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1 Introduction 

A knot invariant v is called a Vassiliev invariant if it vanishes on singular knots with 
sufficiently large number of double points. More precisely, we extend v to an invariant 
v(r) on singular knots with exactly r (transverse) double points with v(O) = v and 

(1.1) 

We say v is of order r if v(r) =f. 0 and v(r+l) = 0, and the singular knot invariant v(r) is 
sometimes called the Vassiliev derivative of order r. The recurrence formula (1.1) is called 
Vassiliev skein relation while it was first explicitly introduced in [Birman, 1993, Birman 
and Lin, 1993]. As an important result in that paper, it was pointed out that Vassiliev 
invariants are deeply related to quantum invariants. Namely, consider the following Taylor 
series of the Jones polynomial V: 

n 

It was shown that each an is of order n and hence a Vassiliev invariant. Actually, it 
was even shown that analogues hold for other quantum invariants; i.e. ones coming from 
representations of quantum groups. 

On the other hand, in light of recent developments of knot theory, it has been revealed 
that quantum invariants are kinds of "de-categorifications" of categorical invariants. The 
first concrete study was carried out by Khovanov; in the seminal work [Khovanov, 2000]; he 
showed that the Jones polynomial V(K) is obtained as the (graded) Euler characteristic of 
a homology invariant Kh(K), which is nowadays called Khovanov homology. A number of 
researches follow it, and quantum invariants of type A arc all catcgorificd, e.g. [Khovanov 
and Rozansky, 2008a, Khovanov and Rozansky, 2008b, Cautis and Kamnitzer, 2008a, 
Cautis and Kamnitzer, 2008b, Rasmussen, 2015]. 

It seems a natural question to ask whether there is a direct relationship between cat
egorified knot invariants and Vassiliev invariants. The goal of our project is to provide a 
higher-categorical background for Vassiliev theory to answer the question positively. As 
a first step, we defined Vassiliev derivatives of Khovanov homology in [Ito and Yoshida, 
2020, Ito and Yoshida, 2021] and proved that they are singular knot j_nvariants. This is 
done by constructing an explicit chain map, which we usually write <P, that catcgorifics 



33

the subtraction in Vassiliev skein relation (1.1). However, although we showed homotopy 
invariance of $ under certain moves, the geometric meanings of the higher hornotopies are 
unclear; this is because there is no such thing as "equality of equality" in the combinatorial 
context where (1.1) lies in. 

In this article, we present our result in view of the cohornology of the knot space, 
which may reveal the meaning of higher categorical structures. In fact, in contrast to the 
combinatorial characterization above, Vassiliev invariants were originally discovered in 
the study of the space of knots [Vassiliev, 1990]. Indeed, if JC denotes the space of knots, 
then every knot invariant is uniquely associated with a 0-cocycle in the cohornology group 
H 0 (JC) or the reduced on ii0 (JC) if it is appropriately normalized on the unknot: 

{knot invariants}/ {constants} ~ [ 7ro (JC), Z] /Z ~ ii0 ( JC) 

Vassiliev invariants arise from a spectral sequence converging to H*(JC). Hence, if his 
construction is described categorically, then it may automatically explain the geomet
ric meaning of categorified knot invariants. Specifically, we investigate the fundamental 
groupoid II1JC and show that it has a combinatorial description in terms of knot diagrams 
and Reiderneister moves. In addition, to take discriminant ~ into account, we embed 
II1JC into a category C obtained by attaching crossing-changes to II1JC. In this setting, 
our main result can be presented in the following form. 

Main Theorem. Khovanov homology extends to a functor 

Kh: C ➔ Db(grAbf) 

where the target category is the bounded derived category of graded abelian groups of finite 
total dimension. 

We note that Section 1 implies that each morphism in C representing a crossing-change 
induces a morphism between Khovanov homologies of knots that is itself invariant of a 
singular knot. Therefore, it extends Khovanov homology to singular knots so that the 
following is an exact triangle in Db(grAbf): 

Kh (X) ➔ Kh (X) ➔ Kh (X) ➔ ~Kh (X) 
Furthermore, we discuss categorical analogues of relations corning from the Vassiliev's 
spectral sequence; namely, the FI-relation and the 4T-relation. 

