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Smooth homotopy 4-sphere (research announcement) 

Akio Kawauchi 

Osaka City University Advanced Mathematical Institute 

1 Introduction 

This paper is a research announcement of the paper [15] in a 4D topology research project 
[11, 12, 13, 14, 15, 16]. 

As general conventions throughout this paper, a compact connected oriented smooth 
r-dimensional manifold for r ~ 2 is called an r-manifold and a smooth embedding and a 
smooth isotopy from an r-manifold into an r'-manifold are called an embedding and an 
isotopy, respectively, unless otherwise stated. An m-punctured manifold of an r-manifold 
X is an r-manifold xm(o) obtained from X by removing the interiors of m mutually 
disjoint r-balls in the interior of X. The r-manifold X 1(o) is denoted by x(o), where 
choices of the 4-balls are independent of the diffeomorphism type of X. 

By this convention, a homotopy 4-sphere is a 4-manifold M homotopy equivalent to 
the 4-sphere S4, and a homotopy 4-ball is a I-punctured manifold Af(o) of a homotopy 
4-sphere M. 

The main purpose of this paper is to show that every homotopy 4-sphere is diffeomor
phic to the 4-sphere S4, so that every homotopy 4-ball is diffeomorphic to the 4-ball D4 . 

For a positive integer n, the stable 4-sphere of genus n is the connected sum 4-manifold 

E = E(n) = S4 #n(S2 X S2 ) = S4 #7=1S2 X s;, 
which is the union of an n-punctured manifold (S4t(0l of the 4-sphere S4 and I-punctured 
manifolds (S2 x S;)(o) (i = 1, 2, ... , n) of the 2-sphere products S 2 x S; (i = 1, 2, ... , n) 
pasting the boundary 3-spheres of (S4t(0l to the boundary 3-spheres of (S2 x S;)(o) (i = 
1, 2, ... , n). 

For this purpose, a concept of a trivial surface-knot in the 4-space in [11] is used by 
observing that the stable 4-sphere E of genus n is the double branched covering space 
S4 (Fh of the 4-sphere S4 branched along a trivial surface F of genus n. 

An orthogonal 2-sphere pair or simply an 02-sphere pair of the stable 4-sphcrc E is a 
pair (S, S') of 2-spheres Sand S' embedded in E meeting transversely at a point with the 
intersection numbers Int ( S, S) = Int ( S', S') = 0 and Int ( S, S') = + 1. 

A pseudo-02-sphere basis of the stable 4-sphere E of genus n is the system (S*, s:) 
of n mutually disjoint 02-sphere pairs (Si, S:) (i = 1, 2, ... , n) in E. Let N(Si, S:) be 
a regular neighborhood of the union Si U Sf of the 02-sphere pair (Si, S:) in E such 
that N(Si, S:) (i = 1, 2, ... , n) are mutually disjoint and diffeomorphic to a I-punctured 
manifold (S2 x S 2 )(0) of the sphere product S 2 x S2 . The region of a pseudo-02-sphere 
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basis (S., s:) in~ of genus n is a 4-manifold O(S., s:) in~ obtained from the 4-manifolds 
N(Si, S:} (i = 1, 2, ... , n) by connecting them by mutually disjoint 1-handles h} (j = 
1, 2, ... , n - 1) in ~- Since ~ is a simply connected 4-manifold, the region O(S., s:) in ~ 
does not depend on any choices of the 1-handles h1 (j = 1, 2, ... , n - 1) and is uniquely 
determined by the pseudo-02-sphere basis (S., S:) up to isotopies of ~ (see [9]). The 
residual region 

OC(S., s:) =cl(~\ O(S., s:)) 
of the region O(S., s:) in~ is always a homotopy 4-ball, which is shown by van Kampen 
theorem and a homological argument. An 02-sphere basis of the stable 4-sphere ~ of 
genus n is a pseudo-02-sphere basis (S., s:) of~ such that the residual region nc(s., s:) 
is diffcomorphic to the 4-ball. The following result is basically the main result. 

