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1 Introduction 

Skein algebras have been introduced by Przytycki and Turaev at the end of the 80's as 
a tool to study the SU(2) Witten-Reshetikhin-Turaev topological quantum field theories. 
Skein algebras appear in TQFTs through their finite dimensional representations. Such 
representations exist if and only if the parameter A is a root of unity. A generalization 
named stated skein algebras were introduced by Bonahon-Wong [BWll] and Le [Le18]. 
The goal of the present note is to state what is known and to dress a series of open 
problems towards the resolution of the following 

Problem 1.1. Classify all finite dimensional weight representations of stated skein alge
bras when A is a root of unity of odd order. 

As we shall see, this problem is deeply connected to the study of the Poisson geome
try of relative character varieties, more precisely to the computation of their symplectic 
leaves. Here we choose the order of A to be odd and restrict to weight representations for 
simplicity. Actually, even for the bigon, one of the simplest marked surface, Problem 1.1 
is undecidable so we will reformulate later a more reasonable version in Problem 6.2. 

2 Definition of stated skein algebras 

Definition 2.1. A marked surface ~ = (~, A) is a compact oriented surface ~ (possibly 
with boundary) with a finite set A = { a;}i of orientation-preserving immersions ai : 
[O, 1] ~ 8~, named boundary arcs, whose restrictions to (0, 1) are embeddings and whose 
interiors are pairwise disjoint. 

An embedding f : (~, A) ---+ (~', A') of marked surfaces is a orientation-preserving 
proper embedding f : ~ ---+ ~' so that for each boundary arc a E A there exists a' E A such 
that f o a is the restriction of a' to some subinterval of [O, 1]. When several boundary arcs 
a1 , ... , an in ~ are mapped to the same boundary arc b of ~' we include in the definition 
off the datum of a total ordering of { a 1 , ... , an}- Marked surfaces with embeddings form 
a category MS with symmetric monoidal structure given by disjoint union. 

By abuse of notations, we will often denote by the same letter the embedding ai and its 
image ai((O, 1)) c 8~ and both call them boundary arcs. We will also abusively identify 
A with the disjoint union LJi ai((O, 1)) c 8~ of open intervals. The main interest in 
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considering marked surfaces is that they have a natural gluing operation. Let ~ = (~, A) 
be a marked surface and a, b E A two boundary arcs. Set ~a#b := ~ / a(t) ~ b(l - t) and 

Aa#b := A\ a U b. The marked surface ~a#b = (~a#b, Aa#b) is said obtained from ~ by 
gluing a and b. We say that ~ = (~, A) is unmarked if A= 0. A puncture is a connected 
component of 8~ \ A. 

Notations 2.2. Let us name some marked surfaces. Let ~g,n be an oriented connected 
surface of genus g with n boundary components. We will sometimes write ~ 9 = ~ 9 ,0 . 

1. The nth -punctured monogon mn = (~o,n+1, {a}) is ~O,n+l with one boundary arc in 
one of its boundary component. 

2. The nth -punctured bigon IIJJn = (~o,n+1, { a, b}) is ~o,n+l with two boundary arcs in 
the same boundary component. We call lBl := IIJJ0 simply the bigon. We also write 
1IJJt := (~0,2 , { a, b}) the annulus with one boundary arc in each boundary component. 

3. The triangle 11' = ( D 2 , { a, b, c}) is a disc with three boundary arcs on its boundary. 

4. We denote by ~~,n = (~g,n+l, {a}) the surface ~g,n+l with a single boundary arc in 
one of its only boundary component. 

A tangle is a compact framed, properly embedded I-dimensional manifold T C ~ x 
(0, 1) such that for every point of 8T C A x (0, 1) the framing is parallel to the (0, 1) 
factor and points to the direction of 1. The height of (v, h) E ~ x (0, 1) is h. If a is a 
boundary arc and T a tangle, we impose that no two points in OaT := 8T n a x (0, 1) 
have the same heights, hence the set OaT is totally ordered by the heights. Two tangles 
are isotopic if they are isotopic through the class of tangles that preserve the boundary 
height orders. By convention, the empty set is a tangle only isotopic to itself. A state is 
a map s : 8T --+ { ±} and a stated tangle is a pair (T, s). 

Definition 2.3. Let k be a (unital associative) commutative ring and let A112 E kx be 
an invertible element. The stated skein algebra SA(~) is the free k-module generated by 
isotopy classes of stated tangles in ~ x (0, 1) modulo the following skein relations 

+ -+ - = = 0, - -As/2 
+ 

+ -

The product of two classes of stated tangles [T1 , s1] and [T2 , s2] is defined by isotoping T1 

and T2 in ~ x (1/2, 1) and ~ x (0, 1/2) respectively and then setting [T1 , s1] · [T2 , s 2] = 
[T1 UT2 , s1 U s2]. Now consider an embedding f : ~1 --+ ~ 2 of marked surfaces and define a 
proper embedding f: ~1 x (0, 1) --+ ~ 2 x (0, 1) such that: (1) l(x, t) = (f(x), cp(x, t)) for cp 

a smooth map and (2) if a1 , a2 are two boundary arcs of ~ 1 mapped to the same boundary 
arc b of ~ 2 and the ordering off is a1 < a2 , then for all x 1 E a1 , x 2 E a2 , t 1 , t 2 E (0, 1) one 

has cp(x1, t1) < cp(x2, t2)- We define f* : SA(~1) --+ SA(~2) by f*([T, s]) := [[(T), so [-1]. 

The assignment ~--+ SA(~) defines a symmetric monoidal functor SA: MS--+ Algk. 
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Let a, b be two distinct boundary arcs of ~, denote by 1r : ~ -+ ~a#b the projection 
and c := 1r(a) = 1r(b). Let (To, s0) be a stated framed tangle of ~a#b x (0, 1) transversed 
to c x (0, 1) and such that the heights of the points of T0 n c x (0, 1) are pairwise distinct 
and the framing of the points of T0 n c x (0, 1) is vertical towards 1. Let T c ~ x (0, 1) 
be the framed tangle obtained by cutting T0 along c. Any two states Sa : 8aT-+ { -, +} 
and Sb : 8bT -+ { -, +} give rise to a state (sa, s0 , sb) on T. Both the sets 8aT and 8bT 
are in canonical bijection with the set T0 n c by the map 1r. Hence the two sets of states 
Sa and sb are both in canonical bijection with the set St(c) := {s: cnT0 -+ {-,+}}. 