2 Categorification of 0-cocycles 

We first quickly sketch the basic idea of the categorification of 0-cocycles in terms of 
fundamental groupoid. For a topological space X and an abelian group A, an A-valued 
0-cocycle on X is an element of either of the following equivalent sets: 

[X, A] ~ [7r0X, A] ~ H 0 (X; A) , 

where [-, -] is the set of homotopy classes of continuous maps, and 7roX is the set of 
path-connected components of X. 
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Definition. Let X be a topological space. The fundamental groupoid of X is the category 
II1X described as follows: 

• objects are points on X; 

• morphisms are boundary-fixed homotopy classes of continuous paths c: [O, 1] --t X, 
with dome= c(O) and code= c(l); 

• the composition is concatenation of paths. 

It is easily seen that every morphism of II1X is invertible; in other words, it II1X is 
in fact a groupoid. Also, an isomorphism class of II1X is nothing but a path-connected 
component of X. It follows that there is a bijection II1X/isom ~ 1r0X, so one may say 
II1X is a catcgorification of 1r0X. 

On the other hand, we consider categorification of coefficient abelian group in the 
following form. Recall that, for a triangulated category 'T, the Grothendieck group K('T) 
is the abelian group generated by the isomorphism classes of 'T subject to the relation 
[X] - [Y] + [Z] = 0 for every exact triangle in 'T of the following form: 

X --t Y --t Z --t ~X 

Definition. Let A be an abelian group. A triangulated category 'T is called a categorifi
cation of A if it is equipped with an isomorphism K('T) ~ A. 

Example 2.1. Let A= Z be the ring of integers. For a field k, we denote by Db(Vectt) 
the bounded derived category of chain complexes of finite dimension k-modules. Then, 
the Euler characteristic 

induces an isomorphism K(Db(Vectt)) ~ Z. Hence, Db(Vectt) is a categorification of Z. 

Example 2.2. Let A = Z[q, q-1] be the Laurent polynomial ring. For a field k, we de
note by Db(grVectt) the bounded derived category of graded k-modules of totally finite 
dimension. More precisely, the objects are bounded bigraded k-modules C*,* together 
with k-homomorphisms d : Ci,j --t Ci+l,j such that do d = 0. Then, the graded Euler 
characteristic 

i ,j 

induces an isomorphism K(Db(grVectt)) ~ Z[q, q-1]. In other words, Db(grVectt) is a 
categorification of the Laurent polynomial ring. 

If a categorification 'T of an abelian group A, then an A-valued 0-cocycle on a topo
logical space X will be categorified as a functor 

F : II1X --t 'T . 

Indeed, given such an F, we obtain a map 1r0(X) --t K('T) as the one induced by F on 
the isomorphism classes. As mentioned in the introduction, one of the goals of the article 
is to exhibit Khovanov homology in this form in the case X = JC and 'T = Db(grVectt). 
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O--h--2 

Figure 3.1: A 2-simplex defining a composition 

3 The fundamental groupoid of the knot space 

To consider categorification of knot invariants in the sense of the previous section, we 
need more convenient description of the fundamental groupoid of the knot space. For 
this, recall that the singular simplicial set of a topological space X is the simplicial set 
S0 X such that 

SnX := { continuous maps ~ n ---+ X} , 

where ~n is the standard simplex. The face and degeneracy operators are defined in 
the obvious way. The simplicial set S0 X has all the weak-homotopy information on X: 
specifically, the fundamental groupoid II1X is equivalently given as follows: 

• objects are elements of S0X; 

• morphisms are equivalent classes of S 1X under the relation d1u ~ d2u for each 
2-simplex u E S 2X with d0u degenerate; 

• the composition is defined so that [g] o [f] = [h] holds for f, g, h E S 1X if and only if 
there is a 2-simplex u E S2X with d0u = g, d1u = h, and d2u = f (see Figure 3.1). 

Generally, the above construction works for every Kan complex K; we write II1K the 
resulting category and call it the fundamental gmupoid of K. 