Theorem 1.1. For any two pseudo-02-sphere bases (R., R:) and (S., s:) of the stable 4-
sphere ~ of any genus n ~ 1, there is an orientation-preserving diffeomorphism h : ~ --+ ~ 
sending (R;, R;) to (Si, S;) for all i (i = 1, 2, ... , n). 

The stable 4-sphere ~ of genus n admits an 02-sphere basis. If (R., R:) is an 02-sphere 
basis of ~ and (S., s:) is the image of (R., R:) by an orientation-preserving diffeomor
phism f : ~ --+ ~, then (S., s:) is also an 02-sphere basis. Thus, the following corollary 
is directly obtained from Theorem 1.1. 

Corollary 1.2. Every pseudo-02-sphere basis of the stable 4-sphere ~ of any genus n ~ 1 
is an 02-sphere basis of ~-

In this paper, an 02-handle pair (D x I, D' x I) on a trivial surface-knot Fin S4 in [11] 
is discussed (see Section 2 for an explanation). A system (D. x I, D: x I) of n mutually 
disjoint 02-handle pairs (Di x I, D'. x I) (i = 1, 2, ... , n) on F of genus n in S4 is called 
an 02-handle basis of F. 

It is shown in Lemma 2.3 that the lift (S(D.), S(D:)) of the core system (D., D:) of 
any 02-handle basis (D. x I, D: x I) of F to S4 (F) 2 = ~ is an 02-sphere basis of ~
Also, in Corollary 5.3, it is shown that every 02-sphere basis of ~ is isotopic to such an 
02-sphere basis (S(D.), S(D:)) in~-

The following result which is called 4D Smooth Poincare Conjecture is a direct conse
quence of Corollary 1.2. 

Corollary 1.3. Any homotopy 4-sphere M is diffeomorphic to the 4-sphere S4 • 

In the topological category, it is well-known by Freedman [3] (see also [4]) that the 
corresponding result of Corollary 1.3 holds (i.e., every topological 4-manifold homotopy 
equivalent to the 4-sphere is homeomorphic to the 4-sphere). In the piecewise-linear 
category, it can be shown by using the piecewise-linear versions of this argument (see 
Hudson [10], Rourke-Sanderson [18]) that the corresponding result of Corollary 1.3 holds 
(i.e., every piecewise-linear 4-manifold homotopy equivalent to the 4-sphere is piecewise
linearly homeomorphic to the 4-sphere). 
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It is known by Wall in [19] that for every closed simply connected signature-zero spin 4-
manifold M with the second Betti number /32 (M; Z) = 2m > 0, there is a diffeomorphism 

Ii: M#"E.(n)--+ "E.(m+n) 

for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomorphism 
from W to "E.(m). However, a technique used for the proof of Theorem 1.1 cannot be 
generalized to this case. In fact, it is known by Akhmedov-Park in [1] that there is 
a closed simply connected signature-zero spin 4-manifold M with a large second Betti 
number /32 (M; Z) = 2m such that Mis not diffeomorphic to "E.(m). What can be said in 
this paper is the following corollary. 

Corollary 1.4. Let M and M' be any closed (not necessarily simply connected) 4-
manifolds with the same second Betti number /32 (M; Z) = /32 (M'; Z). Then an embedding 
u : Af(O) --+ M' extends to a diffeomorphism u+ : M --+ M' if and only if the embedding 
u : Af(O) --+ M' induces a fundamental group isomorphism 

The following corollary is obtained by combining Corollary 1.3 with the triviality con
dition of an S2-link in S4 in [11, 12, 13]. 

Corollary 1.5. Every closed 4-manifold M such that the fundamental group 7r1 (M, x) is 
a free group of rank n and H2 (M; Z) = 0 is diffeomorphic to the connected sum 4-manifold 

S4#n(S1 X S3) = S4#r=l s1 X sr 
The following corollary which is called 4D Smooth Schoenflies Conjecture is also ob

tained. 