Definition 2.4. Let 0a#b : SA(~a#b) -+ SA(~) be the linear map given, for any (T0 , s0 ) 

as above, by: 

0a#b ([To, sol):= L [T, (s, so, s)]. 
sESt(c) 

The gluing map 0a#b is injective ( [Le18, Theorem 3.1]) and coassociative in the sense 
that if a, b, c, d are four boundary arcs then 0a#b o 0c#d = 0c#d o 0a#b· While considering 
two copies JIB U JIB' of the bigon and gluing b to a', we get another bigon. So we have a 
coassociative coproduct 

l:,. := 0b#a' : SA(JIB)®2 -+ SA(JIB). 

The algebra SA(JIB) with this coproduct has a structure of Hopf algebra that will be 
denoted by Oq[SL2]. Now consider a marked surface ~ with two boundary arc c and d. 
Since (JIB U ~h#c ~ ~, we have a left comodule map 

l:,.~ := 0b#c : SA(~) -+ Og[SL2] ® SA(~)-

Similarly, since (~ U JIB)d#a ~ ~, we have a right comodule map t:,.f := 0d#a : SA(~) -+ 
SA(~)® Og[SL2]. The main property of stated skein algebras is the 

Theorem 2.5. (K.-Quesney (KQ19a, Theorem 1.1/, Costantino-Le (CL19, Theorem 4.7}) 
The fallowing sequence is exact: 

0c#d t!.f-aot!.;} 
0-+ SA(~c#d)-'----+ SA(~)------> Oq[SL2] ® SA(~), 

where cr(x ® y) := y ® x. 

Let~ a marked surface and pa boundary puncture between two consecutive boundary 
arcs a and b on the same boundary component 8 of 8~. The orientation of~ induces 
an orientation of 8 so a cyclic ordering of the elements of 8 n A we suppose that a is 
followed by b in this ordering. We denote by a(p) an arc with one endpoint Va E a and 
one endpoint vb E b such that a(p) can be isotoped inside 8. Let a(p);j E SA(~) be the 
class of the stated arc (a(p), s) where s(vb) = i and s(va) = j. 

Definition 2.6. We call bad arc associated to p the element a(p)-+ E SA(~)- The 
reduced stated skein algebra s:;;_ed(~) is the quotient of SA(~) by the ideal generated by 
all bad arcs. 
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3 Some properties of stated skein algebras 

Let us list some properties of stated skein algebras which are useful towards the resolution 
of Problem 1.1. From now on, we suppose that A E (C is a root of unity of odd order 
N 2: 1. 

Theorem 3.1. (Banahan-Wong {BW11} for unmarked surfaces, K.-Quesney {KQ19a} for 
marked surfaces) There is an embedding 

Ch~: S+1(~) Y Z (SA(~)) 

named Chebyshev-Frobenius morphism, sending the (commutative) algebra at + l into the 
center of the skein algebra at A1!2 . Moreover, Ch;t,. is characterized by the facts that if '"Y 

is a closed curve, then Ch;i,.('"Y) = TN('"Y), where TN(X) is the N th Chebyshev polynomial 

of first type, and if aij is a stated arc, then Ch;t,.(aij) = aW) is the class of N parallel 
copies of aij pushed along the framing direction. 

If Risa ring with center Z(R) such that Risa Z(R)-module of finite rank r, then R is 
a Polynomial Identity (PI) ring. If moreover R is prime, then writing 8 := Z(R) \ {O}, a 
theorem of Posner shows that the localization 3-1 Risa central simple algebra with center 
3-1 Z(R), so is a matrix algebra is some algebraic closure of 3-1 Z(R). In particular, the 
rank r is a perfect square and we call PI-dimension of R its square root. Computing the 
PI-dimensions of stated skein algebras is an important step towards the classification of 
its representations. The orientation of~ induces an orientation o+ of the boundary arcs 
of A. 

Definition 3.2. 1. For pan inner puncture (i.e. an unmarked connected component 
of 8~), we denote by '"'/p E SA(~) the class of a peripheral curve encircling ponce. 

2. For 8 E 1r0(8~) a boundary component which intersects A non trivially, denote 
by P1, ... , Pn the boundary punctures in 8 cyclically ordered by o+ and define the 
elements in sA.ed(~): 

aa := a(p1)++ ... a(pn)++, and a 81 := a(p1)-- ... O:(Pn)---

We easily see that in SAed(~), we have a 8a81 = 1. 

3. For 8 E 1r0 (8~) a boundary component whose intersection with A is 2n, for n 2: 1, 
denote by p1, ... , p2n the boundary punctures in 8 cyclically ordered by o+. For 
k E { 1, ... , N - l}, write the product of bad arcs: 

f3t'k) := a(p1t+a(p2)~+k ... a(P2n-1t+a(P2n)~+k E SA(~)

We will call even such a boundary component 8. 

Theorem 3.3. 1. (Banahan-Wong (BW11} Przytycki-Sikora (P819}, Le (Le18}) SA(~) 
is a domain. 

2. (Bullock (Bul99} for unmarked surfaces, K. (Kor20}for marked surfaces) SA(~) is 
finitely generated. When the marking is non trivial and the surface connexe, we even 
have explicit finite presentations of SA(~). 
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3. (Frohman-Le-Kania-Bartoszynska [FKL19b}) If E is unmarked, then (i) the center 
of SA(E) is generated by the image of the Chebyshev-Frobenius morphism together 
with the eventual peripheral curves IP for p an inner puncture. (ii) SA(E) is finitely 
generated over the image of the Chebyshev-Frobenius morphism (so over its center) 
and ( iii) for E = (:E 9 ,n, 0) the PI-dimension of SA (E) is N 3g-3+n. 

4- (K. [K or21}) For any marked surface then ( i) the center of SAed(E) is generated by the 
image of the Chebyshev-Frobenius morphism together with the peripheral curves IP as
sociated to inner punctures and the elements oJ1 associated to boundary components 
8 E 1r0 ( 8:E). ( ii) both SA (E) and sAed(E) are finitely generated over the image of 
the Chebyshev-Frobenius morphisms (so over their center). (iii) For E = (:E 9 ,n,A), 
the PI-dimension of sAed(E) is N 3g-3+n+IAI. 