Definition. For a compact manifold X and a smooth fiber bundle q : Y---+ B, we define 
a simplicial set £!3 (X, Y) with £;3 (X, Y) consisting of smooth maps f: X x ~i---+ Y such 
that 

• for each t E ~i, the restriction f lxx{t} : X---+ Y is an embedding; 

• for each face CJ c ~ i, the map 

qf u : X X (J---+ BX (J ; (x, t) f-t (qf(x, t), t) 

is "generic" in the sense that its (multi-)jets are transverse to all the discriminants. 

Proposition 3.1 (cf. [Lurie, 2009, Proposition 1] and [Lee, 2003, Theorem 10.16]). Let 
X be a compact manifold and q : Y ---+ B a smooth fiber bundle. Then, £!3(X, Y) is a 
Kan complex equipped with a canonical homotopy equivalence 

£;3 (X, Y)---+ S0 Emb(X, Y) , 

where Emb(X, Y) is the space of smooth embeddings X ---+ Y with the Whitney C 00 -

topology. Specifically, there is an equivalence of categories II1£;3(X, Y),:,:, II1 Emb(X, Y). 
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RI RII RIII 

Table 3.1: Singularities associated with the Reidemeister moves 

MM6 MM7 MM8 MM9 MMlO 

Table 3.2: Singularities associated with the movie moves 

We set X = S1, Y = JR3 , and B = JR2 in Proposition 3.1. Then, we obtain an 
equivalence of categories 

where K, = Emb(S1,JR3) is the space of knots in JR3 . We write D := II1£t(S1,JR3 ). Now, 
the classification of the singularities yields the following combinatorial description of the 
category D. 

Theorem 3.2 (cf. [Carter and Saito, 1998, Roseman, 2000, Roseman, 2004]). The cate
gory D is equivalent to the one described as fallows: 

• objects are knots associated with a knot diagram; 

• morphisms are sequences of isotopies the moves associated with the singularities in 
Table 3.1, which are usually called the Reidemeister moves; 

• morphisms are subject to the relation generated by 

(i) invertibility of Reidemeister moves, 

(ii) commutativity of Reidemeister moves applied to remote parts, and 

(iii) the moves associated with the singularities in Table 3.2. 

Remark 3.3. The relations coming from the singularities in Table 3.2 form a part of movie 
moves in [Carter and Saito, 1998]. 

4 Khovanov homology as a categorified 0-cocycle 

In the previous section, we obtained a category of knot diagrams D together with an 
equivalence D ~ II1K. Note that each object in D is canonically associated with a knot 
diagram D. Hence, in view of the combinatorial description in Theorem 3.2, one obtains 
a categorified 0-cocycle in the following steps: 
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(i) construct a bounded chain complex C(D) of graded modules for each knot diagram 
D· 

' 
(ii) specify a chain homotopy along each Reidemeister moves; 

(iii) verify the homotopy commutativity of diagrams associated with movie moves in 
Table 3.2. 

In this section, We carry out the process in the case of Khovanov homology. 
For this, we quickly review the construction of Khovanov homology. For a fixed base 

ring k, we write A= k[x]/(x2 ) the Frobenius algebra with the following comultiplication 
and counit: 

~(1)=1C9x+xC91, ~(x)=x(s)x, s(l)=0, s(x)=l 

As Frobenius algebras are equivalent to 2-dimensional topological quantum theory (aka. TQFT), 
we denote by Z A the associated TQFT. In addition, by setting deg 1 = 1 and deg x = -1 
in A~ ZA(S1 ), one sees that ZA lifts to a functor 

ZA: Cob2 --+ grModt , 

where Cob2 is the category of 2-dimensional cobordisms. Using this functor, we define 
a complex C(D) in grModt for each diagram D as follows: for each crossing c of D, 
consider either of the following complexes according to the sign of c: 

-1 0 1 

X e+ { 0 -----> ZA ()()'~ ZA (X)} , (4.1) 

X e+ { ZA (Xf ~ ZA ( ) ( ) -----> 0 } 

Then, construct C(D) by stacking up all such elementary parts. 