Corollary 1.6. Any smoothly embedded 3-sphere S3 in the 4-sphere S4 splits S4 into 
two components of 4-manifolds which are both diffeomorphic to the 4-ball. 

The paper is organized as follows: In Section 2, the stable 4-sphere "E. is identified with 
the double branched covering space S4(Fh of S4 branched along a trivial surface-knot 
F. In Section 3, a homological version of Theorem 1.1 is given. Throughout Section 4, 
outline of the proof of Theorem 1.1 is given. In Section 5, an isotopic deformation of an 
orientation-preserving diffeomorphism of the stable 4-sphere "E. is studied by combining 
the proof of Theorem 1.1 with Gabai's 4D light-bulb theorem in [5]. In fact, Theorem 5.1 
says that every orientation-preserving diffeomorphism of "E. is isotopic to the lift of an 
equivalence of a trivial surface-knot F in S4 to "E. modulo a diffeomorphism of "E. with a 
support of a 4-ball disjoint from the lift of F. 
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2 The stable 4-sphere as the double branched covering space of 
the 4-sphere branched along a trivial surface-knot 

A surface-knot of genus n in the 4-sphere S 4 is a closed surface F of genus n embedded 
in S 4 • It is also called a 2-knot if n = 0, i.e., Fis the 2-sphere S 2 • Two surface-knots F 
and F' in S 4 are equivalent by an equivalence f if Fis sent to F' orientation-preservingly 
by an orientation-preserving diffeomorphism f : S 4 ---+ S 4 . 

A trivial surface-knot of genus n in S 4 is a surface-knot F of genus n which is the 
boundary of a handle body of genus n embedded in S 4 , where a handle body of genus n 
means a 3-manifold which is a 3-ball for n = 0, a solid torus for n = 1 or a boundary
disk sum of n solid tori. A surface-link in S 4 is a union of disjoint surface knots in S 4 , 

and a trivial surface-link is a surface-link bounding disjoint handlebodies in S 4 . A trivial 
surface-link in S 4 is determined regardless of the embeddings and unique up to isotopies 
(see [9]). 

A symplectic basis of a closed surface F of genus n is a system (x*, x:) of element 
pairs (xj,xJ)(j = 1,2, ... ,n) of H1 (F;Z) with the intersection numbers Int(xj,xj') = 
Int(xJ,xJ,) = Int(xj,XJ,) = 0 for all distinct j,j' and Int(xj,xJ) = +1 for all j. By an 
argument on the intersection form 

any pair (x 1 ,xD with Int(x1 ,xD = +1 is extended to a symplextic basis (x.,x:) of F. It 
is well-known that every symplectic basis (x*,x:) = {(xj,xJ)lj = 1,2, ... ,n} is realized 
by a system of oriented simple loop pairs ( e., e:) = { ( ej, eJ) I j = 1, 2, ... , n} of F such 
that the geometric intersections ej n ej' = eJ n eJ' = ej n eJ' = 0 for all distinct j, j' and 
the geometric intersection ej n eJ is a point for all j, which is called a loop basis of F. 

For a surface-knot F in S4, an element x E H1 (F; Z) is said to be spin if the Zr 
reduction [xh E H1 (F; Z2 ) of x has 77([xh) = 0 for the Zrquadratic function 

7/: H1(F; Z2)---+ Z2 

associated with a surface-knot Fin S 4 . For a simple loop e in F bounding a surface De in 
S 4 with Den F = e, the Zrself-intersection number Int(De, De) (mod 2) with respect 
to the F-framing is defined to be the value 77([e]2). 

For every surface-knot F in S4, there is a spin basis of F (see [7]). This means that 
any spin pair (x1 , xD with Int(x1 , xD = + 1 is extended to a spin symplectic basis (x., x:) 
of F by an argument of Arf invarinat of the Zrquadratic function 7/ : H1(F; Z2) ---+ Z2. 
In particular, any spin pair (x1, xD is realized by a spin loop pair ( e1, eD of F extendable 
to a spin loop basis (e., e:) of F. 