5. (Le-Yu [LYa}: To appear) For any marked surfaces then (i) the center of SA(E) 
is generated by the image of the Chebyshev-Probenius morphism together with the 
peripheral curves IP and the elements fl1N,k) associated to even boundary components 
and integers l ::; k ::; N - l. (ii) For E = (:E9 ,n, A), the PI-dimension of SA(E) 
is N 3g-3+neven+~(IAl+nodd) where n dd n are the number of boundary components , o,even 

with an odd and even number of boundary arcs respectively 

Let A be a prime complex algebra which is finitely generated over its center Z and let 
D its PI-dimension. Write X := Specm(Z) and for x E X corresponding to a maximal 
ideal mx C Z, consider the finite dimensional algebra 

Definition 3.4. The Azumaya locus of A is the subset 

AC(A) = {x E XIAx ~ MatD(<C)}, 

where MatD(<C) is the algebra of D x D matrices. 

Note that any irreducible representation p : A ➔ End(V) sends central elements to 
scalar operators so admits a (unique) x E X such that mxA C ker(p). If x E A.C, then 
Vis D dimensional. By a theorem of Posner, if x does not belong to the Azumaya locus, 
then Ax has PI-dimension strictly smaller than A, therefore any irreducible representation 
p: A ➔ End(V) inducing x has dimension dim(V) < D. So the Azumaya locus admits 
the following alternative definition: 

A.C(A) = {x E Xlx is induced by an irrep of maximal dimension D}. 

Therefore, if p : A ➔ End(V) is a D-dimensional central representation inducing x E X, 
then p is irreducible if and only if x E A.C. When A is prime, finitely generated and has 
finite rank over its center, then AC(A) contains a Zariski open dense subset, therefore we 
have the 

Theorem 3.5. ([FKL19b} for unmarked surfaces, [Kor21} for marked surfaces) The Azu
maya loci of SA(E) and SAed(E) contain open dense subsets. 
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Notations 3.6. Let Z denote the center of SA(E) and write X(E) := Specm(Z) and 
X(E) := Specm(S+1(E)). The Chebyshev-Frobenius morphism induces a surjective finite 
morphism 7r : X(E) ---+ X(E). We also define a branched covering 1r' : xred(E) ---+ ;rred(E) 
associated to reduced stated skein algebras in the same manner. 

Definition 3.7. The fully Azumaya locus is the subset FA.C(E) C X(E) of elements 
x such that all elements of 1r-1 (x) belong to the Azumaya locus of SA(E). The fully 
Azumaya locus F A_cred(E) C ;rred(E) is defined similarly. 

Since finite morphisms send closed sets to closed sets, Corollary 3.5 implies that the 
fully Azumaya loci are dense. 

Theorem 3.8. (Brown-Gordon {BG01, Corollary 2.7}) Let A be an affine prime C-algebra 
finitely generated over its center Z and denote by D its PI-dimension. Let R C Z be 
a subalgebra such that Z if finitely generated as a R-module. Let M E A.C(A) and 
m := M n R. Then 

For x E X(E), set 

SA(E)x := SA(E) / ChA(mx)SA(E) · 

In order to solve Problem 1.1, we need to classify all indecomposable modules of the finite 
dimensional algebras SA(E)x-

Let Z be the center of SA(E) and write 

Z(x) := Z / ChA(mx)Z · 

For X E ;rred(E), we define sAed(E)x and zred(x) similarly. 

Corollary 3.9. Jfx E FA.C(E) andD := PI-Dim(SA(E)), thenSA(E)x ~ MatD(Z(x)). 
Similarly, ifx E FA_cred(E) andD' := PI-Dim(SAed(E)), thenSAed(E)x ~ MatD'(zred(x)). 

Since the algebras Z(x) are easy to compute explicitly using Theorem 3.3, by putting 
Corollary 3.5 and Theorem 3.9 together, we have solved Problem 1.1 generically, i.e. for 
every classical shadows lying in the fully Azumaya locus. We need thus to solve the: 

Problem 3.10. Compute the (fully) Azumaya loci of SA(E) and sAed(E). 

Here is what is known concerning Problem 3.10: 

Theorem 3.11. 1. (Brown-Goodearl :) The Azumaya locus of SA(JR) ~ Oq[SL2] is 
equal to the smooth locus. Therefore (Brown-Gordon {BG02a}), its fully Azumaya 
locus is the set of non-diagonal matrices of SL2 = X(JR). 

2. (Takenov [Tak, Theorem 15, Theorem 17):) Takenov described explicitly two open 
dense subsets 0 1,1 and 0 0,4 which are included into the Azumaya loci of SA(~1,1) 

and SA(~o,4 ) respectively. 

3. (K. [Kor19aj:) The fully Azumaya locus of sAed(lDJ1 ) is equal to the set of elements 
(9+,9-) E B+ x B_ = _;rred(lDJ1) such that 9+9=1 =/- ±].2. 
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4- (Banahan- Wong {BW16bj:) For a closed surface, the central representations of XsL2 (~9 ) ~ 
X(~9 , 0) are not in the Azumaya locus. 

5. (Ganev-Jordan-Safranov [GJSaj:) For a closed surface, the smooth locus of XsL2 (~9 ) 

is included in the Azumaya locus. Moreover, for E~,o, the Azumaya locus is equal to 
the dense bad arcs leaf X 0 (E~,0). 

6. (Consequence of Alekseev-Malkin [AM94/:) The open dense subset D00 is included 
in the fully Azumaya locus of Dt(SL2 ) = SA(]D)t). 

The open dense subsets X 0 (E9 ,n) and D00 will be defined in the next section. The last 
two items of Theorem 3.11 are consequences of a more general theorem review in the next 
section: by Brown-Gordon theory of Poisson orders, if X(E) contains a symplectic leaf 
which is dense, then it is included in the fully Azumaya locus. Let us make an obvious 
remark: the quotient map S+1(E) --+ s~el(E) induces an inclusion xred(E) c X(E). 

Lemma 3.12. For a connected marked surface E with non-trivial marking, then the leaf 
xred(E) C X(E) does not intersect the fully Azumaya locus of SA(E). 