Theorem 4.1 (cf. [Clark et al., 2009]). For every field k, Khovanov homology with coef
ficients in k extends to a functor 

Kh : 1111( --+ Db(grModt) 

whose image in [7r01C, Z[q, q-1]] agrees with the (unnormalized) Jones polynomial. 

Proof. Khovanov [Khovanov, 2000] constructed a concrete chain map between complexes 
C(D) associated with Reidemeister moves. Furthermore, in [Clark et al., 2009], it was 
shown that Khovanov homology satisfies the relation associated with all movie moves con
taining Table 3.2. Therefore, in view of Example 2.2 and the recipe in the last paragraph 
in the previous section, we obtain the required functor. □ 
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5 Crossing-change 

We next consider crossing-changes from the viewpoint of catcgorificd cocyclcs. Let us 
denote by X c C00 (S1, IR3 ) the subset of generic smooth immersions. According to the 
singularity theory of smooth maps, K is actually the 0-th stratum of a stratification 
X = KU LJi>D I;'.; the set I;' := LJi I;'. is hence the discriminant. For example, the lower 
strata are described as follows: 

• I;~ is the space of immersions with unique transverse double points, which are exactly 
singular knots with single double points; 

• I;; is the space of immersions with exactly two transverse double points. 

We denote by IIf' X c II1X the subcategory whose morphisms are those paths which are 
transverse to the strata I;;. Since each stratum I;'. c X is of codimension i, morphisms 
in IIf' X are continuous families { Kt}o::c;t:<:;t of knots which may be singular with single 
double points only at finitely many parameters. Specifically, I;~ has a normal bundle 
which is canonically oriented in the direction from a negative resolution to a positive one 
on each double point. We further define Ilf' X c IIf' X the subcategory consisting of 
paths which are along the orientation of the normal bundle of I;~ on each intersection. 

By an analogous argument to Section 3, we again obtain a combinatorial model for the 
category rrf' X. 

Proposition 5.1. The category flf' X is equivalent to the category generated by D given 
in Theorem 3. 2 and morphisms of the farm 

x➔x (5.1) 

subject to the following relations: 

(i) the "crossing-change" (5.1) commutes with Reidemeister moves applied to separated 
parts; 

(ii) the following are commutative: 

11 1 X( ~ )( ~ I~ 
~ ,x ~ I 

~ I, 
1 1 1 1 Rnl 1 

'01 ''9 x< ~ ![ 0 ~ I;, ~ ------+ 

1\ \ i\ 9, 
We use Proposition 5.1 to exhibit our extension of Khovanov homology [Ito and 

Yoshida, 2021] as a functor out of the category tif' X. The construction is similar to 
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that in the previous section. All we have to do is to assign a chain map to the crossing
change (5.1) and to verify the conditions in Proposition 5.1. As for the first part, we 
define a morphism 

by the following morphism: 

c (X) {zA ()<)"~ zA ()()----> o } , 

C ( ~ ) { \ ----> ZA (t () z~ ZA ( ~ )} 

where the morphism <(> on degree 0 is given as the following sum of two cobordisms: 

Theore!_ll 5.2 ([Ito and Yoshida, 2020, Ito and Yoshida, 2021]). With the above crossing 
change <t>, Khovanov homology extends to a functor 

In fact, Theorem 5.2 defines Vassiliev derivatives of Khovanov homology thanks to the 
next result. 

Proposition 5.3. Let T be a triangulated category, and suppose we are given a functor 

Then, it defines a singular knot invariant with values in T so that, for each double point 
in a singular knot diagram, it comes equipped with the following exact triangle: 

F (X) crossing-change F (X) -+ F (X) -+ ~F (X) (5.2) 

Notice that, by definition of the Grothendieck group K(T), the exact triangle (5.2) 
gives rise to the equation 

in K(T). This implies that the extension of F to singular knots is a catcgorification of 
Vassiliev derivatives. 
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6 Relations from Vassiliev's spectral sequence 

In this final section, we discuss further property of our extension of Khovanov homology 
in Theorem 5.2. To begin with, we review Vassiliev's idea, which is roughly as follows: 
let M c C 00 (S1,IR3) be the subspace of "generic" smooth maps S1 --t IR.3. As in the 
case of the space of immersions in Section 5, the space M also has a stratification M = 
K, u ui>O ~i according to the singularity theory with the discriminant the set ~ := ui ~i
Each stratum ~i consists of smooth maps with singularities of degree i in the sense of 
[Boardman, 1967]. For example, the lower strata are described as follows: 