A 2-handle on a surface-knot Fin S 4 is a 2-handle D x I on F embedded in S 4 such 
that (D x I) n F = (8D) x I, where I denotes a closed interval with Oas the center and 
D x O is called the core of the 2-handle D x I and identified with D. For a 2-handle D x I 
on Fin S4, the loop 8D of the core disk D is a spin loop in F since 77([8Db) = 0. 

To save notation, if an embedding h: D x I U F---+ X is given from a 2-handle D x I 
on a surface F to a 4-manifold X, then the 2-handle image h(D x I) and the core image 
h(D) on h(F) are denoted by hD x I and hD, respectively. 
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An orthogonal 2-handle pair or simply an 02-handle pair on a surface-knot F in S 4 

is a pair (D x I, D' x I) of 2-handles D x I and D' x I on F which meet orthogonally 
on F, that is, which meet F only at the attaching annuli (8D) x I and (8D') x I so 
that the loops 8D and 8D' meet transversely at just one point q and the intersection 
(8D) x In (8D') x I is diffeomorphic to the square Q = {q} x Ix I (see [11] ). 

An 02-handle basis of a trivial surface-knot F of genus n in S 4 is a system (D. x 
I, D: x I) of mutually disjoint 02-handle pairs (Di x I, D! x I) (i = 1, 2, ... , n) on Fin 
S4 such that the loop system (8D,, aD:) = {(8Di, 8D;)I i = 1, 2, ... , n} forms a spin loop 
basis of F. 

Every trivial surface F in S 4 is taken as the boundary of a standard handlebody in 
the equatorial 3-sphere S3 of the 4-sphere S 4 • A standard 02-handle basis of F is an 
02-handle basis of F which is taken in S 3 and a standard loop basis of F is a loop basis 
of F determined by the attaching part of a standard 02-handle basis of F. 

For any given spin loop basis of a trivial surface-knot F of genus n in S4, there is an 
02-handle basis (D. x I, D: x I) of a trivial surface-knot Fin S 4 such that the loop basis 
(8D., aD:) coincides with the given spin loop basis of F. This is because there is an 
equivalence f : (S4, F) -+ (S4, F) sending the standard spin loop basis to the given spin 
loop basis of F by [8, 11] and hence there is an 02-handle basis of F which is the image 
of the standard 02-handle basis of F. 

Let p : S4(Fh -+ S 4 be the double branched covering projection branched along 
F. The non-trivial covering involution of the double branched covering space S4(Fh is 
denoted by a. The preimage p- 1(F) in ~ of F which is the fixed point set of a and 
diffeomorphic to F is also written by the same notation as F. The following result is a 
standard result. 

Lemma 2.1. For a standard 02-handle basis (D. x I, D: x I) of a trivial surface-knot 
F of genus n in S4, there is an orientation-preserving diffeomorphism 

sending the 2-sphere pair system 

to the standard 02-sphere basis (S2 x 1,, 1 x S;) of the stable 4-sphere ~ of genus n. In 
particular, the 2-sphere pair system (S(D.), S(D:)) is an 02-sphere basis of~-

The identification of S4(Fh = ~ is fixed by an orientation-preserving diffeomorphism 
f : S 4 (F)2 -+ ~ given in Lemma 2.1. Using a result of [11, 12], we have the following 
corollary. 

Corollary 2.2. For any two 02-handle bases (D. x I, D: x I) and (E. x I, E: x I) of 
a trivial surface-knot F of genus n in S4, there is an orientation-preserving a-equivariant 
diffeomorphisn J of~ sending the 2-sphere pair system (S(D,), S(D:)) to the 2-sphere 
pair system (S(E.), S(E:)). In particular, the 2-sphere pair system (S(D.), S(D:)) for 
every 02-handle basis (D. x I, D: x I) is an 02-sphere basis of~-
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An n-rooted disk family is the triplet (d, d., b.) where d is a disk, d. is a system of 
n mutually disjoint disks di ( i = 1, 2, ... , n) in the interior of d and b. is a system of n 
mutually disjoint bands bi (i = 1, 2, ... , n) in the n-punctured disk cl(d \ d,) such that 
bi spans an arc in the loop 8di and an arc in the loop 8d. Let b, denote the centerline 
system of the band system b •. 