Proof. This follows from the fact, proved in Theorem 3.3, that PI - Dim(SAed(E)) < 
PI - Dim(SA(E)). □ 

4 Relative character varieties and Poisson orders 

4.1 Deformation quantization and Poisson orders 

Let Aq be an associative unital <C[q±l]-algebra which is free and flat as a <C[q±l]-module. 
Consider the C algebra A+l = Aq ®q=l C and the <C[[n]] algebra An= Aq ®q=exp(n) <C[[n]]. 
We suppose that A+1 is commutative. Fix B a basis of Aq, so by flatness, B can be 
also considered as a basis of An and A+l. The basis B induces an isomorphism of <C[[n]]-

modules \JiB : A+l ®c <C[[n]] -=t An sending b E B to itself. Denote by* the pull-back in 
A+l ®c <C[[n]] of the product in An. Define a Poisson bracket {·, -} on A+1 by the formula: 

(1) 

We say that the algebra (A+1 ®c <C[[n]], *) is a deformation quantization of the Poisson 
algebra (A+1,{·,·}). If B' is another basis, then W8 ' o W8 is an algebra isomorphism 
(A+1 ®c <C[[n]], *B) ~ (A+1 ®c <C[[n]], *B') whose reduction modulo n is the identity: such 
an isomorphism is called a gauge equivalence and it is clear that two gauge equivalent 
star products induces the same Poisson bracket, in particular { ·, •} is independent on the 
choice of B. Note that when A+l is reduced and finitely generated, Specm(A+1) is a 
Poisson variety. 

Remark 4.1. If \[I A : A! --+ A~ is an algebra morphism, it induces some morphisms 
\[Ill : A~ --+ A~ and \[l+l : At1 --+ A!1. Since \[l+l is the reduction modulo n of Wn, it 
follows from the definition of the Poisson bracket that \[I +1 is a Poisson morphism. 

Example 4.2. Let Ebe a free finitely generated Z module and (·, •) : Ex E--+ Z a skew
symmetric map and write lE = (E, (·, •)). The quantum torus 11'q(lE) is the algebra with 
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underlying vector space the group algebra k[E] = Span{Ze, e EE} and product given by 
Za · Zb := q(a,b) Za+b· Note that given e = (e1 , ... , en) a basis of E, the quantum torus 
1'q(lE) is isomorphic to the complex algebra generated by invertible elements Z!1 with 
relations Ze,Zej = q2(e,,e;)Eze;Ze,• Setting q = exp(n), we see that 

Za * zb - zb * Za = (q(a,b) - q-(a,b))za+b = n2(a, b)Za+b (mod n2 ), 

giving the Poisson bracket {Za,Zb} = 2(a,b)Za+b of X(lE) := Specrn(C[E]) ~ (C*t so 
1'q(lE) is a deformation quantization of the torus X(lE). 

Definition 4.3. A Poisson order is a 4-uple (A, X, q>, D) where: 

l. A is an ( associative, unital) affine C-algebra finitely generated over its center Z; 

2. X is a Poisson affine (['. -variety; 

3. c/> : O[X] Y Z a finite injective morphism of algebras; 

4. D: O[X] -+ Der(A) : z c-+ Dz a linear map such that for all f, g E O[X], we have 

Here is our main source of examples. Let Aq a free flat affine C( q±1 )-algebra like 

before, N 2 1 and, writing t := N(qN - 1), the C(q±l) / (qN _ 1) algebra AN := A /t 
and 1r : Aq -+ AN the quotient map. By fixing a basis B of Aq by flatness we can define 
a linear embedding : : AN -+ Aq sending a basis element b E B seen as element in AN to 
the same element b seen as an element in Aq- Note that: is a left inverse for 1r. Suppose 
that the algebra A+1 = Aq 18iq=l (['. is commutative and suppose there exists a central 
embedding c/> : A+1 Y AN into the center of AN- Write X := Specrn(A+1) and define 
D : A+i -+ Der(AN) by the formula 

D ·- ( [{(:;), y] ) 
xY .- 7r N(qN - 1) . 

Clearly Dx is a derivation, is independent on the choice of the basis B and preserves 
c/>(A+1), so it defines a Poisson bracket{·, •}Non A+1 by 

(2) 

So, writing X = Specrn(A+1), then (AN, X, c/>, D) is a Poisson order for this bracket. 
Note that if (N is an N-th root of unity and A(N = Aq 181q=(N C, we get a Poisson order 
(~N' X, c/>, D) as well simply by tensoring by C. 

What is not clear is how to compare the above bracket {·, •}N with the one corning 
from deformation quantization defined by Equation (1). 

Example 4.4. Consider the quantum torus 1'q(lE) of Example 4.2 and define the Frobenius 
morphism FrN : 1'+1(1E) Y Z(1',N(JE)) by FrN(Ze) := Z:1. The preceding discussion 
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defines a Poisson order ('IT'(N(lE),X(lE),FrN,D). The Poisson bracket {·,-}N defined by 
Equation (2) is computed as follows: 

So {Za,Zb}N = 2(a,b)Za+b and the Poisson bracket {·,-}N coincides with the bracket 
coming from deformation quantization. 

Using the Chebyshev-Frobenius morphism, by the preceding discussion we have Poisson 
orders (SA(E), X(:E), ChA, D) and (S.4ed(E), xred(E), ChA, D) where we set q := A2 • To 
prove that the two brackets coming from Equations (1) and (2) coincide, we can use the 
quantum trace. A marked surface is triangulable if it can be obtained from a disjoint 
union of triangles by gluing some pairs of edges. The data of the triangles plus the pairs 
of glued edges is called a triangulation. 

Theorem 4.5. 1. (Banahan-Wong [BW11}) For (E, ~) a triangulated marked surface, 
there exists a quantum torus 'IT'q(E, ~), named the balanced Chekhov-Fack algebra, 
and an embedding Trtl : SAed(E) '----+ 'IT'q(E, ~), named the quantum trace, such that 
Trtl intertwines the actions of the Chebyshev-Frobenius morphism and the Probenius 
morphism. 

2. (Le-Yu {LYbj) Let E* be the marked surface obtained from E by gluing a triangle to 
each boundary arc. Then there exists an embedding l: SA(E) '----+ SAed(E*) commuting 
with the Chebyshev-Frobenius morphism. In particular, by composition 

SA(E) ~ sAed(E*) ~ 'IT'q{E*, ~), 

we get an embedding of SA(E) into a quantum torus that intertwines the actions of 
the Chebyshev-Frobenius morphism and the Frobenius morphism. 

Lemma 4.6. The Poisson brackets of S+1(E) and s~e/(E) coming from Equations (1) 
and ( 2) are equal. 

