping of C into E. Then we have 
that for x, y E C and j E J(Tx - Ty), 

IITx -Tyll 2 S (x - y,j). 

From Theorem 2.1 we have that 

11Tx-Tyll 2 S (x - y,j) 

~ 0 S 2(x -Tx - (y -Ty),j) 

===} 0 S llx - Yll 2 - IITx - Tyll 2 

~ IITx -Tyll 2 S llx - Yll 2 -

Futhermore, we have that for x, y EC and j E J(Tx - Ty), 

11Tx-Tyll 2 S (x - y,j) 

~ 0 S 2(x -Tx - (y -Ty),j) 

(2.1) 

~ 0 S 2(x -Tx,j) + 2(Ty - y,j) (2.2) 

===} 0 S llx - Tyll 2 - IITx - Tyll 2 + IITx - Yll 2 - IITx - Tyll 2 

~ 0 S llx - Tyll 2 + IIY - Txll 2 - 2IITx - Tyll 2 

~ 2IITx-Tyll 2 S llx -Tyll 2 + lly-Txll 2 -

Therefore, using (2.1) and (2.2), we have that 

11Tx-Tyll 2 S (x - y,j) 

===} 3IITx -Tyll 2 S llx - Tyll 2 + IIY - Txll 2 + llx - Yll 2 -

Hojo and Takahashi [7] proved the following result. 

Lemma 2.2 ([7]). Let E be a Banach space, let C be a nonempty, closed and convex subset of 
E. Then an extended generalized hybrid mapping which has a fixed point is quasi-nonexpansive. 

The following result was proved by Xu [22]. 

Lemma 2.3 ([22]). Let Ebe a uniformly convex Banach space and let r > 0. Then there exists 
a strictly increasing, continuous and convex function g : [0, oo) -+ [0, oo) such that g(O) = 0 
and 

llµx + (1- µ)yll 2 s µllxll 2 + (1- µ)IIYll 2 - µ(1 - µ)g(llx -yll) 

for all x,y E Er andµ with OSµ S 1, where Er= {z EE: llzll Sr}. 
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Let Ebe a Banach space. Then, E satisfies Opial's condition [16] if for any {xn} of E such 
that Xn ----' x and x =/= y, 

liminf llxn - xii < liminf llxn - Yll-
n--+oo n--+oo 

Let Ebe a Banach space. Let C be a nonempty, closed and convex subset of E. Let T: C--+ E 
be a mapping. Then, p E C is called an asymptotic fixed point of T [17] if there exists { Xn} C C 
such that Xn ----' p and limn--+oo llxn - Txnll = 0. We denote by F(T) the set of asymptotic 
fixed points of T. A mapping T: C--+ Eis said to be demiclosed if F(T) = F(T). We know 
the following result from Hojo and Takahashi [7]. 

Lemma 2.4 ([7]). Let E be a Banach space satisfying Opial's condition and let C be a 
nonempty, closed and convex subset of E. Let a, (3, "!, o E lR and let T be an (a, (3, "!, 8)
extended generalized hybrid mapping of C into E which satisfies f3 <::: 0 and "I <::: 0. Then 
F(T) = F(T), i.e., T is demiclosed. 

If Eis a Banach space satisfying Opial's condition, then nonexpansive mappings, nonspread
ing mappngs and hybrid mappings are demiclosed; see [7]. 

3 Weak Convergence Theorems 

In this section, we first prove a weak convergence theorem of Mann's type iteration [15] for an 
infinite family of extended generalized hybrid mappings in a Banach space satisfying Opial's 
condition; see also Hojo[6]. 

Theorem 3.1. Let E be a uniformly convex Banach space which satisfies Opial's condition 
and let C be a nonempty, closed and convex subset of E. Let O:j, h, "/j, 0j E lR for all j E N 
and let {Tj} be a sequence of ( O:j, f}j, "/j, 0j )-extended generalized hybrid mappings of C into 
itself such that f}j :S O and "/j <::: 0 for all j E N. Suppose that n'J°=1 F(Tj) =/= 0. Let { xn} be a 
sequence in C generated by x1 = x E C and 

DO 

Xn+l = O:nXn + (1 - O:n) L ~jTjXn, \:Jn E N, 
j=l 

where a, b E lR and ki }, { an} C (0, 1) satisfy the following: 

(1) ~~l ~j = 1; 
(2) 0 <a<::: an <::: b < 1, Vn EN. 