In the following lemma, it is shown that there is a canonical n-rooted disk family 
(d, d., b,) associated with an 02-handle basis (D. x I, D: x I) of a trivial surface-knot F 
of genus n in S 4 . 

Lemma 2.3. Let (D. x I, D: x J) be an 02-handle basis of a trivial surface-knot F of 
genus n in S4, and (d, d,, b,) an n-rooted disk family. Then there is an embedding 

cp : (d, d., b.) X J ➔ (S4, D. X J, D: X I) 

such that 

(1) the surface Fis the boundary of the handlebody V of genus n given by 

V = cp(cl(d \ d.) x I), 

(2) there is an identification 

cp(d. x I,d.) = (cp(d.) x I,cp(d.)) = (D. x I,D.) 

as 2-handle systems on F and 

(3) there is an identification 

as 2-handle systems on F. 

In other words, Lemma 2.3 says that the 2-handle system D, x J attaches to the 
handlebody V along a longitude system of V and the 2-handle system D: x J attaches to 
V along a meridian system of V. 

The embedding cp in Lemma 2.3 is called a bump embedding. The 3-ball B = cp(D x J), 
the handlebody V in Lemma 2.3 and the pair (B, V) are respectively called a bump 3-ball, 
a bump handlebody and a bump pair of F in S4 . 

For a bump embedding 

cp: (d,d.,b.) X J ➔ (S4,D. X I,D: X I), 

there is an embedding (p : d x J ➔ S4 (F) 2 with p(p = cp. The images (p(d. x I) and 
(p(b, x I) are respectively considered as 2-handle systems D, x J and f>: x J on F in 
S4 (Fh by the rules of Lemma 2.3 (1)-(3), so that (D. x J, f>: x J) is an 02-handle basis 
of Fin (S4)(Fh with p(D. x J, f>: x J) = (D. x I, D: x I). The induced embedding 

(p: (d, d., b,) X J ➔ (S4(Fh, i>. X I, f>: X I) 
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has p0 = <p and is called a lifting bump embedding of the bump embedding cp. The bump 
3-ball 0( d x I) and the bump handle body 0( cl( d \ d.) x I) are respectively denoted by B 
and V in S 4(Fh unless confusion might occur. 

The composite embedding 

is another lifting bump embedding of the bump embedding cp. The bump 3-ball a0(d x 
I)= a(B) and the bump handlebody acp(cl(d \ d.) x I)= a(V) are respectively denoted 
by Band V in S 4 (F)2. Then we have 

V n V = B n f3 = F in S 4 (F)2. 

For an 02-handle basis (D. x I, n: x I) of a trivial surface-knot F in S4, the lifting 
02-handle bases (D. x I, fJ: x I) and (aD. x I, ab: x I) of Fin S 4(Fh are respectively 
denoted by 

(D. X I, n: X I), and (D. X I, D: X I). 

Note that the unions S(Di) = Di U Di and S(DD = n; U D; are 2-spheres in S4 (Fh such 
that (S(Di), S(DD) is an 02-sphere pair in S 4 (F)2. 

For a lifting bump embedding, we have the following lemma. 

Lemma 2.4. Let 0: (d, d., b.) x I---+ (~, D. x I, n: x I) be a lifting bump embedding. 
Let u : ~(o) ---+ ~ be an embedding. Assume that the image 0( d x I) is in the interior 
of ~(o) to define the composite embedding u0 : (d, d., b.) x I ---+ (~, uD. x I, uD: x I). 
Then there is a diffeomorphism g : ~ ---+ ~ which is isotopic to the identity such that the 
composite embedding gu0: (d,d,,b.) x I---+ (~,guD, x I,guD: x I) is identical to the 
lifting bump embedding 0: (d, d., b.) x I---+(~, D. x I, n: x I). 