• ~ 1 is the space of immersions with unique transverse double points, which are exactly 
singular knots with single double points; 

• ~ 2 is the space consists of 

(a) immersions with exactly two transverse double points and 
(b) injective maps with unique singular values 

Since M is a contractible spaces, Alexander duality1 yields the following isomorphism: 

H*(K) ~ H00-*-1(~) , 

where the right hand side is (a certain colimit of) Borel-Moore homology. With respect 
to the filtration FP~ = ui>p ~i, we therefore obtain a spectral sequence of the following 
form: 

Ef'q ~ Hoo-p-q-1(FP~) =} JlP+q(K,) 

Vassiliev invariants of order i are exactly the invariants that lie in the i-th filtration of 
H0(K) with respect to the spectral sequence. Note that the elements of the groups of the 
form E;,-i may be related to an order i invariants. Combinatorial descriptions of such 
groups are given by [Vassiliev, 1990] and [Kontsevich, 1993] in terms of chord diagrams. It 
however turns out that not all functions on chord diagrams are related to knot invariants. 
A criterion was given by [Kontsevich, 1993]: functions should satisfy two relations called 
the FI-relation and the 4 T-relation. In the rest, we discuss their categorical analogue on 
Khovanov homology. 

6.1 The FI-relation 

For a function v on singular knot diagrams, the FI relation is represented as vanishing at 
the following type of double points: 

(6.1) 

In terms of the category fif X or II1M, the relation arises from comparison of the two 
paths in Figure 6.1. Hence, in the categorical context, the FI relation can be seen as 
a condition for the crossing-change morphisms to commute with Reidemeister moves of 
type I. 

1 We cheat here; M is not finite dimensional. For details, we refer the reader to [Vassiliev, 1990] 
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Figure 6.1: Two paths for the FI relation 

Theorem 6.1. The morphism <P defined in Section 5 commutes with the morphisms asso
ciated with Reidemeister moves of type I. More precisely, the following diagram commutes 
in Db(grModt): 

(6.2) 

We note that since the top-to-bottom morphisms in the diagram (6.2) are quasi
isomorphisms, so is the bottom. As Khovanov homology on singular knots are defined 
using exact triangles induced by the morphism <I>, we obtain the following vanishing of 
Vassiliev derivative: 

In this point of view, Theorem 6.1 is a categorification of the FI-relation (6.1). 

6.2 The 4T-relation 

As for the 4T-relation (aka. the four-term relation), its knot diagrammatic representation 
is as follows: 

In contrast to the FI-relation, the categorical situation is a little bit subtle. Indeed, 
associated categorical condition is not commutativity but the "higher-commutativity" 
of 3-dimensional diagrams. Since triangulated categories do not carry sufficient higher
dimensional information in general, the categorical analogue of 4T-relation cannot be 
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stated as conditions of morphisms in triangulated categories. Thus, we instead state it as 
a condition on categorical Vassiliev derivatives. 

Theorem 6.2 (in preparation). The Vassiliev derivatives of Khovanov homology defined 
in Section 5 satisfies the 4 T-relation in the sense that the diagram below commutes up to 
chain homotopies: 

where the arrows with label Rrv are the quasi-isomorphisms induced by the Reidemeister 
moves of type III (see Theorem 5.2). 

Remark 6.3. The difficulty of categorical 4T-relation mentioned above suggests that we 
should need higher categorical setting in order to categorify Vassiliev theory. One possible 
candidate is the notion of pretriangulated dg-categories. In fact, using this framework, 
4T-relation is represented as exactness of a 2-cycle spanned by crossing changes and 
Reidemeister III-moves. 

Obtained the fundament~l relations in Kontsevich invariants, we are now sure that the 
crossing-change morphism <I> is the "right" one in view of Vassiliev theory. In addition, 
we highly expect that there should be a categorified version of weight systems so that 
Khovanov homology is expanded into them, which we are searching for. 
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