Proof. When E is triangulable, this follows from Theorem 4.5 and the computations in 
4.2 and 4.4. For the bigon, this was proved by De Concini-Lyubashenko in [DCL94]. If 
E = (~9 ,0 , 0) is a closed surface, consider the triangulable surface E' = (~9 ,1 , 0) obtained 
by removing an open disc. By functoriality, the embedding E' -+ E induces an algebra 
morphism cp: SA(E')-+ SA(E) which is clearly surjective. Let IC SA(E) be the kernel of 
cp so that cp induces an isomorphism SA(E) ~ SA(E') /I. By [KQ19a, Proposition 2.18], 
the ideal I is generated by the elements b] - [,'], where 'Y, "(1 are two closed curves in ~ 9,1 

such that l('Y) and L('Y') are isotopic in ~ 9,0, so cp intertwines the Chebyshev-Frobenius 
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morphisms. By Remark 4.1, the morphism c/>+1: S+1(~') ➔ S+1 (~) preserves the Poisson 
brackets coming from Equation (1) and (2) and we deduce that they are equal in S+1(~) 
from the fact that they are equal in S+1(~'). 

□ 

Definition 4. 7. Let G be an affine Lie group. A Poisson order (A, X, cp, D) is said G
equivariant if G acts on A by automorphism such that its action preserves cp(O[X]) c A 
and such that it is D equivariant in the sense that for every g E G, z E O[X] and a EA, 
one has 

Dg.z(a) = gDz(g-1a). 

We now endow the previous Poisson orders with a structure of (IC*)A-equivariant Pois
son order. Let r.p: Oq[SL2] ➔ qx±1] be the surjective morphism defined by 

r.p(a+-) = r.p(a-+) = 0, r.p(a++) = X, r.p(a __ ) = x-1 . 

The morphism r.p is clearly a morphism of Hopf algebras and the induced morphism on 

O[SL2] ChA Oq[SL2] is the diagonal embedding IC* ➔ SL2 sending z to (z; z~N). 

Note that, while identifying IC[X±l] with the reduced algebra SA.ed(JIB), then r.p is just the 
quotient map SA(JIB) ➔ SA.ed(JIB). Define an algebraic action of (IC*)A on SA(~) by the 
co-action 

6.diag: SA(~)~ (Oq[SL2]~M) i8J SA(~) (cp'M)@id qx±1] i8J SA(~), 

where 6.L is the comodule map obtained by composing the 6.f for all a (i.e. by gluing a 
bigon to each boundary arc). The above action induces by quotient a similar action on 
sAed(~) and both action preserve the image of the Chebyshev-Frobenius morphism. The 
equivariance of D for this action is an immediate consequence of the definition of D. 

Definition 4.8. Let X be a complex Poisson affine variety. 

1. Define a first partition X = x 0 LJ ... LJ xn where x 0 is the smooth locus of X and 
for i = 0, ... , n - l, Xi+1 is the smooth locus of X \ Xi_ Each Xi is a smooth 
complex affine variety that can be seen as an analytic Poisson variety. Define an 
equivalence relation ~ on Xi by writing x ~ y if there exists a finite sequence 
x = p0 ,p1 , ... ,Pk= y and functions h0 , .•• , hk-l E O[Xi] such that Pi+1 is obtained 
from Pi by deriving along the Hamiltonian flow of hi. Write Xi = LJj xi,j the orbits 
of this relation. Note that the Xi,j are analytic subvarieties: they are the biggest 
connected smooth symplectic subvarieties of Xi. The elements xi,j of the (analytic) 
partition X = LJi,j xi,j are called the symplectic leaves of X. 

2. An ideal IC O[X] is a Poisson ideal if {I, O[X]} C I. Since the sum of two Poisson 
ideals is a Poisson ideal, every maximal ideal m C O[X] contains a unique maximal 
Poisson ideal P(m) Cm. Define an equivalence relation~ on X = Specm(O[X]) by 
m ~ m' if P(m) = P(m'). The equivalence class of m is named its symplectic core 
and denoted by C(m). The partition X = LJ X C(m) is called the symplectic 

mE /~ 
cores partition of X. 
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3. If moreover an algebraic Lie group G acts on X we call equivariant symplectic leaves 
and equivariant symplectic cores the G orbits of the symplectic leaves and symplectic 
cores respectively. 

For x E X with symplectic leaf F(x) and symplectic core C(x), C(x) is the smallest 
algebraic set containing the analytic set F(x). For (A, X, cp, D) a Poisson order and 

x EX, write Ax:= A/ cp(mx)A· The main theorem of the theory of Poisson orders is 

Theorem 4.9. (Brown-Gordon [BG03}) 

1. (BG03, Proposition 4.3/) For (A, X, cp, D) a G-equivariant Poisson order, if x, y E X 
belong to the same equivariant symplectic core then Ax ~ Ay. 

2. [BG03, Proposition 3.6}) The (equivariant) symplectic leaves partition is a refinement 
of the ( equivariant) symplectic cores partition. 

By putting Theorem 3.5 and Theorem 4.9 together, we obtain the 

Corollary 4.10. If F C X(E) is a dense equivariant symplectic leaf (or a dense equiv
ariant symplectic core) then F is included in the fully Azumaya locus. 

Problem 4.11. Compute the equivariant symplectic leaves of X(E) and ,.yred(E). 

As we shall review, the problem was solved: 

1. for closed surfaces by Goldman [Gol84]; 

2. for unmarked non-closed surfaces, independently by Fock-Rosly [FR99] and Guruprasad-
Huebschmann-Jeffrey-Weitsman [GHJW97]; 

3. for the once-punctured monogon m 1 and ]]])t by Alekseev-Malkin [AM94]; 

4. for the bigon, independently by Alekseev-Malkin [AM94] and Hodges-Levasseur [Hod93]; 

5. Ganev-Jordan-Safranov [GJSa] found an explicit open dense symplectic leaf in X(E~,0), 

for g ~ 1. 

Let us first state a trivial, but useful result towards the resolution of this problem. 
Consider an algebra Aq as before and let x E Aq be such that xAq = Aqx, i.e. the left 
and right (and bilateral) ideals generated by x coincide. Let Iq = (x) c Aq this ideal 
and I = Iq igiq=l <C c A+l. Since we have [Iq, Aq] c Iq, it follows from the definition of 
the Poisson bracket that {I,A+1} C I, i.e. that I is a Poisson ideal of A+i- Partition 
the set X = Specm(A+1) into X = x 0 LJ X 1 where x 0 is the open subset of x E X such 
that xx(I) = 0 and X 1 its closed complement. Clearly each set Xi is a disjoint union of 
symplectic leaves, i.e. the partition into symplectic leaves is a refinement of the partition 
X = xo LJX1. 