In Lemma 2.4, note that any disk interior of the disk systems guD, and guD: does 
not meet the bump 3-ball B = 0(d x I) in~-

In fact, since gu defines an embedding from B U f3 with B n f3 = F into ~ and we 
have gu(B, F) = (B, F), the complement gu(B) \ F of F in the 3-ball gu(B) does not 
meet the bump 3-ball B, which means that any disk interior of the disk systems guD. 
and guD: does not meet the bump 3-ball B. 

Unless ~(o) and ~ have the same genus n, this property cannot be guaranteed. 

3 Outline of the proof of a homological version of Theorem 1.1 

The following lemma is related to the intersection numbers of the lifting 02-sphere bases 
between two 02-handle bases of Fin S 4 . 

Lemma 3.1. Let (D. x I, n: x I) be an 02-handle basis of a trivial surface-knot F of 
genus n in S4, and(£.,£:)= (8D.,an:) a spin loop basis of F. For a 2-handle Ex I on 
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Fin S4, assume that the homology class [e] E H1(F; Z) of the loop e = 8E is written as 

n n 

[e] = Lkj[£j] + Lsj[CJ] 
j=l j=l 

in H1 (F; Z) for some integers kj, Sj (j = 1, 2, ... , n). Then the homology class [S(E)] E 
H 2 (~; Z) is written as 

n n 

j=l j=l 

The following lemma is a homological version of Theorem 1.1, which is obtained by a 
base change of an 02-handle basis of a trivial surface-knot F of genus n in S 4 by [8, 11]. 

Lemma 3.2. For any pseudo-02-sphere bases (R., R:) and (S., s:) of the stable 4-sphere 
~ of genus n, there is an a-invariant orientation-preserving diffeomorphism J : ~ --+ ~ 
which induces an isomorphism 

such that 
[fR;] = [Si] and [fR;J = [BJ 

for all i. 

4 Outline of the proof of Theorem 1.1 

Throughout this section, the proof of Theorem 1.1 is done. As well as the proof of 
Lemma 3.2, it suffices to show this theorem when (R., R:) is an 02-sphere basis of~ with 
(R., R:) = (S(D.), S(D:)) for an 02-handle basis (D. x I, D: x I) of a trivial surface-knot 
F of genus n in S 4 • 

Let D(S., s:) be the region of the pseudo-02-sphere basis (S., s:) of~- The 4-manifold 
obtained from D(S., s:) by adding a 4-ball D 4 in place of the residual region nc(s., s:) 
is diffeomorphic to ~- This means that there is an orientation-preserving embedding 

U: ~(O) --t ~ 

such that 
(uS(D.),uS(D:)) = (S.,s:). 

By Lemma 3.2, after applying an a-invariant orientation-preserving diffeomorphism J : 
~ --+ ~, we assume that the homology classes [uS(Di)] = [Si] and [uS(DD] = [Sf] are 
identical to the homology classes [R;] = [S(D;) and [R'.] = [S(D'.)] for all i, respectively. 
Let (B, V) be a bump pair of the 02-handle basis (D. x I, D: x I) of F in S 4 defined 
soon after Lemma 2.3. Recall that the two lifts of (B, V) to~ under the double branched 
covering projection p: S4(Fh --+ S 4 are denoted by (B, V) and (.B, V). 
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For the proof of Theorem 1.1, we provide with three lemmas. The first lemma is as 
follows. 

Lemma 4.1. There is a diffeomorphism g of~ which is isotopic to the identity such that 
the composite embedding 

gu: ~(O) -t ~ 

preserves the bump pair (B, V) in ~ identically and has the property that every disk 
interior in the disk systems guD. and guD: meets every disk in the disk systems D. and 
b: only with the intersection number 0. 