Then, the sequence { xn} converges weakly to an element z E n'J°= 1 F(Tj). 

Using Theorem 3.1, we obtain the following weak convergence theorem for a finite family 
of extended generalized hybrid mappings in a Banach space satisfying Opial's condition; see 
Hojo and Takahashi [7] for two extended generalized hybrid mappings. 

Theorem 3.2 ([7]). Let E be a uniformly convex Banach space which satisfies Opial's con
dition and let C be a nonempty, closed and convex subset of E. Let O:j, f}j, "/j, 0j E lR for all 
j E {1, 2, ... , M} and let {Tj }f!,1 be a finite family of ( O:j, f}j, "/j, 0j )-extended generalized hy
brid mappings of C into itself such that f}j :SO and "/j <::: 0 for all j E {1, 2, ... , M}. Suppose 
that n{f!=1F(Tj) =I= 0. Let {xn} be a sequence generated by x1 = x EC and 

M 

Xn+l = O:nXn + (1 - O:n) L ~jTjXn, \:Jn E N, 
j=l 
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where a, b E lR and ki }, { an} C (0, 1) satisfy the following: 

(1J L~1 ~j = 1; 
(2) 0 < a '.S °'n '.S b < 1, \:Jn E N. 

Then, the sequence {xn} converges weakly to an element z E ni1F(Tj), 

Using Theorem 3.2, we obtain the following result. 

Theorem 3.3. Let E be a uniformly convex Banach space which satisfies Opial's condition 
and let C be a nonempty, closed and convex subset of E. Let °'i, /3j, ij, Dj E lR for all j E 

{1, 2, ... , M} and let {Tj }i1 be a finite family of ( °'i, /3j, 1j, Dj )-extended generalized hybrid 
mappings of C into itself such that /3j ::; 0 and ij ::; 0 for all j E {1, 2, ... , M}. Suppose that 
ni1 F(Tj) =I= 0. Let A be a real number with O < A < l. Define a mapping U : C ---+ C by 

M 

U =Al+ (1- A) L~jTj, 
j=l 

where {~j} c (0, 1) satisfies L~l ~j = l. Then for any x EC, unx converges weakly to an 

element z E ni1 F(Tj). 

Using Theorem 3.2, we also obtain the following result [7]. 

Theorem 3.4 ([7]). Let E be a uniformly convex Banach space which satisfies Opial's condi
tion and let C be a nonempty, closed and convex subset of E. Let a, /3, 1 , 8 E lR and let T be 
an ( a, /3, 1 , 8)-extended generalized hybrid mapping of C into itself such that /3 ::; 0 and 1 ::; 0. 
Let { an} be a sequence of real numbers such that O < a '.S an '.S b < 1 for some a, b E lR and 
define a sequence { Xn} of C as follows: X1 = x E C and 

If F(T) =/= 0, then {xn} converges weakly to some element z E F(T). 

Using Theorems 3.1 and 3.2, we can also prove the following weak convergence theorems 
for families of nonexpansive mappings and nonspreading mappings in a Banach space. 

Theorem 3.5. Let E be a uniformly convex Banach space which satisfies Opial's condition and 
let C be a nonempty, closed and convex subset of E. Let {Tj} be a sequence of nonexpansive 
mappings of C into itself. Let { ~j} be a family of real numbers in (0, 1) such that L;:1 ~j = 1. 
Suppose that 

Let {xn} be a sequence in C generated by X1 = x EC and 

CX) 

Xn+i = AnXn + (l - An) L ~jTjXn, \:Jn E N, 
j=l 

where a, b E lR and {An} C (0, 1) satisfy the following: 

0 < a '.S An '.S b < l, \:Jn E N. 

Then, the sequence {xn} converges weakly to an element z E 0. 
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Theorem 3.6. Let E be a uniformly convex Banach space which satisfies Opial's condition 
and let C be a nonempty, closed and convex subset of E. Let {T1}i1 be a sequence of 
nonspreading mappings of C into itself. Let {t1} be a family of real numbers in (0, 1) such 

M 
that Lj=l ej = I. Suppose that 

Let {xn} be a sequence generated by X1 = x EC and 

M 

Xn+1 = AnXn + (1 - An) L t1T1xn, \:In E N, 
j=l 

where a, b E lE. and Pn} C (0, 1) satisfy the following: 

0 < a ~ An ~ b < l, Vn E N. 

Then, the sequence {xn} converges weakly to an element z E 0. 
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