Lemma 4.12. (Le-Yu [LYb, Lemma 4.4.(a)/) Let p E P 8 be a boundary puncture and 
o:(p)-+ E SA(E) its associated bad arc. For any [D, s] E B 0+, there exists n E Z such that 
o:(p)-+[D, s] = Anl2 [D, s]o:(p)-+- In particular o:(p)-+SA(E) = SA(E)o:(p)-+-
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For E : P8 ---+ {O, 1}, denote by X(e)(:E) c X(:E) the subset of these x E X(:E) such 
that Xx(a(p)-+) = 0 if s(p) = 0 and Xx(a(p)-+)-/- 0 else. 

Definition 4.13. We call the bad arcs partition the partition X(:E) = L1 x(e)(:E). 

Note that for E = 0 (the map sending every p to 0), one has xC0l(:E) = xred(:E) by 
definition. By Lemma 4.12 and the preceding discussion, we obtain the 

Lemma 4.14. The partition into equivariant symplectic cores is a refinement of the bad 
arcs partition. 

Let us state a second obvious remark towards the resolution of Problem 4.11. Recall 
from Definition 3.2, that for each inner puncture p we defined a central element IP E 
SA(~) and for each boundary component 8, we defined an invertible central element 
a8 E SAed(~). Let Cas C S+1(:E) (resp. Casred C s~el(:E)) denote the subgroup generated 
by the elements IP (resp. by the elements Ip, at1 ). Since these elements are central in the 
skein algebras with parameter A= exp(n/2), the elements in Cas and Casred are Casimir 
elements, i.e. they are in the kernel of the Poisson bracket. Therefore, if we consider the 
following Casimir partition 

LJ 
1r:Cas➔IC 1r:Casred➔C 

where the 7f are characters over the Casimir groups and X(1r)(:E) is the (algebraic) subset 
of elements x such that Xx(c) = 1r(c), for all c E Cas and similarly for the reduced version, 
then 

Lemma 4.15. The partition into symplectic cores is a refinement of the Casimir partition. 

Note that the group (<C*)A preserves the Casimir leaves X(1r)(:E) but not the leaves 
X[:)d(:E). 

Lemma 4.16. If sAed(:E) is commutative for A generic, then for every x E xred(:E) = 
x(o) (:E), then the singleton { x} is a symplectic core of X (:E). 

Proof. Let Ibad C sAed(:E) be the ideal generated by the bad arcs. If sA.ed(:E) is commu
tative for A= exp(n), then we have [Sll(:E), Sll(:E)] c Ibad, so by definition of the Poisson 
bracket we have { S+1(:E), S+1(:E)} C Ibad_ Therefore the restriction of the Poisson bracket 
to xred(:E) vanishes. □ 

4.2 Relative character varieties 

The Poisson variety X(:E) has a geometric interpretation that we now sketch and refer 
to [Kor19b] for further details. Let V C ~ be a finite set such that (1) V intersects each 
boundary arc exactly once and (2) V intersects each connected component of~ at least 
once. Let IIi(~, V) be the full subcategory of the fundamental groupoid IIi(~) generated 
by V. The set of functors p: IIi(~, V) ---+ SL2 , where we see SL2 as a groupoid with one 
element, forms the closed points of an affine variety RsL2 (:E). Define the discrete gauge 
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group gas the algebraic group of maps g: V---+ SL2 such that g(v) = 11 2 if v EA. It acts 
on RsL2 (~) by the formula 

g • p(a) = g(v2 )p(a)g(v1)-1 for o:: v1---+ V2 E Ih(~, V), g E Q, p E RsL2 (~). 

The relative character variety is the GIT quotient: 

The relative character variety does not depend, up to canonical isomorphism, on V. If o 
is an orientation of the boundary arcs of ~, the relative character variety has a structure 
of Poisson affine variety, denoted XsL2 (~) 0 , whose Poisson bracket can be describe by 
a generalized Goldman formula. Note that if ~ is connected and A non empty, we can 
choose V c A, in which case the group g is trivial. In this case, we easily see that 
XsL2 (~) ~ (SL2t for some n 2 1. In particular, the relative character variety is smooth 
in that case. 

Theorem 4.17. ([Bul97, Tur91} for unmarked surfaces, {KQ19a} for marked surfaces) 
The Poisson varieties X(~) and XsL2 (~) are (non canonically) isomorphic. 

When~ = (~9 , 0) is closed, choose V = { v} a singleton and XsL2 (~9 ) = Hom( 1r1 (~9 , v) ---+ 
SL2 ) // SL2 . The action of SL2 on Hom(1r1(~, v), SL2 ) by conjugacy is not free. We de
compose the set of representations p : 1r1 (~, v) ---+ SL2 into three classes: 

1. The central representations taking value in ±112 and for which the stabilizer is SL2. 

2. The diagonal representations which are conjugate to a non central representation 
valued in the subgroup D C SL2 of diagonal matrices and for which the stabilizer is 
the group of diagonal matrices. 

3. The irreducible representations for which the stabilizer is ±112. 

Denote by XJL2 (~9 ) the set of classes of irreducible, diagonal and central representations 
when i = 0, 1, 2 respectively. It follows from the work of Goldman [Gol84] that the 
partition into symplectic leaves of XsL2 (~9 ) is simple: both X~L2 (~9 ) and XJL2 (~9 ) are 
symplectic leaves and for every central representation r the singleton {[r]} is a symplectic 
leaf. When g = 1, then X~L2 (~1) is empty and XJL2 (~1) is an open dense symplectic leaf, 
so it is included in the Azumaya locus. As we shall see, since no central representation 
belong to the Azumaya locus, then XJL2 (~1) is equal to the Azumaya locus. For g 2 2, 
since the smooth locus X~L2 (~9 ) is symplectic, it is included in the Azumaya locus as 
noticed by Ganev-Jordan-Safranov in [GJSa]. It remains the 

Question 4.18. For g 2 2, is the symplectic leaf XJLJ~9 ) included in the Azumaya locus 
of SA(~9 ) ? 

Note that one diagonal representation belong to the Azumaya locus if and only if all 
of them do. Le and Yu conjectured that the answer is no. 