By Lemma 4.1, we can assume that the orientation-preserving embedding 

sends the bump pair (B, V) to itself identically and has the property that every disk 
interior in the disk systems uD. and ub: meets every disk in the disk systems D. and 
b: only with intersection number 0. Then we have the following lemma: 

Lemma 4.2. There is a diffeomorphism g of~ which is isotopic to the identity such that 
the composite embedding 

gu: ~(O) -t ~ 

sends the disk systems D. and D: identically and the disk interiors of the disk systems 
guD., guD: to be disjoint from the disk systems D. and b: in~-

For the 02-sphere basis (S(D.), S(D:)) of~, let 

q. =fa= S(Di) nS(D~)li = 1,2, ... ,n} 

be the transverse intersection point system between S(D.) and S(D:). 
The diffeomorphism g of~ in Lemma 4.2 is deformed so that the disks guDi and Di 

are separated, and then the disks guD; and D; are separated while leaving the trans
verse intersection point qi. By this deformation, we obtain a pseudo-02-sphere basis 
(guS(D.), guS(D:)) of ~ which meets the 02-sphere basis (S(D.), S(D:)) at just the 
transverse intersection point system q •. 

Next, the diffeomorphism g of~ is deformed so that a disk neighborhood system of q. 
in guS(D.) and a disk neighborhood system of q. in S(D.) are matched, and then a disk 
neighborhood system of q. in guS(D:) and a disk neighborhood system of q. in S(D:) 
are matched. 

Thus, there is a diffeomorphism g of ~ which is isotopic to the identity such that the 
meeting part of the pseudo-02-sphere basis (guS(D.), guS(D:)) and the 02-sphere basis 
(S(D.), S(D:)) is just a disk neighborhood pair system (d., d:) around the transverse 
intersection point system q •. 

Now, assume that for an embedding u : ~(o) -t ~, the meeting part of the pseudo-
02-sphere basis (uS(D.), uS(D:)) and the 02-sphere basis (S(D.), S(D:)) is just a disk 
neighborhood pair system (d., d:) of q •. Then we have the following lemma: 
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Lemma 4.3. There is an orientation-preserving diffeomorphism h of I; such that the 
composite embedding 

hu : I;(o) ---+ I; 

preserves the 02-sphere basis (8(D,), 8(D:)) identically. 

Since (u8(D,), u8(D:)) = (8., 8:) and (R., R:) = (8(D.), 8(D:)), an outline of the 
proof of Theorem 1.1 is completed by Lemma 4.3. 

The proof of Lemma 4.3 is obtained from Lemma 4.4 (called Framed Light-bulb Dif
feomorphism Lemma) which is easily proved in comparison with an isotopy version of this 
lemma using Gabai's 4D light-bulb theorem [5] stated in Section 6. 

A 4D solid torus is a 4-manifold Yin 8 4 which is diffeomorphic to 8 1 x D3 . A boundary 
fiber circle of the 4D solid torus Y is a fiber circle of the 8 1-bundle 8Y Sc' 8 1 x 8 2 . Let 
ye= cl(84 \ Y). Let Y. be a system of mutually disjoint 4D solid tori Y;, (i = 1, 2, ... , n) 
in 84, and y;_c the system of the 4-manifolds Y;C, (i = 1, 2, ... , n). Let 

Then Lemma 4.4 is stated as follows. 

Lemma 4.4 (Framed Light-bulb Diffeomorphism Lemma). Let D, x I be a system 
of mutually disjoint framed disks Di x I (i = 1, 2, ... , n) in nY,c such that 8Di is a 
boundary fiber circle of Y; and 

for all i. If E. x I is any system of mutually disjoint framed disks Ei x I (i = 1, 2, ... , n) 
in nY.c such that 

(E. x I) n 8Y;c = (8Ei) x I= (8Di) x I 

for all i, then there is an orientation-preserving diffeomorphism h : 8 4 ---+ 8 4 sending Y. 
identically such that 

5 A classification of orientation-preserving diffeomorphisms of 
the stable 4-sphere 

Let Diff+(D4, rel 8) be the orientation-preserving diffeomorphism group of the 4-ball D4 

keeping the boundary 8D4 by the identity. An identity-shift of a 4-manifold I; is a 
diffeomorphism l : I; ---+ I; obtained from the identity map 1 : I; ---+ I; by replacing the 
identity on a 4-ball in I; disjoint from F with an element of Diff+(D4, rel 8). 