Let us consider the marked surfaces lll\, m 1 ,][))1 and ][))i and write SLf := X(lIB), 
SLfrs := X(m1), D(SL2) := X(][))1) and D+(SL2) := X(][))t). Both SLf and SLfrs 
are isomorphic to SL2 but with two different Poisson structures. The Poisson structure 
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of SLf endows SL2 with a structure of Poisson-Lie group and was defined by Drinfel'd, 
the Poisson structure of SL~TS were defined by Semenov-Tian-Shansky and appeared in 
the work of Alekseev-Malkin. Note that SLf has four bad arcs leaves which correspond 
to the double Bruhat cells of SL2 whereas SL~rs has two bad arcs leaves, say SLg and 
sq which correspond to the simple Bruhat cells of SL2 . We denote by SLg the open 
dense cell. Note that both SAed(JE) and SAed(m1 ) are commutative, so by Lemma 4.16, if 
g E SL2 is diagonal, then the singleton Jg J is a symplectic leaf of SLf and if g E SL~ the 
singleton {g} is a symplectic leaf of SL2 T . 

Similarly, the two Poisson varieties D(SL2 ) and D+(SL2 ) (named Heisenberg doubles) 
are isomorphic to SL2 x SL2 , though only D(SL2 ) is a Poisson Lie group, and both were 
considered by Alekseev-Malkin. By extending the techniques of Semenov-Tian-Shansky, 
Alekseev-Malkin proved 

Theorem 4.19. 1. (Alekseev-Malkin (AM94, Theorem 2/) The four bad arcs leaves of 
D+(SL2 ) are symplectic. 

2. (Hodges-Levasseur (Hod93, Theorem B.2.l}, Alekseev-Malkin (AM94, Section 4/) The 
equivariant symplectic leaves of SLf are the double Bruhat cells of SL2 (which cor
respond to the bad arcs leaves of SLf ). 

3. (Alekseev-Malkin (AM94, Section 4/) The symplectic leaves of SL~rs are 

(a) The leaves SLg nC, for C a conjugacy class; 

(b) the singletons {g} for g E SL~. 

Note that one bad arc leaf, say D00 of D+(SL2 ) is dense, so Corollary 4.10 implies 
that D 00 is included in the Azumaya locus of SA(IIJJ;t'). Define an embedding m 1 -t :E~,o 
by sending the underlying annulus of m 1 in a tubular neighborhood of the (unique) 
boundary component of :E~,o and let µq : SA(m1 ) -t SA(:E~,o) be the induced morphism. 
Note that µq sends the unique bad arc of SA(m1 ) to the unique bad arc of SA(:E~,0). 

Let µ : XsL2 (:E~,o) -t SL~Ts be the Poisson morphism induced by µ+ 1 . The bad arcs 

decomposition write XsL2 (:E~,0 ) = X~L2 (:E~,0 ) U XJL2 (:E~,0 ), where XjL2 (:E~,0 ) = µ- 1 (SLt). 

Theorem 4.20. (Ganev-Jordan-Safmnov (GJSa, Theorem 2.14/) The open dense bad arc 
leaf X~L2 (:E~,0) = µ- 1 (SLg) is symplectic. 

So X~L2 (:E~,o) is included in the Azumaya locus and by Lemma 3.12 it is equal to the 
Azumaya locus. 

5 Three families of representations 

In addition to the general theorems cited above, there exist three families of representa
tions of skein algebras which are powerful tools to solve Problem 1.1. 
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5.1 Representations coming from modular TQFTs 

The TQFTs defined by Witten and Reshetikhin-Turaev produces representations of skein 
algebras for unmarked surfaces: 

pWRT: SA(~9)---+ End(VA(~9 )). 

The dimension of VA (~9 ) is computed using the Verlinde formula, in particular Dim(VA (~9 )) < 
PI - Dim(SA(~9 )). The following theorem was formulated for A a root of unity of even 
order 2N, but its proof extends word-by-word to the odd case. 

Theorem 5.1. 1. (Gelca-Uribe [GU10, Theorem 6.7), see also {BW16b}) The represen
tation pWRT is irreducible. 

2. (Bonahon-Wong [BW16b}) The classical shadow of pWRT is a central representation. 

The identification X(~9 ) ~ XsL2 (~9 ) in Theorem 4.17 depends on a choice of spin 
structure S and which central representation is the shadow of pWRT depends on this non 
canonical choice. Let x E H1(~9 ; Z/2Z) ~ XJL (~9) be the classical shadow of pWRT_ For 
x' E H1(~9 ; Z/2Z), define a representation x'. pwRT by x'. pwRr(,) = (-l)x'([,DpWRT(,). 
Then x' • pwRT has classical shadow x + x'- In particular, every central representation 
in XgL2 (~9 ) is the classical shadow of an irreducible representation whose dimension is 
strictly smaller than the PI-dimension of SA(~9 ) therefore: 

Corollary 5.2. The locus XgL2 (~9 ) of central representations does not intersect the Azu
maya locus of SA(~9 ). 

5.2 Representations coming from non semi-simple TQFTs 

Blanchet, Costantino, Geer and Patureau-Mirand defined in [BCGP16] a new family of 
TQFTs named non semi-simple because their algebraic input is no longer a modular 
category but rather a so-called G-modular relative category (which is non semi-simple in 
general) as described by De Renzi in [DR]. The categories giving rise to representations of 
the Kauffman-bracket skein algebras are the categories of projective weight representations 

of the unrolled quantum group v: s[2 that we consider here at odd roots of unity. For 
every cohomology class w E H1 (~9 ; C/Z), these TQFTs define some representations 

pBCGP: SA(~9 )---+ End(VA(~9 ,w)). 

When w E H1 (~9 ; C/Z) \ H1 (~9 ; ½Z/Z), these representations satisfy: 

1. The dimension of VA(~9 ,w) is equal to the PI-dimension of SA(~9 ). 

2. The classical shadow of pBCGP is the class of the diagonal representations r w 

1r1 (~9 , v) ---+ S12 defined by 

r w( ,) = ( - l)ws(bll (exp(2i1r0w([,])) 0 ) 
exp(-2i1rw([,])) ' 

where w8 is the Johnson quadratic form of the spin structure S used in the identifi
cation X(~9 ) ~ XsL2 (~9). 
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Question 5.3. For w E H1 (I;g; C/Z)\H1 (I;g; ½Z/Z), is the representation pBCGP irreducible 
? 

Clearly, solving Question 5.3 is equivalent to solving Question 4.18. At the au
thor's knowledge, not much is known concerning the representation pBCGP when w E 

H1 (I;g; ½Z/Z). The above two properties are expected to hold in that case too, in which 
case Corollary 5.2 would imply that they are not irreducible. 

Question 5.4. For w E H1(I:g; ½Z/Z), what is the dimension of VA(I:g,w)? Is the repre
sentation pWRT indecomposable ? Projective ? What is its classical shadow ? 