The following result is obtained by using Framed Light-bulb Isotopy Lemma (explained 
soon) based on Gabai's 4D light-bulb theorem in [5] instead of Framed Light-bulb Diffeo
morphism Lemma. 



11

Theorem 5.1. Let I; be the stable 4-sphere I; of any genus n ~ l, and h : I; --+ I; any 
orientation-preserving diffeomorphism. Then there is an o:-equivariant diffeomorphism 
J : I; --+ I; such that the composite diffeomorphism ]h : I; --+ I; induces the identity 
isomorphism 

(]h). = 1: H 2 (I;; Z)--+ H 2 (I;; Z). 

Further for any such o:-equivariant diffeomorphism J : I; --+ I;, the composite diffeomor
phism ]h: I;--+ I; is isotopic to an identity-shift l of I;, 

To prove Theorem 5.1 in the process of the proof of Theorem 1.1, we need to show that 
the diffeomorphism h of I; in Lemma 4.3 can be replaced by a diffeomorphism of I; which is 
isotopic to the identity. For this purpose, we need the following lemma (Framed Light-bulb 
Isotopy Lemma), coming from Gabai's 4D light-bulb theorem in [5, Theorem 10.4]. Note 
that the assumption of Framed Light-bulb Isotopy Lemma adds an additional condition 
to the assumption of Framed Light-bulb Diffeomorphism Lemma (Lemma 4.4). 

Lemma 5.2 (Framed Light-bulb Isotopy Lemma). Let Y. be a system of mutually 
disjoint 4D solid tori Y; ( i = 1, 2, ... , n) in S 4 • Let D. x I be a system of mutually disjoint 
framed disks D; x I (i = 1, 2, ... , n) in nY.c such that fJD; is a boundary fiber circle of Y; 
and 

(D. x I) n fJY/ = (aD;) x I 

for all i. If E. x I is any system of mutually disjoint framed disks E; x I (i = 1, 2, ... , n) 
in nY.c such that 

(E. X I) n fJY;" = (aE;) X I= (aD;) X I 

for all i and the unions D; U E; (i = 1, 2, ... , n) are mutually disjoint, then there is a 
diffeomorphism h: S 4 --+ S 4 which is ¥,,-relatively isotopic to the identity such that 

h(D. x I, D.) = (E. x I, E.). 

The identity-shift l in Theorem 5.1 is needed because at present it appears unknown 
whether 1r0(Diff+(D4, rel 8) is trivial or not. However, it is known that the identity-shift 
l is concordant to the identity since f 5 = 0 (see Kervaire [17]), so that every orientation
preserving diffeomorphism h : I; --+ I; for the stable 4-sphere I; of any genus n is smoothly 
concordant to an a-equivariant orientation-preserving diffeomorphism h = J-1 : I; --+ I;, 

In the piecewise-linear category, the notion of an identity-shift is not needed since ev
ery piecewise-linear orientation-preserving homeomorphism of the 4-disk D4 is piecewise
linearly isotopic to the identity. Thus, we have that every piecewise-linear orientation
preserving homeomorphism h' : I; --+ I; for the stable 4-sphere I; of any genus n is piecewise
linearly isotopic to an a-equivariant orientation-preserving piecewise-linear homeomor
phism h' : I; --+ I;. 

The following result is a consequence of Theorem 5.1. 
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Corollary 5.3. Every O2-sphere basis of~ is isotopic to the O2-sphere basis (S(D*), S(D:)) 
constructed from an O2-handle basis (D* x I, D: x J) of a trivial surface-knot F of genus 
n in S4 • 

This result says that every O2-sphere basis of ~ up to isotopies comes from an O2-
handle basis (D. x I, D: x J) of a trivial surface-knot F of genus n in S 4 which is unique 
up to orientation-preserving diffeomorphisms of S4 by [11, 12]. 
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