5.3 Representations coming from quantum Teichmiiller theory 

Recall from Theorem 4.5 the quantum trace Tr~ : sAed(~) '----t 'll'q(~, ~)- De Concini 
and Procesi proved that any quantum torus at roots of unity is Azumaya of constant 
rank, so the isomorphism classes of irreducible representations of 'll'q(~, ~) are in 1-to-1 
correspondance with the characters over the center of 'll'g(~, ~)- Let r : Zw(~, ~) ---+ 
End(V) an irreducible representation. Then the composition 

is called a quantum Teichmuller representation. This procedure permits to construct 
representations of reduced stated skein algebras for triangulable surfaces. The quantum 
trace embeds the center of SAed(~) into the center of 'll'g(~, ~) so pBW is a central rep
resentation. For each inner puncture p, one can define a central element HP E 'll'q(~, ~) 
such that tr~(rp) = HP+ H;1 (see [BWl 7] for the definition of Hp)- We can use this 
construction to produce representations of skein algebras of closed surfaces as follows. 
Let I:g,n be obtained from I:g by removing n open discs. The inclusion I:g,n C I:g is an 
embedding of marked surfaces and defines a morphism cp : SA(I:g,n) ---+ SA(I:g) which is 
clearly surjective. Let I C SA (I:;g,n) be the kernel of cp. Let ~ be triangulation of (I:;g ,n, 0) 
which is combinatoric in the sense that every edges has its two endpoints distinct. Let 
r : Zw(~, ~) ---+ End(V) be an irreducible representations sending each central element 
HP, to r(HPJ = -q-1idv and consider the subspace 

v0 := {v E VI r(x)v = 0, \Ix EI}. 

The representation pBW = r o tr~ : SA(I:;g,n) ---+ End(V) induces via cp a representation 
pBW: SA(I:;g) ---+ End(V0 ) which was studied in [BW19]. Here is what is known concerning 
the representations pBW. 

Theorem 5.5. 1. (Bonahon-Wong [BW17, BW19} for unmarked surfaces, K.-Quesney 
[KQ19b, Kor21} for marked surfaces) The dimension of pBW is equal to the PI
dimension of SAed(~) except maybe when ~ is closed of genus g ~ 2 and the shadow 
is a central element in X1§t2 (I:g) in which case it is only known that the dimension 
is:=; N 3Y-3 _ 

2. ([BW17, BW19}) When~ is closed, all elements of XsL2 (~) are the classical shadow 
of a quantum Teichmuller representation pBw. When ~ is not closed, the set of 
shadows of representations pBw is dense. 
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Question 5.6. 1. When ~ is not closed, which elements of ;ped(~) are the classical 
shadows of quantum Teichmi.iller representations ? 

2. What is the dimension of pBW when ~ is closed of genus g 2: 2 and the shadow is 
central? 

3. If two quantum Teichmi.iller representations induce the same character over the center 
of SA(~), are they isomorphic? 

4. When are the representations pBW simple ? indecomposable ? projective ? 

5. If pBW and pBCGP have the same classical shadow, are they isomorphic ? If the 
shadow is central, is pWRT a sub-representation of one of them ? 

Question 5.6 was solved by the author in [Kor19a] for ]D)n· 

Proposition 5.7. The following assertion are equivalent: 

1. There exists a diagonal representation in XJL2 (I;9 ) that belongs to the Azumaya locus 
of SA(I;9 ); 

2. All diagonal representations belong to the Azumaya locus of SA(I;9 ); 

3. There exists a class w E H 1(I;9 ; C/Z) \ H1 (I;; ½Z/Z) for which the representation 
peccP coming from non semi simple TQFTs is irreducible; 

4- For all w E H1 (I;9 ; C/Z) \ H1 (I;; ½Z/Z), then peccP is irreducible; 

5. There exists a quantum Teichmiiller representation pBW with classical shadow in 
XJL2 (I;9 ) which is irreducible; 

6. All quantum Teichmiiller representations pBW with classical shadow in XJL2 (I;9 ) are 
irreducible. 

Moreover, if these assertions are true, then any two representation pBCGP and pBW having 
the same diagonal classical shadow in XJL2 (I;9 ) are isomorphic. 

Proof. The equivalence between the first two assertions follows from the fact that XJL2 (I;9 ) 

is a symplectic leaf together with Theorem 4.9. The other equivalences follow from the 
fact that both families of representations pBCGP and pBW have dimension equal to the 
PI-dimension of SA(I;9 ). □ 

6 Reformulation of the representations classification problem 

Call semi-weight representation of SA(~) a representation which is semi-simple as a mod
ule over S+1 (~) (through the Chebyshev-Frobenius morphism). An indecomposable semi
weight representation p sends the elements of S+l (~) to scalars operators so admits a 
classical shadow [r] E X(~) and is a representation of the finite dimensional algebra 
SA(~) [r] • Drozd classified finite dimensional algebras in three families: 

Definition 6.1. A finite dimensional C algebra A is 
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l. of finite representation type if it has a finite number of isomorphism classes of inde
composable finite dimensional modules; 

2. of tame representation type if it is not of finite representation type and if for every 
d 2: 0, there exists a finite collection of A - <C[X] bimodules M1 , ... , Mn such that 
any d-dimensional indecomposable A module is isomorphic to a module Mi igi S for 
Sa simple <C[X]-module. 

3. of wild representation type if there exists a functor F : (C (x, y) - Mod--+ A - Mod 
that preserves indecomposability and isomorphism classes. 

By Drozd's Trichotomy theorem ([Dro79]) a finite dimensional algebra belongs to ex
actly one of these families. Classifying the indecomposable representations of a wild 
algebra is an undecidable problem (the word problem for finitely presented groups can be 
embedded into that problem) so we need to reformulate our initial problem. 

Problem 6.2. 1. Classify the equivariant symplectic leaves of XsL2 (~) (4.11); 

2. For each leaf, choose a representative [r] and determine the representation type of 
SA(~)[r]; in particular if [r] belongs to the fully Azumaya locus (which happens for 
a dense leaf for instance), then Corollary 3.9 gives the answer; 

3. If SA(~)[r] it is not wild, classify its indecomposable finite dimensional representa
tions. 

Of course, Problem 6.2 has an equivalent version for reduced stated skein algebras. 
This problem was solved by Brown-Gordon for the bigon in [BG02a], by the author for 
S;{d(IDli) in [Kor19a] and can be deduced for I;1 and I;1,1 from [HP0l]. 
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